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1. Introduction

Laplace transform techniques for solving differential equations do not
seem to have been directly applied to the Schrodinger equation in quantum
mechanics. This may be because the Laplace transform of a wave function,
in contrast to the Fourier transform, has no direct physical significance.
However, this paper will show that scattering phase shifts and bound state
energies can be determined from the singularities of the Laplace transform
of the wave function. The Laplace transform method can thereby simplify
calculations if the potential allows a straightforward solution of the trans-
formed Schrodinger equation. Suitable cases are the Coulomb, oscillator and
exponential potentials and the Yamaguchi separable non-local potential.

In section 2, the required properties of the Laplace transform (here-
after called the transform) are stated. Then the method is used to find the
energies of bound S-states in a Coulomb potential. Next the bound state
energy and scattering phase shift of the Yamaguchi potential are calculated.
The behaviour of the Jost function at the origin can also be found, and the
exponential potential is treated in this way. Section 6 completes the solution
of the Coulomb problem, and treats the three-dimensional harmonic oscilla-
tor. Finally the scalar product of two wave functions is calculated by
constructing a differential operator from one transform, and applying it to
the other transform. The complex conjugate of any operator defined on the
transforms may then be determined directly.

The essential features of this method of finding the asymptotic form
of the solution of a linear differential equation have been given in previous
treatments [3, 8] of the Laguerre equation, especially that by Murnaghan,
who noted the application to the hydrogen atom. The examples below show
that all physically significant quantities can be obtained directly from the
transforms without inverting.

An appendix records the Laplace transform of Jv{^e"^r), obtained first
by comparing Section 5 with the standard treatment of the exponential
potential, and then directly in a simpler form. This is believed to be a new
result.
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2. Properties of the transform

The transform of f(r) is

F(s)=Lf(r)=j"er«f(r)dr

and has the properties

(2.1) Lf"(r) = s*F(s)-f'(0)-sf{0)

(2.2) L{er»f(r)} = F(s+b)

(2.3) L{rnf(r)}= (-l)»F<">(s)

(2.4) F(s) ̂  0 as s -> oo

The relation between the asymptotic behaviour of /(r) and the singularities
of F(s) is very important for the applications below. Suppose F(s) is singular
at s = s0, s±, s2, • • •, with Re s0 > Re sx ^ Re s2 5; • • •, and that (near
s = *o).

F{s) ~ Ais-So)-"

Then [7, p. 102]

(2.5) / ( r j -

When v = 1, JF(S) has a simple pole at s = s0, and A is the residue. When
Re s0 = Re sx > Re s2, the asymptotic form of f(r) consists of the sum of
two terms like (2.5), one from s0 and one from s±. If Re s0 > Re slt the
term like (2.5) coming from sx is the next exponential term in the asymptotic
expansion of f(r).

3. Coulomb potential: bound S-states

This example is given first, since the standard treatment is very well-
known. The potential is V(r) = —Z&r~x, and the radial equation may be
written

— \v?ru{r) = 0.

The constants are those used by Schiff [6]:

a2ft2 = — 8/iE, vHP = 2/^Ze2, a > 0.

Using (2.3), and (2.1) with the boundary condition u(0) = 0, the transformed
equation is

i ' ( s ) = 0.

This integrates at once to give

https://doi.org/10.1017/S1446788700006212 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006212


[3] Solution of Schrodinger equation 559

where C is an arbitrary constant of integration. If A is not a positive integer,
then s0 = a/2; from (2.5) u(r) is not a square-integrable function, since its
asymptotic form involves eiar. On the other hand if A is a positive integer,
s0 = —a/2, and (2.5) shows that u(r) is square-integrable.

Thus, for the eigenvalue problem, the explicit nature of u(r) is not
required. Once U(s) is obtained, it is only necessary to inspect its singularities.
U(s) is not necessarily required explicitly; in this example a power series
expansion of U(s) about s = \<*. may be assumed, and the indicial equation
gives the condition for a singularity. In this example there is an additional
advantage: the second-order equation for u transforms to an integrable
first-order equation for U.

The precise asymptotic form of u(r) may be written down by substitut-
ing the appropriate values of A in (2.5). For general A this gives

[ eixr

from which the first term may be expected to vanish only when A = 1, 2,
3, • • •. However, this expression is not actually required to deduce the
eigenvalues.

4. The Yamaguchi potential

The non-local potential with

V(r,r') = -h2bsW(4nmrr')-1exp(-br-br'),

W a dimensionless constant, only acts in S-states, in which the radial
equation is (H2K2 = —2mE)

(4.1) u"(r)-K2u(r) = —2Wb3e~br f*'e~br'u(r')dr''.
J 0

Since the integral is just U(b), the transformed equation is

= u'(0)-2Wb3U(b){s

which incorporates the boundary condition u{0) = 0. The value s = b
shows the relation between the normalization constants u'(0) and U(b).
Thus

= u{b n»-*+W»)(s+b)-2Wl*

with simple poles at s = K, —K and —b. Thus s0 = K > 0, unless the
residue at s = K vanishes, which is the condition for a bound state:

(4.2) (b2-
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If W > 1, the potential supports a bound state with energy corresponding
to K = b(Wi— 1). A curious feature of this potential is that when W > 4,
K > b, and the asymptotic form of u(r) is dominated not by the usual e~Kr

term, but by an e'hr term.
The determination of U(s) is just the usual momentum-space wave

function treatment [9], with — si replacing p. It seems more natural to
consider the integral in (4.1) as a Laplace transform.

For the scattering problem K2 is replaced by — k2, and the poles of U(s)
occur at s0 = ik = — sl, s2 = —b, with Re s0 = Re sx. If Aik and A_ik are
the residues at s0 and sl3 (2.5) shows that

(4.3) u{r) ~ A
T-+OQ

and so the phase shift d is given by

«« = - ^*- =

Alternatively, the Jost function can be constructed. Any solution has
the transform

, x /'(0)+s/(0) 2Wb3F(b)
Fls) = ——

s2+k2 (b+s)(s2+k2)
The value s = b gives one relation between /(0), /'(0), and F(b). From (4.3),
the Jost function satisfies A_ilc = 1, Ailc = 0 giving two more equations, so
that /(0) is determined.

Then 0 = f{0)\k=_iK gives (4.2), and d = arg /(0) is equivalent to (4.4).
In the usual notation f{r) is f{k, r), /(0) is /(*, 0) or

5. The exponential potential

If V(r) = — Vo exp(—rja), the 5-wave radial equation can be written

(5.1) f"{x) + Wer*f{x)+c*f{x) = 0

with ax = r, Wb2 = 2mV0a?, H2c2 = 2mEa2. Using (2.1) and (2.2), the
transform F(s) satisfies the first-order difference equation

(5.2) b2F(s+l) + (s*+c2)F(s) = /'(0)+s/(0).

The standard method of solution [5, p. 104] is to substitute F(s) = Z(s)V(s)
where Z(s) satisfies

b2Z(s+l) + (s2+c2)Z(s) = 0
giving
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= _

from which (e = \-\-A)

where Yx(s) is an arbitrary function of period 1.
Since Z(s) = {~l)sb'2sr(s+ic)r(s-ic)Y2(s), where Ys(s) is another

arbitrary function of period 1, the general solution of (5.2) is

F(s) = r(s+ic)r(s-ic)

In view of (2.4), the arbitrary function Y1(s)Y2(s) must be chosen to be
identically zero. The required solution is therefore

(5-3) F(s)
rr0 {s+ic) • • • (s+r+ic)(s—ic) • • • (s+r—ic)

with simple poles at —n±ic (n = 0, 1, 2, • • •). The asymptotic behaviour
of fix) is determined by the residues

Au = (2ic)-i[{f(0)+icf(0)}G-b*f(0)G']

A_ir = (-5
_ic

with G = 9F1(l+2ic; -b2).
In particular, Aie = 0, A_ic = 1 gives the Jost function. Solving for

/(0) under these conditions gives

?'-G'G)]/(0) = 2G.

Since the square bracket is real, the phase shift is given by

b = arg G = arg ol

The condition for a bound state may be obtained by putting c = — I
in/(0) = 0. Thus K must satisfy 0F1(l-j-2*a; -b2) = 0 i.e. J2A.afib) = 0.

II this condition is Iound, directly "by taking c1 = —KLdu anh >\0) = "b
in (5.2), then the transform U(s) of the radial wave function is given by
(5.3) with /(0) = 0, c = —iKa, and /'(0) = M'(0). Thus there are simple poles
at the positive values s = KU, *ca—1, • • •, *«—[ica], and their residues must
all vanish to get a bound state. However, it turns out that all the residues
have JiKa(%b) as a factor, so that just one condition is sufficient.
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6. The Coulomb potential

The bound S-states were deduced in Section 3. With the same notation,
the radial equation for angular momentum /

rV'+odm—\a.2r2u—l(l+l)u = 0.

The transformed equation is

i = 0.
Differentiate (I—I) times, and put V(s) = Ull)(s). There results a first
order equation for V(s), giving

V = qs - la^ - ' -^+ ioc) -*- ' - 1 .

From (2.3), this is the transform of (—r)lu(r). The existence of bound
states, which depends on the elimination of positive exponential terms from
the asymptotic form of u(r), can therefore be investigated from the singular-
ities of V(s). The required condition is that X—I is a positive integer, so
that V has no singularity at s = -|a.

It is also convenient to treat S-states separately in the scattering
problem. When 1 = 0 the radial equation is ru"—2nku-\-k2ru = 0, with

= 2/xE, h2nk = —fiZe2. The transformed equation integrates to

U = C{s-\-ik)-l~in{s-ik)-1+in.
Using (2.5),

C r(2ikr)-ineikr {-2ikr)ine
u(f)

2ik I T{1—in)

C

J

k\r(l+in)\
sin (kr—n log 2kr-\-rj0)

with 7]0 = arg 71(l+m).
When / > 0, the radial equation is transformed, and then differentiated

(/—I) times, as in the bound state case.
Integrating gives

= C (s

Using (2.3) and (2.5),

Ceinnrl f" (2kr)~ineilcr (2kr)inil+ie-ikr~\
(—r)lu(r) •—> — 1- •v ; w r - « , (2A)'+i L*I+ir(/+l-*») r(l+l+in) J

The usual manipulation into sine form gives the phase shift.
Differentiating (/— 1) times can be avoided by transforming the equa-

tion for w(r) = rlu(r). This is the best method for the three-dimensional
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harmonic oscillator. Taking (2m)-1K2h2r2 as the potential for a particle
of mass m, and putting mE = 2h2Ky (K > 0), the radial equation is

u" (r) + {4:Ky~r2K2-l{l+l)r-*}u(r) = 0.
Then

r2w"—2lrw'+4:Kyr2w—K2r*w = 0.

Changing the variable to r2 — x, and then transforming, gives an integrable
first order equation for W{t), the transform of w{x). When 1 = 0, w'(x) -> oo
as x ->• 0, so xw" should not be transformed by successive use of (2.1) and
(2.3), but by using

L{xw") = —Lim (xw')—Lw'+tL{xw').
x-+0

(This is also required in section 3.) The solution is

W = C(t-$K)v-ll-i(t+iK)-?-il-l.

The eigenvalues are determined by the condition that y—JJ—f must
be a non-negative integer N, so that

mE = h2K(l+2N+%), N = 0, 1, 2, 3, • • •.

The Laplace transform method can also be used when the Coulomb
problem is solved in the parabolic coordinates | = r-\-z, t] = r—z, <f>. Assum-
ing a bound state wave function i{£)g{r])eim't', and separating variables,
gives [6]

i »V = 0
where /? is a separation constant. g(t)) satisfies the same equation with
replaced by 2ocA—/?. Substituting / = ^~^m^w gives

)+p}+{ \m\)w = 0.

The transformed equation is (m 7̂  0)

(4x*-ia.
2)W"(x) + (4:X+4:\m\x-p)W'(x) = 0.

Integrating,

(6.1) W'{x) = 1̂ (a;-Ja)W2ot)-*irol-4

Similarly, substituting^ = rj^i^v, gives

(6.2) 7'(y) 4

where F(j/) is the transform oi v(r}).
A bound state requires that (6.1) is regular at x — \u., and (6.2) regular

at y = ^a. Thus

(% = 0,1,2, • • •), and A = « 1 + » 2 + W + l («2 = 0, 1, 2, • • •).
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When m = 0, the equation for / can be transformed directly after dividing
by f. The same procedure leads to X = nl

J
rn2

J
rl (n1, n2 = 0, 1, 2, • • •).

7. Evaluation of scalar products

In some of the above examples, the transform is simpler than the wave
function. To exploit this fully requires some way of obtaining expectation
values directly from the transform. The operators —d/ds and s acting on
the transform correspond to the operators r and djdr acting on u(r). The
only problem is to find what operation on the transforms U(s), V(s) corre-
sponds to taking the scalar product \™u(r)v(r)dr. This is also needed to
discuss normalization of transforms.

For example, the bound Coulomb 5-states have normalized radial
wave functions [6]

un(r) = 2~£af (r-\- • • •) exp(—\atr)

where (r-\- • • •) is a polynomial in r. Taking the transform gives

Un(s) = 2-*oc« / - - + •••) (s + la) - 1 = 2-iaf[(s+|<x)-2+ • • •]

which is an expansion of the normalized transform in inverse powers of
(s+^oc). Writing (3.1) in this way gives (A = n)

( *(7.1) Un(s) = CJZ (-«)» (
m=0 \

m

The m = 0 term shows that the normalized transform is obtained by choos-
ing Cn = 2~iat. This will later be deduced directly from the transform.

Now consider v(r) or V(s) as the representative of a ket. The bra
corresponding to u(r) is represented by the function with the value
f™u(r)v(r)dr at the argument v(r); the bra maps the radial functions v(r)
into the scalar products j^uvdr, and must also map the transforms V(s)
into the same numbers.

Let u(r) = erar. Then j™u(r)v(r)dr = V(d). Hence the bra correspond-
ing to U(s) = (s+a)"1 is represented by the function which maps the trans-
form V(s) into V(d). In other words the scalar product of (s+a)^1 and V(s) is
V(a).

Similarly if u(r) = rne~ar, j™u(r)v(r)dr = (— l)nV{n) («). This result was
given by Cremonesi [1], who applied the Schmidt orthonormalization
procedure to a set of functions of the type u (r), by working in terms of the
transforms. From the present viewpoint the result may be recorded in the
form that the scalar product of (s-\-a)~n and V(s) is

( — l ) " - 1 ^ — l ) ! ] - 1 ^ - 1 ' ^ ) .
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Since any radial function u(r) can be expanded in a series of terms like
rne~ar, with a real, any transform can be expanded in a series of terms like
(s+ «)-". Then as the operation of taking the scalar product depends anti-
linearly on the bra, the above result is sufficient. When using the transforms,
scalar products are obtained by differentiation instead of the usual integra-
tion. In the bound state examples above, the transforms are rational
functions, which must be expressed in partial fractions to obtain the appro-
priate differential operators.

Thus (7.1) shows that the scalar product of Un(s) and any V(s) is

m=0

In particular, U1(s) = C1(s+Ja)~2 has length

2 d

1 ds

showing that Cx = 2~£<xf is required to normalize the transform.
The complex conjugate of an operator acting on the transforms may

now be found directly. Consider, for example, the operator s. The scalar
product of (—l)nnl(s-}-a)~n~1 and sV(s) is (taking a real)

This is also the scalar product with V of

a(~l)nn\(s-\-a)-n-1+(—l)"-1n\(s+a)-n = (—s)(—l

The complex conjugate of s is therefore —s, which is expected since s is
equivalent to djdr. Similarly dfds can be shown to be Hermitian. The
scaling operator S(b) defined by V(bs) --- S{b)V(s) is almost unitary when
b is real, for

which is the scalar product of

(— l)nnlbn(s+ab)-"~1 = (— l)nn\ 6n&-""1(s&-

with V(s). Hence S(b) = b^Sfi-1), and biS(b) is unitary.
These results will now be used to find the normalization constant in

(3.1). Put A = n, and a = 2Z[na, where the Bohr radius a is independent
of n. If

_ (s—Z/na)"-1 ^(ns—Z/a)"-1

~~ Js+Z/na)"^ (ns+Zfa)"^
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then the scaling operator gives

\n— 1/ ' (ns+Zla)n

and so
n2 (ns—Zja) I n \

\n) = S I 1 \n-
(«—I)2 (ns-\-ZJa) \n—1/

Hence

so
«-3<M|W> = (»— 1)-3O— l|n—1> = <1|1> = 2(2Z/a)-3

by putting a = 2Zja in the previous determination of the length of t/x(s).
Normalization factors for the transforms may also be calculated from

a formula given by Kac [2]; a similar formula given by Puri and Weygandt
[4] gives any scalar product. For the normalization of (3.1), Kac's formula
involves two (A+l)th order determinants, and Puri and Weygandt's formula
involves two (2A+2)th order determinants. However, using these formulas
has the advantage that the transforms do not have to be expressed in
partial fractions. For the scalar product of two different transforms, the
method given here has the advantage of applying when only one of the
transforms is a rational function.

Appendix

The usual solution of the exponential potential is based on the fact that
f{x) = J2Ka(%be-ix) is a solution of (5.1) with — K2a2 replacing c2. The trans-
form is obtained from (5.3) by the substitutions c = —IKU, /(0) =
and /'(0) = — bJ'2Ka{2b). The result can be written

LT (Jv{

where s^y is a Lommel function.
Alternatively, using

1 ffi /xV'W-1] - s J. h) m

2*-1(2s+v)r(v+l)
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This must be equivalent to (1), and is evidently the simplest form of the
result.
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