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EXPONENTIAL GROWTH OF BIFURCATING
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Abstract

Branching processes are classical growth models in cell kinetics. In their construction,
it is usually assumed that cell lifetimes are independent random variables, which has
been proved false in experiments. Models of dependent lifetimes are considered here,
in particular bifurcating Markov chains. Under the hypotheses of stationarity and
multiplicative ergodicity, the corresponding branching process is proved to have the same
type of asymptotics as its classic counterpart in the independent and identically distributed
supercritical case: the cell population grows exponentially, the growth rate being related
to the exponent of multiplicative ergodicity, in a similar way as to the Laplace transform
of lifetimes in the i.i.d. case. An identifiable model for which the multiplicative ergodicity
coefficients and the growth rate can be explicitly computed is proposed.
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1. Introduction

Let T denote the infinite complete binary tree where each vertex has exactly two descendants.
Let (Tv)v∈T be a bifurcating process, i.e. a family of positive random variables indexed by T,
defined on a probability space (�,F ,P). The vertices of T are interpreted as cells, and Tv as
the lifetime of cell v. The root (ancestor) of the tree is born at time 0, and letNt be the number of
individuals alive at time t : (Nt )t≥0 is a continuous time branching process (precise definitions
will be given in Section 2). If the lifetimes are independent and identically distributed (i.i.d.),
the population Nt grows exponentially in t : this is a particular case of one of the most basic
results of the theory (see Bellmann and Harris [2], Harris [15, Chapter VI], and Athreya and
Ney [1, Chapter IV]).

Theorem 1.1. Assume that the lifetimes Tv are i.i.d. copies of an almost surely (a.s.) positive
random variable T with nonlattice distribution. Then

lim
t→∞ e−νtNt = W a.s.,

where

• W is a random variable with expectation C and finite variance,
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• the growth rate (also called Malthusian parameter) ν is such that

2E{e−νT } = 1, (1.1)

• the proportionality constant C is

C = (4νE{T e−νT })−1. (1.2)

The aim of this paper is to extend Theorem 1.1 to models in which lifetimes may be
dependent, and, in particular, to bifurcating Markov chains (BMCs). Our main result (The-
orem 3.1) generalizes Theorem 1.1 to the case where (Tv)v∈T is a multiplicatively ergodic,
stationary BMC. The growth rate ν and the proportionality constant C in that case are related
to the multiplicative ergodicity coefficients of birth dates.

The applications of branching processes to cell lineage studies has a long history, and the
independence of lifetimes was questioned in the early 1950s [19]. Indeed, actual data show two
types of correlation [34]: between the lifetimes of a mother and its two daughters, and between
the two sisters conditioning on the mother; they will be referred to as mother correlation and
sister correlation. In the mid 1950s Powell [30] remarked that sister correlations do not influence
exponential growth (see also [6], [15, Section 28.2, p. 158], and [16]). The effect of mother
correlation on growth rates was discussed by Harvey [16], yet finding any exact dependence
in a given model has remained an open question since. Many models have been proposed to
account for ancestry dependence, see [24], [26]. Here, lifetimes are seen as a stochastic process
indexed by the binary tree; see Pemantle [28] and Benjamini and Peres [3] as general references
on tree-indexed processes. Under a minimal hypothesis of stationarity, exponential growth for
the mean population size E{Nt } is proved, and the growth rate ν as well as the proportionality
constant C are expressed in terms of the Laplace transforms of cell birth dates (Theorem 2.1).
Asymptotics of Laplace transforms for partial sums of a Markov chain are usually described
by multiplicative ergodicity properties, which have been thoroughly studied by Meyn and his
co-workers [22]; see [25, p. 519] for a short introduction. It is therefore natural to use a BMC as
a model of lifetimes, see Benjamini and Peres [3] for tree-indexed Markov chains, Guyon [14]
for applications to cell lineage data, and Bitseki Penda et al. [4] for a recent reference. Under a
multiplicative ergodicity condition, Theorem 1.1 is generalized: e−νtNt is shown to converge
a.s.; moreover, the growth rate ν and the proportionality constant C are explicitly related to
the multiplicative ergodicity coefficients (Theorem 3.1). The proof follows a classical scheme,
already used by Bellman and Harris for the i.i.d. case of [2]. It consists of studying the first and
second moments of Nt , then proving convergence in the quadratic mean, and finally deducing
almost sure convergence. This is related to what Pemantle calls the ‘second-moment method’
[28, Section 2.3]. In applying it, we have tried to provide the weakest possible conditions at
each step, starting with the stationarity hypothesis of Theorem 2.1. Proposition 6.1 provides
sufficient conditions that ensure quadratic convergence of e−νtNt , Proposition 6.2 provides
conditions for a.s. convergence. These conditions will be shown to hold under the hypotheses
of Theorem 3.1.

An obvious drawback for applications is that the growth rate ν and the proportionality
constant C cannot be computed in general. Therefore, an explicit model, potentially adjustable
to observed data and for which ν and C can be computed in terms of the transition kernel, had
to be proposed. It was constructed as a quadratic transformation of a bifurcating autoregressive
process [5], [8], [9], [14]. It depends on five identifiable parameters, (location, scale, shape for
lifetime distribution, plus mother and sister correlations) and can be fitted to actual data.
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Having in mind the application to cell lineage studies, it was natural to write the results for
the binary tree. Nevertheless, they extend quite straightforwardly to processes on the infinite
complete k-ary tree for k > 2, at the only expense of heavier notation. Remarks in the text
will make the generalization more precise. Further extensions are possible, in particular to
the case where T is a supercritical Galton–Watson tree and the lifetimes of the daughters are
independent conditionally on their common mother; models with cell deaths, such as proposed
in [9] are included. They will be the object of future work.

The paper is organized as follows. In Section 2 the branching process (Nt )t≥0 associated to
a bifurcating lifetime process (Tv)v∈T is defined. Two notions of stationarity along lineages are
introduced and the exponential growth of E{Nt } is proved. Section 3 is devoted to the definition
of a BMC and the statement of Theorem 3.1. The explicit example of a BMC for which the
multiplicative ergodicity coefficients can be computed is presented in Section 4. The relation
between mother correlation and growth rate for a fixed marginal distribution of lifetimes is
discussed in Section 5. Section 6 is devoted to conditions under which e−νtNt converges in
L2 and almost surely. These conditions are verified for a multiplicatively ergodic BMC in
Section 7.

2. Stationary bifurcating processes

In this section, notation on bifurcating processes is introduced. The birth date process
(Sv)v∈T and the branching process (Nt )t≥0 associated to a bifurcating process (Tv)v∈T are
defined and related by Lemma 2.1. Two notions of stationarity are introduced: birth-stationarity
(Definition 2.2) is the stationarity of birth dates in a given generation; fork-stationarity
(Definition 2.3) is the stationarity of couples of birth dates when the generations of the two
cells and their most recent common ancestor are fixed. Under birth-stationarity, the expectation
of Nt is proved to grow exponentially, and the parameters of exponential growth ν and C are
related to the Laplace transforms of birth dates (Theorem 2.1).

Some classical notation for infinite trees will be recalled first; see [28]. The infinite rooted
complete binary tree is defined by T and its root by 0. If v is a vertex of T, the number of edges
connecting v to the root is denoted by |v|. If v and w are two vertices of T, v � w is the order
relation that holds if v is in the path from 0 to w; v ∧ w is the most recent common ancestor
of v andw, i.e. the vertex at which the paths from 0 to v andw diverge. If v �= 0, ṽ is the vertex
such that ṽ � v and |ṽ| = |v|−1 (referred to as the mother of v). For n ≥ 0, the nth generation
�n is the set of vertices v such that |v| = n (vertices at distance n from the root). One simple
way to explicitly construct T is to identify �n to the set of binary vectors of length n+ 1 with
first coordinate 0. With that identification, v � w if and only if v coincides with the |v| + 1
first coordinates of w. The mother of v, ṽ is deduced from v by removing its last coordinate.
The two daughters of v are obtained by appending to v a new coordinate 0 or 1: they will be
denoted by v0 and v1. The concatenation of n zeros will be denoted by 0n ∈ �n−1. Besides
algorithmic considerations, one advantage of this construction is to naturally endow T with the
alphabetical order.

A bifurcating process is a set of random variables (Tv)v∈T indexed by the binary tree T.
Here, the Tv’s are a.s. positive: Tv is the lifetime of cell v. The birth date process (Sv)v∈T is
also a bifurcating process: Sv is the sum of cell lifetimes from 0 to ṽ. The branching process
(Nt )t≥0 is the counting process of living cells at time t .
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Definition 2.1. Let (Tv)v∈T be a bifurcating process.

(i) For v ∈ T, the birth date of cell v is defined by S0 = 0 and for |v| > 0,

Sv = Sṽ + Tṽ.

(ii) For t ≥ 0, the number of living cells at time t is defined by

Nt =
∑
v∈T

1{Sv≤t} −
∑
v∈T

1{Sv0≤t}, (2.1)

where 1A denotes the indicator of event A. As a convention at this point, Nt = +∞ if
the sums are infinite.

If Sv is the birth date of cell v, the common birth date of its two daughters Sv0 = Sv1 is also
the death date of v. So (2.1) expresses the fact that cells alive at time t are the set difference of
cells born no later than t with cells dead no later than t . A simpler expression will be used.

Lemma 2.1. With the notation above,

Nt = 1

2
+ 1

2

∑
v∈T

1{Sv≤t} . (2.2)

Proof. From (2.1), and using the relation Sv0 = Sv1,

Nt =
∑
v∈T

1{Sv≤t} −1

2

∑
w∈T,w �=0

1{Sw≤t} = 1 + 1

2

∑
v∈T,v �=0

1{Sv≤t},

hence, (2.2) holds.

Remark 2.1. On the k-ary tree, (2.2) becomes

Nt = 1

k
+ k − 1

k

∑
v∈T

1{Sv≤t} .

Consider the particular case where lifetimes in a given generation are constant,

Tv = T0n+1 for all v ∈ �n.
Define by Sn the common birth date of all cells in generation �n, and assume that a law of large
numbers is satisfied, i.e.

lim
n→∞

Sn

n
= t̄ > 0 a.s.

The rank of the generation alive at time t , denoted by Gt , is the counting process associated to
the sequence (Sn)n∈N, andNt = 2Gt . SinceNt doubles at Sn, e−νtNt never converges, although

lim
t→∞

log(Nt )

t
= log(2)

t̄
a.s.

Consider now,
log(E{Nt })

t
= log(E{eGt log 2})

t
.
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Figure 1: Birth dates S(0)n,i and S(1)n,j of the first two cells of generations n+ i and n+ j whose most recent
common ancestor is in generation n.

The convergence of log(E{eθGt })/t is a Gärtner–Ellis condition on Gt . Glynn and Whitt
[13] proved that it is equivalent to the analogous condition on Sn. But the convergence of
log(E{Nt })/t does not imply that of e−νt

E{Nt }. A law of large numbers, even strengthened
by large deviation inequalities, does not suffice to prove our results: additional hypotheses are
needed. We begin with the stationarity requirements.

The notion of stationarity that seems the most natural is invariance through automorphisms
of the tree; see [27]. It will be satisfied by the BMC models of the next two sections. Weaker
hypotheses will suffice for our preliminary convergence results. The first hypothesis says that
birth dates of cells in a given generation have the same distribution. For n ≥ 0, we will define
by Sn the birth date of the first cell in generation �n, by alphabetical order,

Sn = S0n+1 = T0 + T02 + · · · + T0n .

Definition 2.2. The bifurcating process (Tv)v∈T is birth-stationary if for all n ∈ N and for all
v ∈ �n,

Sv
d= Sn,

where ‘
d=’ means equality in distribution.

Observe that birth-stationarity does not imply that lifetimes Tv are identically distributed,
even in a given generation. It will be used to prove the Cesàro convergence of E{e−νtNt } in
Theorem 2.1 below. For the convergence in quadratic mean and a.s., a stronger notion will be
used: the joint distribution of the birth dates of two cells in generations n + i and n + j with
most recent common ancestor in generation n, should depend only on n, i, and j . The first
such couple in alphabetical order is (0n+1+i , 0n+110j−1). The corresponding birth dates will
be denoted by S(0)n,i and S(1)n,j (see Figure 1),

S
(0)
n,i = Sn+i = S0n+1+i and S

(1)
n,j = S0n+110j−1 .

Definition 2.3. The bifurcating process (Tv)v∈T is fork-stationary if for all (n, i, j) ∈ N×N×
N

∗ and for all (v,w) ∈ �n+i × �n+j such that v ∧ w ∈ �n,

(Sv, Sw)
d= (S

(0)
n,i , S

(1)
n,j ).
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For i = 0, the definition includes the v � w case: for all n, j ∈ N × N
∗, for all (v,w) ∈

�n × �n+j such that v � w,

(Sv, Sw)
d= (Sn, Sn+j ).

In particular, all couples (Sv, Sv0) are identically distributed for v ∈ �n, hence lifetimes in a
given generation have the same distribution.

Remark 2.2. On the k-ary tree, one might think that forks should have k prongs. Yet fork-
stationarity is used in Proposition 6.1 to express E{NtNt+τ } in terms of the joint distribution
of (S(0)n,i , S

(1)
n,j ). This remains the same on the k-ary tree.

The main result of this section concerns the exponential growth of E{Nt }; it relates the growth
rate ν and the proportionality constantC to the Laplace transform of Sn. In order to enhance the
link with Theorem 1.1, we chose to express our results in terms of Laplace transforms instead
of characteristic functions or logarithmic moment generating functions, as is customary in large
deviations theory [10]. Throughout this paper, the Laplace transforms evaluated at γ ≥ 0 of
Sn, and of Sn conditioned on T0 = u, will be denoted by Ln(γ ) and Ln(γ, u),

Ln(γ ) = E{e−γ Sn} and Ln(γ, u) = E{e−γ Sn | T0 = u}.
Theorem 2.1. Let (Tv)v∈T be a birth-stationary bifurcating process. Assume that ν and C
given below are well defined, positive, and finite,

ν := inf

{
γ > 0,

∞∑
n=1

2nLn(γ ) < ∞
}
, (2.3)

C := lim
γ↘0

γ

γ + ν

∞∑
n=1

2n−1Ln(γ + ν). (2.4)

Then, for all t ≥ 0, E{Nt } < ∞ and

lim
t→∞

1

t

∫ t

0
e−νs

E{Ns} ds = C. (2.5)

In the particular case where the lifetimes Tv are i.i.d. nonlattice random variables, Ln(γ ) =
(E{e−γ T0})n; it is straightforward to check that (2.3) and (2.4) reduce to (1.1) and (1.2).

Proof. From (2.2),

Nt = 1

2
+ 1

2

∑
v∈T

1{Sv≤t} = 1 + 1

2

∞∑
n=1

∑
v∈�n

1{Sv≤t} .

By birth-stationarity,

E{Nt } = 1 +
∞∑
n=1

2n−1
P{Sn ≤ t}. (2.6)

By Markov’s inequality, for all γ > 0 and t ≥ 0,

P{Sn ≤ t} ≤ eγ tE{e−γ Sn}.
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The hypotheses of Theorem 2.1 imply that there exists γ > ν such that

∞∑
n=1

2n−1
E{e−γ Sn} < ∞.

Hence, E{Nt } < ∞ for all t ≥ 0. Consider now:

Aν(t) = e−νt
∞∑
n=1

2n−1
P{Sn ≤ t}.

Let Ãν(γ ) be the Laplace transform of Aν . The Laplace transform of P{Sn ≤ t} evaluated at
γ > 0 is (1/γ )Ln(γ ). The Laplace transform of e−νt

P{Sn ≤ t} is (1/(γ + ν))Ln(γ + ν).
Therefore,

Ãν(γ ) = 1

γ + ν

∞∑
n=1

2n−1Ln(γ + ν).

By (2.4),

lim
γ↘0

γ Ãν(γ ) = C.

If both limt→+∞Aν(t) and limγ↘0 γ Ãν(γ ) exist, the fact that they are equal is a well-known
basic result of Laplace transform theory, known as the final value theorem. Deducing the former
limit from the existence of the latter requires a Tauberian theorem, see Feller [12, Section XIII.5]
or Korevaar [23]. As a particular case of [12, Theorem 2, p. 445],

lim
γ↘0

γ Ãν(γ ) = C ⇐⇒ lim
t→+∞

1

t

∫ t

0
Aν(s) ds = C,

which is the required result.

Remark 2.3. On the k-ary tree, (2.3) and (2.4) become

ν = inf

{
γ > 0,

∞∑
n=1

knLn(γ ) < ∞
}
,

and

C = lim
γ↘0

γ (k − 1)

γ + ν

∞∑
n=1

kn−1Ln(γ + ν).

The proof is the same as the proof of Theorem 2.1.

Without any further assumption, nothing more can be obtained than the Cesàro convergence
(2.5) as the example of constant lifetimes shows. To conclude that limAν(t) = C in the i.i.d.
case, Bellman and Harris [2] used Ikehara’s Tauberian theorem. For the BMC case, we will
need not only a limit, but also an exponential speed of convergence. Although we have not
found Lemma 2.2 in the literature, it cannot be considered as new; it is closely related to a large
corpus of results going back to Haar, Wiener, and Ikehara; see [23].
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Lemma 2.2. Let f be a function and f̃ its Laplace transform. Suppose that there exist two
positive reals δ and ε such that:

1. f̃ is analytic in {z = x + iy, |x| < δ + ε} \ {0},
2. f̃ has a simple pole at 0 with residue C,

3.
∫ ∞
−∞ |f̃ (δ + iy)| dy < ∞,

4. limy→±∞ f̃ (x + iy) = 0, uniformly in x ∈ [−δ, δ],
5. ψ := ∫ ∞

−∞ |f̃ (−δ + iy)| dy < ∞.

Then for all t > 0,

|f (t)− C| ≤ ψ

2π
e−δt .

Proof. By the inversion equation,

f (t) = 1

2π i
lim
β→∞

∫ δ+iβ

δ−iβ
f̃ (γ )eγ t dγ.

Let C be the closed rectangular contour linking the points δ− iβ, δ+ iβ, −δ+ iβ, and −δ− iβ.
This contour encloses the simple pole at γ = 0. By the residue theorem,∫

C
f̃ (γ )eγ t dγ = 2π i res

γ=0
(f̃ (γ )eγ t ),

where
res
γ=0

(f̃ (γ )eγ t ) = lim
γ→0

γ f̃ (γ )eγ t = C.

Consequently,
1

2π i

∫ δ+iβ

δ−iβ
f̃ (γ )eγ t dγ − C = I1 + I2 + I3

with

I1 = − 1

2π i

∫ −δ+iβ

δ+iβ
f̃ (γ )eγ t dγ,

I2 = − 1

2π i

∫ −δ−iβ

−δ+iβ
f̃ (γ )eγ t dγ,

I3 = − 1

2π i

∫ δ−iβ

−δ−iβ
f̃ (γ )eγ t dγ.

By condition 4, I1 and I3 tend to 0 as β tends to ∞. Therefore,

|f (t)− C| ≤ 1

2π

∣∣∣∣
∫ +∞

−∞
f̃ (−δ + iy)e(−δ+iy)t dy

∣∣∣∣
≤

∫ +∞

−∞
|f̃ (−δ + iy)|e−δt dy

= ψ

2π
e−δt ,

by condition 5.
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3. Bifurcating Markov chains

Bifurcating Markov chains were first considered in the 1970s, beginning with Spitzer [33]
in the binary valued case (see [3] for further references). Bifurcating Markov chains were
studied as cell lineage models by Guyon [14], see also [4]. As for ordinary Markov chains, the
probability distribution of a BMC is determined by an initial measure and a transition kernel.
Here is the definition, adapted to our case (as usual, B denotes the Borel σ -algebra).

Definition 3.1. A transition kernelP is a mapping defined on R
+×B(R+×R

+) such that:

• for all B ∈ B(R+ × R
+), t → P(t, B) is B(R+)-measurable,

• for all t ∈ R
+, B → P(t, B) is a probability measure on B(R+ × R

+).

Definition 3.2. Let μ be a probability measure on R
+, and P be a transition kernel. A BMC

(Tv)v∈T with initial measure μ and transition kernel P is inductively defined as follows:

• T0 has distribution μ,

• for n≥1, (Tw)w∈�n+1 and (Tu)u∈�0∪···∪�n−1 are independent conditionally upon (Tv)v∈�n ,

• for all n ≥ 0, the conditional distribution of (Tw)w∈�n+1 knowing (Tv)v∈�n is defined for
(Bv)v∈�n ∈ B(R+ × R

+) by

P{for all v ∈ �n, (Tv0, Tv1) ∈ Bv | for all v ∈ �n, Tv = tv} =
∏
v∈�n

P (tv, Bv).

In other words, given the lifetimes of mothers in generation n, the lifetimes of couples of
daughters in generationn+1 are drawn independently, each according to the transition kernelP .
We set P to be symmetric: for all t ∈ R

+, for all B ∈ B(R+),

P0(t, B) := P(t, B × R
+) = P(t,R+ × B) =: P1(t, B). (3.1)

This assumption is not necessary [14]. As an example, consider the case where all lifetimes are
independent, and for each v, Tv0 is distributed as T00, Tv1 as T01 with E{e−νT00} > E{e−νT01}
for all positive ν: exponential growth of Nt holds, even though the kernel is not symmetric.

The initial measure μ is supposed to be invariant for both marginal kernels such that∫
R+
P0(u, B) dμ(u) = μ(B) for all B ∈ B(R+). (3.2)

Symmetry and invariance imply that the distribution of (Tv)v∈T is automorphism invariant in
the sense of [27]. In particular it is birth- and fork-stationary, in the sense of Definitions 2.2
and 2.3.

Remark 3.1. On the k-ary tree, a transition kernel is a mapping defined on R
+ × B((R+)k).

The generalization of Definition 3.2 is straightforward: knowing the lifetimes of mothers in
generation n, the lifetimes for all k-tuples of daughters are drawn independently according to
the transition kernel.

Let (Nt )t≥0 be the branching process associated to (Tv)v∈T (Definition 2.1). Our goal is to
prove the extension of Theorem 1.1, i.e. the almost sure convergence of e−νtNt . Asymptotics
on the Laplace transform of Sn will be needed; the expressions of ν andC given in Theorem 2.1
suggest using multiplicative ergodicity for the sums of lifetimes Sn [22]. In order to enhance
the similarity with the i.i.d. case we chose to express multiplicative ergodicity in a slightly
different manner.
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Definition 3.3. The sums Sn are said to be multiplicatively ergodic if for all u ∈ R
+, γ ∈ R

+,
n ∈ N

∗,
Ln(γ, u) = α(γ, u)Ln(γ )+ rn(γ, u), (3.3)

where α, L, and rn are such that:

(i) the equation 2L(γ ) = 1 has a unique solution denoted by ν,

(ii) the mapping L is derivable at ν and L′(ν) < 0,

(iii) the series
∑
n 2nrn(γ, u) converges uniformly in γ in a neighbourhood of ν, uniformly

in u,

(iv) the mappings u → α(γ, u) and u → rn(γ, u) are μ-integrable, uniformly in the other
variables,

(v) the mapping (y, z) → α(ν, y)α(ν, z) is P(x, (y, z))-integrable, uniformly in x.

Observe that under Definition 3.3, for all u the sum
∑
n 2nLn(γ, u) converges for γ > ν

and diverges for γ ≤ ν. Therefore, the same holds for
∑
n 2nLn(γ ), and the definition of ν by

2L(ν) = 1 is coherent with (2.3).
Theorem 4.1 of Kontoyiannis and Meyn [22, p. 325] relates multiplicative ergodicity to

geometric ergodicity. More precise analyticity conditions will be needed for the following
function:

Bν(t, u) = e−νt
∞∑
n=1

2n−1
P{Sn ≤ t | T0 = u}. (3.4)

Under (3.3), its Laplace transform is

B̃ν(γ, u) = α(ν + γ, u)

ν + γ

L(ν + γ )

1 − 2L(ν + γ )
+ 1

ν + γ

∞∑
n=1

2n−1rn(ν + γ, u).

Our hypotheses will be the following.

(C1) For all u > 0, Bν(t, u) and B̃ν(γ, u) satisfy the hypotheses of Lemma 2.2, for some
δ > 0 (not depending on u), and

C(u) = lim
γ→0

γ B̃ν(γ, u) = − α(ν, u)

4νL′(ν)
.

Let

ψ(u) =
∫ ∞

−∞
|B̃ν(−δ + iy, u)| dy.

(C2) The mapping (y, z) → α(ν, y)ψ(z) is P(x, (y, z))-integrable, uniformly in x.

Admittedly, (C1) and (C2) are not easy to verify, unless an explicit expression of Ln(γ, u) is
available. This will be the case for the model we present in the next section.

Using condition (iv) of Definition 3.3, let

α(γ ) =
∫

R+
α(γ, u) dμ(u) and rn(γ ) =

∫
R+
rn(γ, u) dμ(u).

Then
Ln(γ ) = α(γ )Ln(γ )+ rn(γ ). (3.5)

The proportionality constant C naturally relates to α(ν) and L(ν).
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Theorem 3.1. Assume that symmetry (3.1), invariance (3.2), and multiplicative ergodicity (3.5)
hold, together with (C1) and (C2). Then

lim
n→∞ e−νtNt = W a.s.,

where

• W is a random variable with expectation C and finite variance,

• the growth rate ν is such that
2L(ν) = 1, (3.6)

• the proportionality constant C is

C = − α(ν)

4νL′(ν)
. (3.7)

Remark 3.2. On the k-ary tree, (3.6) and (3.7) become

kL(ν) = 1 and C = − (k − 1)α(ν)

k2νL′(ν)
.

As mentioned in the introduction, we have tried to provide the weakest possible conditions
to ensure convergence in L2 on the one hand (Proposition 6.1), almost sure convergence on
the other hand (Proposition 6.2). The proof of Theorem 3.1 will be completed in Section 7 by
checking the hypotheses of Propositions 6.1 and 6.2 for the BMC model.

4. An explicit model

In this section an explicit example for the result of the previous section is constructed: a
BMC with prescribed invariant measure μ, for which symmetry (3.1), invariance (3.2), and
multiplicative ergodicity (3.5) hold. The model depends on an identifiable set of parameters,
potentially adjustable to observed data.

The construction of stationary processes with prescribed marginal distributions has been
the object of many studies, see Pitt et al. [29] and the references therein. We will follow a
simple approach, first constructing a bifurcating autoregressive process, then transforming it to
obtain the desired marginals. Bifurcating autoregressive (BAR) processes were introduced by
Cowan and Staudte [5] precisely as cell lineage models. They have been extensively studied
since, and the problem of parameter estimation has recently received a lot of attention [4], [8],
[9], [14]. Our model is similar to that of [14]. The construction begins with a family of i.i.d.
random variables (εv)v∈T, each with standard Gaussian N (0, 1) distribution. Let ρm and ρs be
two reals in (−1 ; 1); they will be the mother and sister correlations of our BAR process. It is
defined inductively by X0 = ε0, and for all v ∈ T,

Xv0 = ρmXv +
√

1 − ρ2
mεv0, (4.1a)

Xv1 = ρmXv +
√

1 − ρ2
m

(
ρsεv0 +

√
1 − ρ2

s εv1

)
. (4.1b)

By construction, (Xv)v∈T is both a BMC on T and a Gaussian process. It is symmetric in the
sense of (3.1) and the standard Gaussian distribution is the invariant distribution of the marginal
kernel in the sense of (3.2). Let f denote the composition of the quantile function of the desired
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distribution μ on R
+ by the distribution function of the N (0, 1). IfX follows the N (0, 1) then

T = f (X) has distribution μ. For all v ∈ T, let Tv = f (Xv) : (Tv)v∈T is a BMC on T for
which (3.1) and (3.2) hold. Observe, moreover, that (Xv) converges at geometric speed along
the rays of T, hence multiplicative ergodicity holds for the birth dates of (Tv) by Theorem 4.1
of [22, p. 325]. Of course, the mother and sister correlations are not ρm and ρs anymore. But
they can be computed in terms of f , ρm, and ρs, and so the model can be adjusted to fit not
only the observed distribution of lifetimes but also estimated correlations.

As remarked as early as 1932 by Rahn [31], actual lifetime data show a unimodal right-
skewed shape. They have been fitted by many types of distributions such as gamma and
lognormal; see [18] and the references therein. The difficulty is to exhibit a realistic example
where the hypotheses of Theorem 3.1 hold with explicitly computable α and L. We propose
to transform the standard Gaussian variables Xv of the BAR process defined by (4.1) by the
following function, depending on three parameters:

f (x) = a + b(x + c)2.

If X is normally distributed then (X + c)2 has a noncentral chi-squared distribution and the
shape can be adjusted by c; using the location and scale parameters a and b, X can be fitted
to actual lifetime data. The Laplace transforms of quadratic forms of autoregressive processes
can be explicitly computed using a technique due to Kleptsyna et al. [20]. The expression of
the Laplace transform Ln(γ, u) has been stated in [21]. From there, it is easy to check that the
hypotheses of Theorem 3.1 are satisfied. Actually, it can be checked that α(γ, u) and rn(γ, u)
are uniformly bounded in u and γ over (R+)2, which considerably simplifies conditions (iv)
and (v) of Definition 3.3 as well as conditions (C1) and (C2). Details being omitted, only the
explicit expressions of L(γ ) and α(γ ) will be given.

Proposition 4.1. Let (εn)n∈N be a sequence of i.i.d. random variables, with common distri-
bution N (0, 1). Let ρ = ρm ∈ (−1, 1). Let (Xn)n∈N be the stationary autoregressive chain
defined by X0 = ε0 and for n ≥ 0,

Xn+1 = ρXn +
√

1 − ρ2εn+1.

Let

Sn =
n∑
k=0

f (Xk) =
n∑
k=0

(a + b(Xk + c)2).

The sums Sn are multiplicatively ergodic in the sense of Definition 3.3. Define

γ1 = 2γ b(1 − ρ2), γ2 = 1 − ρ

γ1 + (1 − ρ)2
, B = −2ργ 2

2 , C = 2ργ1

1 − ρ2 γ
2
2 ,

λ± = γ1 + 1 + ρ2 ± √
(γ1 + (ρ + 1)2)(γ1 + (ρ − 1)2)

2
,

β+ = 1 − λ− + γ1/(1 − ρ2)

λ+ − λ−
, β− = λ+ − 1 + γ1/(1 − ρ2)

λ+ − λ−
, π0 = β+λ+ + β−λ−.

Then

L(γ ) = e−aγ (λ+)−1/2 exp

(
− γ bc2(1 − ρ)

2γ b(1 + ρ)+ (1 − ρ)

)
, (4.2)
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and

α(γ ) = (β+λ+)−1/2 exp

(
− c2γ1

2(1 − ρ2)

(
1

π0
+ B

(
ρ

π0
− ρ

λ+

)
+ C

(
ρ

π0

)))
. (4.3)

The growth rate ν and the proportionality constant C can be derived from (4.2) and (4.3),
through (3.6) and (3.7). The growth rate ν is the solution of 2L(ν) = 1. It has no general
explicit expression, but it can be numerically computed. In the particular case a = c = 0,
ν = ν0 is found to be

ν0 = 3

2b

1 − ρ2/4

1 − ρ2 .

In the general case, it can be checked that ν ≤ ν0.

5. Correlations and growth rate

As mentioned in the introduction, the influence of lifetime correlations on the exponential
growth of the colony was discussed long ago [6], [16], [30]. That sister correlation does
not change the exponential growth rate was noted by all the authors, and is confirmed by
Theorem 2.1. The influence of mother correlation is examined here.

The hypotheses in this section are those of Theorem 2.1: birth-stationarity and definition of
ν and C by (2.3) and (2.4). A general comparison result will be first obtained under association
hypotheses. Recall that a sequence of random variables (Xn)n≥0 is associated if for all n,
the vector X(n) = (X1, X2, . . . , Xn) satisfies the following condition: for any coordinatewise
bounded and nondecreasing functions f , g on R

n, cov(f (X(n)), g(X(n))) ≥ 0. We refer the
reader to [11] for more about this notion. The sequence (Xn)n≥1 is negatively associated if for
any coordinatewise bounded and nondecreasing functions f , g defined respectively on R

|I |,
R

|J | where I and J are disjoint subsets of N, cov(f ((Xi)i∈I ), g((Xi)j∈J )) ≤ 0. This definition
was introduced by Joag-Dev and Proschan [17].

Proposition 5.1. Suppose that the sequence (T0n)n≥1 is associated (respectively, negatively
associated) and that the hypotheses of Theorem 2.1 are satisfied. Let (T ∗

0n)n≥1 be a sequence
of independent random variables also satisfying the hypotheses of Theorem 2.1, and such that
T ∗

0n and T0n have the same distribution. Let ν, ν∗ and C, C∗ be the respective growth rates
and proportionality constants corresponding to (T0n)n≥1 and (T ∗

0n)n≥1 through (2.3) and (2.4).
Then ν∗ ≤ ν and C ≤ C∗ (respectively, ν ≤ ν∗ and C∗ ≤ C).

Proof. We provide the proof only for the case of association, the case of negative association
is symmetric. Let S∗

n = T ∗
0 + T ∗

02 + · · · + T ∗
0n . If (T0n)n≥1 is an associated sequence, then for

any positive real γ ,
E{e−γ S∗

n } ≤ E{e−γ Sn}. (5.1)

It follows immediately that ν∗ ≤ ν, by (2.3). The inequality C ≤ C∗ then follows from the
fact that Sn stochastically dominates S∗

n : for all t ≥ 0,

P{Sn ≤ t} ≤ P{S∗
n ≤ t}. (5.2)

Stochastic comparison results such as (5.1) and (5.2) are well-known decoupling inequalities,
and we will omit their proofs, see de la Peña and Lai [7, p. 118] and Shao [32].

From Proposition 5.1, it is indicated that for a fixed marginal distribution of lifetimes, the
growth rate ν should increase as the mother correlation increases from 0 to 1. This is indeed
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what can be observed on the explicit model from Section 4. In that model, ν is defined by
2L(ν) = 1 where L is given by (4.2). In (4.2) ρ is the correlation between successive steps of
the BAR process, which differs from the correlation between the lifetimes of a mother and its
daughter. The latter will be defined by �. The expression of � as a function of the parameters
a, b, c, and ρ is easily calculated. It depends only on c and ρ. Thus,

� = cor(Tv, Tv0) = ρ2 + 2c2ρ

1 + 2c2 .

As ρ increases from 0 to 1, so does �. As � → +1,

ν →
⎧⎨
⎩

+∞ if a = 0,
log(2)

a
otherwise.

The limit value log(2)/a is the growth rate that would be achieved if all lifetimes were equal
to a, which is the minimal value that a lifetime can take in the model.

6. Convergence in quadratic mean and almost sure

The conditions for the convergence of e−νtNt are stated in this section. Under the hypothesis
of fork-stationarity of Definition 2.3, Proposition 6.1 below provides a general condition under
which e−νtNt converges in L2.

Proposition 6.1. Let (Tv)v∈T be a fork-stationary bifurcating process. Assuming that the
hypotheses of Theorem 2.1 hold, let ν and C be defined by (2.3) and (2.4). For all t, τ ≥ 0, let

�1(t) =
∞∑
n=0

(n+ 1)2nP{Sn ≤ t},

�2(t, τ ) =
∞∑
n=0

∞∑
i=1

∞∑
j=1

2n+i+jP{S(0)n,i ≤ t, S
(1)
n,j ≤ t + τ }.

Assume that for all t, τ ≥ 0, �1(t) and �2(t, τ ) are finite, that the following limits exist, and
the second one does not depend on τ . Thus,

lim
t→+∞ e−2νt�1(t) = 0, (6.1)

lim
t→+∞ e−ν(2t+τ)�2(t, τ ) = C2 < +∞. (6.2)

As t → ∞, e−νtNt converges in quadratic mean to a random variable W with expectation C.

Observe that since L2-convergence implies L1-convergence,

lim
t→∞ E{e−νtNt } = E{W } = C > 0.

Proof of Proposition 6.1. We first express the product NtNt+τ as a function of birth dates.
For this, recall (2.2),

Nt = 1

2
+ 1

2

∑
v∈T

1{Sv≤t} .
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Hence,
(2Nt − 1)(2Nt+τ − 1) =

∑
(v,w)∈T2

1{Sv≤t} 1{Sw≤t+τ } .

For any couple (v,w) ∈ T
2, one and only one of the following three cases occurs:

1. w � v, in which case 1{Sv≤t} 1{Sw≤t+τ } = 1{Sv≤t},

2. |v ∧ w| < min{|v|, |w|},
3. v � w and v �= w.

Decomposing the sum over the three cases, taking expectations on both sides, and using fork-
stationarity, we obtain

E{(2Nt − 1)(2Nt+τ − 1)} = �1(t)+�2(t, τ )+�3(t, τ ), (6.3)

with

�1(t) =
∞∑
n=0

(n+ 1)2nP{Sn ≤ t},

�2(t, τ ) =
∞∑
n=0

∞∑
i=1

∞∑
j=1

2n+i+jP{S(0)n,i ≤ t, S
(1)
n,j ≤ t + τ },

�3(t, τ ) =
∞∑
n=0

∞∑
j=1

2n+jP{Sn ≤ t, Sn+j ≤ t + τ }.

From the hypotheses for all t, τ ≥ 0, �1(t) and �2(t, τ ) are finite. We remark that

�3(t, τ ) ≤
∞∑
n=0

∞∑
j=1

2n+jP{Sn+j ≤ t + τ } =
∞∑
m=1

m2mP{Sm ≤ t + τ } ≤ �1(t + τ).

Therefore, �3(t, τ ) is also finite. In particular, E{N2
t } < ∞ for all t . Since �3(t, τ ) ≤

�1(t + τ),
lim
t→∞ e−ν(2t+τ)�3(t, τ ) = 0. (6.4)

Collecting (6.1)–(6.4) and using the fact that

lim
t→∞ E{e−ν(2t+τ)Nt } = lim

t→∞ E{e−ν(2t+τ)Nt+τ } = 0,

we obtain

lim
t→∞ E{e−ν(2t+τ)NtNt+τ } = C2

4
.

Hence,
lim
t→∞ E{(e−νtNt − e−ν(t+τ)Nt+τ )2}

= lim
t→∞ E{e−2νtN2

t − 2e−ν(2t+τ)NtNt+τ + e−2ν(t+τ)N2
t+τ }

= C2

4
− 2

C2

4
+ C2

4
= 0,

which completes the proof.

A reinforcement of (6.1) and (6.2) ensures almost sure convergence.
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Proposition 6.2. Under the hypotheses of Proposition 6.1, assume that W is a.s. positive and
that ∫ ∞

0
e−2νt�1(t) dt < ∞, (6.5)

∫ ∞

0
|e−2νt�2(t, 0)− C2| dt < ∞. (6.6)

Then as t → ∞, e−νtNt converges a.s. to W .

Proof. From the proof of Proposition 6.1, the additional hypothesis yields

∫ ∞

0
E{(e−νtNt −W)2} dt < ∞.

Almost sure convergence is deduced exactly as in the proof of Theorem 21.1 of [15, p. 148].
That W is a.s. positive cannot be obtained without stronger hypotheses. It will be proved for
the BMC model in Section 7.

Remark 6.1. The only change for the k-ary tree consists of replacing 2 by k in the definitions
of �1 and �2 from Proposition 6.1.

7. Proof of Theorem 3.1

As already remarked, symmetry (3.1) and invariance (3.2) imply birth- and fork-stationarity.
We also observed that the solution of 2L(ν) = 1 is such that

ν = inf

{
γ > 0,

∞∑
n=1

2nLn(γ ) < ∞
}
.

The main ingredient in the proof consists of applying Lemma 2.2 to Bν(t, u) defined by (3.4),
due to condition (C1). This yields

∣∣∣∣e−νt
∞∑
n=1

2n−1
P{Sn ≤ t | T0 = u} + α(ν, u)

4νL′(ν)

∣∣∣∣ ≤ ψ(u)

2π
e−δt . (7.1)

Recall from (2.6) and (3.4) that

E{Nt } = 1 +
∞∑
n=1

2n−1
P{Sn ≤ t} = 1 + Aν(t) = 1 +

∫
R+
Bν(t, u) dμ(u).

Integrating against μ (condition (iv) of Definition 3.3), we obtain

lim
t→∞ e−νt

E{Nt } =
∫

R+
C(u) dμ(u) = − α(ν)

4νL′(ν)
= C.

Now consider

�1(t) =
∞∑
n=0

(n+ 1)2nP{Sn ≤ t}.
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The series
∑
(n+ 1)2nLn(γ ) converges for γ > ν and diverges for γ ≤ ν. Choose γ > ν.

By Markov’s inequality

�1(t) =
∞∑
n=0

(n+ 1)2nP{Sn ≤ t} ≤ eγ t
∞∑
n=0

(n+ 1)2nLn(γ ).

Therefore, �1(t) is finite for all t . Take γ such that ν < γ < 2ν, thus,

e−2νt�1(t) ≤ e(γ−2ν)t
∞∑
n=0

(n+ 1)2nLn(γ ).

There exists a constant K1 such that for all t ≥ 0, e−2νt�1(t) ≤ K1e(γ−2ν)t , hence, (6.1) and
(6.5) hold.

The convergence of e−ν(2t+τ)�2(t, τ ) remains to be proved. Consider

e−ν(2t+τ)�2(t, τ ) = e−ν(2t+τ)
∞∑
n=0

∞∑
i=1

∞∑
j=1

2n+i+jP{S(0)n,i ≤ t, S
(1)
n,j ≤ t + τ }.

We use the Markov property after conditioning on the following event:

Bn := {Sn−1 = u, T0n = x, T0n+1 = y, T0n1 = z}.
By Definition 3.2,

P{S(0)n,i ≤ t, S
(1)
n,j ≤ t + τ | Bn}

= P{Si ≤ t − u− x | T0 = y}P{Sj ≤ t + τ − u− x | T0 = z}.
Therefore,

e−ν(2t+τ)
∞∑
i=1

∞∑
j=1

2i+jP{S(0)n,i ≤ t, S
(1)
n,j ≤ t + τ | Bn}

= e−2ν(u+x)
(

e−ν(t−u−x)
∞∑
i=1

2iP{Si ≤ t − u− x | T0 = y}
)

×
(

e−ν(t+τ−u−x)
∞∑
j=1

2jP{Sj ≤ t + τ − u− x | T0 = z}
)
.

By (7.1), we obtain

∣∣∣∣
(

e−ν(t−u−x)
∞∑
i=1

2iP{Si ≤ t − u− x | T0 = y}
)

+ α(ν, y)

2νL′(ν)

∣∣∣∣ ≤ ψ(y)

π
e−δ(t−u−x),

and

∣∣∣∣
(

e−ν(t+τ−u−x)
∞∑
j=1

2jP{Sj ≤ t + τ − u− x | T0 = z}
)

+ α(ν, z)

2νL′(ν)

∣∣∣∣ ≤ ψ(z)

π
e−δ(t+τ−u−x).
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For large enough t ,

∣∣∣∣
(

e−ν(t−u−x)
∞∑
i=1

2iP{Si ≤ t − u− x | T0 = y}
)

×
(

e−ν(t+τ−u−x)
∞∑
j=1

2jP{Sj ≤ t + τ − u− x | T0 = z}
)

− α(ν, y)α(ν, z)

(2νL′(ν))2

∣∣∣∣
≤ − 2

πνL′(ν)
(α(ν, z)ψ(y)+ α(ν, y)ψ(z))e−δ(t−u−x).

Denoting by Qn the joint distribution of (Sn−1, T0n), define

C2 = 1

(2νL′(ν))2
∞∑
n=0

2n
∫
u,x

e−2ν(u+x)
(∫

y,z

α(ν, y)α(ν, z) dP(x, (y, z))

)
dQn(u, x).

By condition (v) of Definition 3.3, there exists K2 such that for all x,

∫
y,z

α(ν, y)α(ν, z) dP(x, (y, z)) ≤ K2.

Hence,

C2 ≤ K2

(2νL′(ν))2
∞∑
n=0

2n
∫
u,x

e−2ν(u+x) dQn(u, x)

= K2

(2νL′(ν))2
∞∑
n=0

2nE{e−2(νSn−1+T0n )}

= K2

(2νL′(ν))2
∞∑
n=0

2nLn(2ν)

< ∞.

We obtain

|e−ν(2t+τ)�2(t, τ )− C2|

≤ − 2

πνL′(ν)
e−δt

∞∑
n=0

2n
∫
u,x

e−(2ν−δ)(u+x)
(∫

y,z

(α(ν, z)ψ(y)+ α(ν, y)ψ(z)) dP

× (x, (y, z))

)
dQn(u, x).

From condition (C2) and symmetry (3.1), there exists K3 such that for all x,

− 2

πνL′(ν)

(∫
y,z

(α(ν, z)ψ(y)+ α(ν, y)ψ(z)) dP(x, (y, z))

)
≤ K3.
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Therefore,

|e−ν(2t+τ)�2(t, τ )− C2| ≤ K3e−δt
∞∑
n=0

2n
∫
u,x

e−(2ν−δ)(u+x) dQn(u, x)

= K3e−δt
∞∑
n=0

2nE{e−(2ν−δ)(Sn−1+T0n )}

= K3e−δt
∞∑
n=0

2nLn(2ν − δ).

For δ < ν, the series converges, hence (6.6) holds. What has been proved implies that�2(t, τ )

is finite for all τ and for t large enough. But �2(t, τ ) is a nondecreasing function of t , hence it
is finite for all t and τ .

Only one point remains to be proved, that the limit of e−νtNt is a.s. positive. Assume that
T0 = u and take t > u. The cells alive at time t descend either from 00 or from 01. Therefore,

Nt = N
(0)
t−u +N

(1)
t−u,

where (N(0)
s )s≥0 and (N(1)

s )s≥0 have the same distribution as (Ns)s≥0. Multiply by e−νt to
obtain

e−νtNt = e−νu(e−ν(t−u)N(0)
t−u + e−ν(t−u)N(1)

t−u).

Taking the limit in L2 as t tends to infinity, the conditional distribution of W on T0 = u is the
same as the distribution of e−νu(W(0) +W(1))whereW(0) andW(1) have the same distribution
as W . In particular, for all u > 0,

P{W = 0 | T0 = u} = P{W(0) = 0,W(1) = 0} ≤ P{W = 0}.

Hence, P{W = 0 | T0 = u} = P{W = 0} μ-almost everywhere. Let

p = P{W = 0} = P{W(0) = 0,W(1) = 0}.

It follows that

p =
∫
(R+)3

P{W(0) = 0,W(1) = 0 | (T0, T00, T01) = (x, y, z)} dP(x, (y, z)) dμ(x)

=
∫
(R+)3

P{W(0) = 0 | T00 = y}P{W(1) = 0 | T01 = z} dP(x, (y, z)) dμ(x),

by Definition 3.2. Since P{W(0) = 0 | T00 = y} = P{W(1) = 0 | T01 = z} = p, it follows that
p = p2. But p = 1 is excluded since E{W } > 0. Hence, p = 0.
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