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ABSTRACT. The Finnish Meteorological Institute has installed image-capturing devices on some Baltic
Sea coastal radars for operational sea-ice monitoring and ice product validation. These devices produce
radar images, which are saved operationally at about every 2min. These data can efficiently be utilized
in automated tracking of ice motion over sequences of radar images. Reliable estimates of point-wise
ice drift can be used as virtual drifter buoys to validate fine-scale ice models. For this purpose we have
developed an algorithm, which first locates objects that can reliably be recognized from one radar
image to another, and then tracks the motion of these objects until they are lost by the algorithm.
The recognizable objects in the first image of an image sequence are located by requiring an object
to include a textural content, i.e. the object does not solely consist of a uniform area, and detected
edge corner points. The corner points are required to exclude straight linear edges. After locating a
suitable number of traceable objects, the tracking is performed between each pair of successive images
using a two-resolution phase-correlation algorithm. We have tested the tracking algorithm using image
sequences of two coastal radars collected during the 2010/11 and 2011/12 winters.

INTRODUCTION
The Baltic Sea is located in the seasonal sea-ice zone, and
winter navigation in the Baltic Sea is very important for the
economy of the area. To enable efficient winter navigation,
operational ice monitoring and ice forecasting based on
numerical ice models are required. The maximum annual
ice extent, typically reached in February–March, is 10–100%
of the Baltic Sea area (400 000 km2). The Baltic ice season
lasts 4–7 months, and the maximum annual thickness of
landfast ice is 50–120 cm. Freezing begins in the northern
parts of the Gulf of Bothnia between mid-November and
December. Interannual variation between ice seasons can be
large (Leppäranta and Seina, 1985). The ice season evolution
is driven by the weather, ice/water interactions and the ice-
field internal processes. In the shallow coastal areas, landfast
ice develops relatively rapidly and it remains relatively static
until the melt season. A map of the Baltic Sea fast-ice
areas, based on the detected synthetic aperture radar (SAR)
motion during winter 2010/11, is shown in Figure 1. The ice
concentration in these areas is very high, close to 100%. In
the white areas of the figure it is typically <100%; in these
areas the ice is moving and deforming mainly due to variable
wind conditions.
Monitoring of ice motion based on coastal radars has

been studied and found useful in multiple cases (e.g.
Wakatsuchi and Ohshima, 1990; Shevchenko and others,
2004; Mahoney and others, 2007; Druckenmiller and
others, 2009). Automated ice motion estimation based on
coastal and ship radars has been studied at the Finnish
Meteorological Institute (FMI) for some years. Previously we
have developed an algorithm (Karvonen, 2012) for detecting
ice motion from spaceborne SAR data. The same algorithm
with different parameters can also be applied to define ice
motion fields for the radar data (Karvonen and others, 2010).
Here we have developed an algorithm, based on a similar
technique, to track the drift of ice objects located in the
first image of an image sequence. The traceable ice objects

are located by a detecting algorithm before tracking. After
detecting the initial objects, they are tracked to the end of a
tracking period, or until the object can no longer be located
by the algorithm. The algorithm is based on locating the
maximal phase correlation between two image windows,
sampled from two successive radar images of a radar image
time series around given center points, corresponding to
the located objects. The algorithm is performed in two
resolutions for each traceable object: first, the coarse drift
is estimated in a lower resolution, then it is refined in a
high (full-image) resolution. The algorithm also takes into
account the rotation of the features, by rotating another of the
two image data inputs in the correlation maximum search.
The main difference compared to our ice-drift algorithm
(Karvonen and others, 2010; Karvonen, 2012) is that in this
new ice-tracking algorithm we first locate candidates for the
traceable objects, and then track these objects to the end of
the tracking period or until they are not reliably recognized
by the algorithm. In our ice-drift algorithm we compute the
ice drift for each gridpoint between two adjacent images, if
a quality measure exceeds a given threshold. If the quality
criteria are not satisfied, no ice-drift estimate for the gridpoint
is given. In the ice-drift algorithm we also apply a spatial
filtering, taking into account the motion in the neighboring
gridcells, to yield coherent motion fields. In the new tracking
algorithm the objects to be tracked are automatically selected
in such a way that they can be tracked reliably without taking
the neighborhood into account. This makes the selection of
the objects a crucial step of the algorithm.
We have tested the method for some radar image time

series with a 10min temporal spacing. The results for the
studied time series were encouraging and corresponded to
our visual interpretation relatively well. In this paper, we
show two ice-tracking cases and also present analysis and
discussion of the tracking results.
The multi-category sea-ice model HELMI (HELsinki Multi-

category Ice model) (Haapala, 2000; Haapala and others,
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Fig. 1. Ice areas with no ice motion (black) during a 4week period
(February 2011) in the Baltic Sea according to SAR data. These
areas correspond to the typical fast-ice areas in the Baltic Sea. They
typically have ice motion only during the early winter (very thin ice
easily broken by waves) and late winter (late melting season, when
the ice starts to break).

2005) has been in operational use at FMI for several ice
seasons. An implementation of a finer-scale (closer to ship-
scale) version of the model has also been studied as part
of the European Commission (EC) FP-7 SAFEWIN (Safety
of Winter Navigation in Dynamic Ice) project. Our aim
is to utilize the developed tracking algorithm to validate
the fine-scale HELMI model. Computation of the validation
data will be automated as far as possible. The idea is to
locate and track objects continuously until most of them are
no longer reliably recognized by the algorithm, and then
start the tracking again with new objects located in a new
initial image. To maintain continuity, there should be some
temporal overlap between two temporally adjacent tracking
time series.

RADAR IMAGE CAPTURING AND PREPROCESSING
The radar image capturing unit (radar video server) used by
FMI has been developed by a Finnish company, Image Soft
Ltd. The radar video server has a 20MHz sampling rate.
It is based on PC technology and forms PPI (plan position
indicator) images from the radar signal, the triggering pulse
and the antenna pulse. PPI is the most common type of radar
display. The radar antenna is represented at the center of the
display, so the distance from it and height above ground can
be drawn as concentric circles. The received radar signal
contains information on the echo intensities and distances.
Triggering and antenna pulses indicate when and in which

direction the radar signal was sent. The azimuth change pulse
(ACP) is a pulse set between a fixed angle in radar rotation.
Typically there are 2n pulses per 360◦. The azimuth reset
pulse (ARP) is a reference pulse set at a reference point.
The radar angle is derived by counting the number of ACPs
since the most recent ARP. The images are constructed based
on these pulses and on the recorded echoes with a known
time difference.
For the two coastal radars currently used by FMI, the

total area imaged is 40 km × 40 km, and the image size is
1200 × 1200 pixels, resulting in a nominal resolution of
∼33m. Naturally the true resolution depends on the radar
parameters, and in the far range the resolution is restricted
by the angular (or bearing) resolution. The image origin, i.e.
location of the radar, is shifted such that the origin of our
radar images is located at (30 000m, 20 000m) from the
upper left corner of the images, i.e. the origin has been
shifted to the east by 10 km. This was done because the
two coastal radars are located on the eastern side of the
Gulf of Bothnia, and after this shift we can see more sea
area in the images. The Tankar coastal radar images are
additionally rotated clockwise by 50◦ due to the shape of
the coast at the location. After this rotation the Tankar radar
images cover less land area, and the ship lead to Kokkola
harbor is better covered.
A temporal median filtering is applied to the image

data, using nine first images for each whole minute (e.g.
corresponding to 9 s if the radar rotates 60 rounds min−1).
This filtering reduces the radar imaging noise and effectively
filters some other undesired random effects (radar artifacts).
In our experiments we use a 10min time interval between
each image pair of an image time series, i.e. we use
temporally down-sampled data. For the two cases presented
here, we have not applied any other filtering. However,
we also present some candidates for filtering techniques to
improve the tracking reliability.

LOCATING THE TRACEABLE ICE OBJECTS
The traceable objects are objects that can reliably be traced
from one image to another. The first condition for a traceable
object is that there exist some features (texture) at the
location, thus excluding even surface areas shown as white
noise by a radar. To take this condition into account, we have
included the local image pixel value standard deviation as
one criterion for a traceable object. Secondly, we require
a traceable object to contain corner points, because we
want an object to include corners or curved edges, not only
straight edges. Straight edges are problematic for tracking
because the image often looks very similar along a straight
edge, and similarization errors made by correlation-based
algorithms may occur along straight-edge lines. The objects
to be tracked are determined based on features computed
within a radius R from the center point; the row and column
coordinates of the point are denoted by (r , c) here. The local
texture in an image can be characterized by the local image
pixel standard deviation σ(r , c) computed as

σ(r , c) =

√√√√ 1
N

∑
i,j∈(i−r )2+(j−c)2≤R2

[I(i, j)− μ]2, (1)
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Fig. 2. An example of a straight edge line (upper) and a curved
edge line (lower); the edge pixels appear as black. Sharp corners
are corners sharper than 90◦. At pixel level a curved edge always
contains corner points; this is also true for smoothly curved edge
lines, because at pixel level they are quantized to pixels. All the
corner points are also edge pixels.

where μ is the local image pixel value mean computed as

μ(r , c) =
1
N

∑
i,j∈(i−r )2+(j−c)2≤R2

I(i, j). (2)

I(i, j) is the image pixel value at (i, j), and N is the number
of pixels within the radius R. Additionally we can require
that an object contains a strong edge content, i.e. there are
many edge points within the object, indicating an ice type
edge or some kind of ice deformation pattern (e.g. a ridge).
This condition complements the requirement of high σ(r , c).

We first define a regular uniform grid with uniform spacing
in both the row and column directions, and around each
gridpoint we find one point within a given radius Rg from
the gridpoint, maximizing the value of an energy function
E (r , c), with respect to (r , c). E (r , c) is given by

E (r , c) = σ(r , c,R)Nc(r , c,R) (3)

or

E (r , c) = σ(r , c,R)Nc(r , c,R)Ne(r , c,R), (4)

where σ(r , c,R) is the local image pixel value standard
deviation computed within the radius R from (r , c), and Nc
and Ne are the numbers of corner and edge points, within
the radius R from (r , c), respectively. We use a product form
because we want both or all three terms to have a high
value for a traceable object. Both versions of E (r , c) produce
similar results. The corner points are computed using two
algorithms, and all the points produced by either algorithm
are included as edges. The first algorithm is the Harris corner
detector (Harris and Stephens, 1988), and the other is based
on local binary patterns (LBP; Ojala and others, 1996). The
edges are located by the same algorithms as the corners; a
corner pixel is just a special case of a detected edge pixel
(Fig. 2). An example of the edge detection is shown in Figure
3. After detecting the edges, we remove small edge segments,
i.e. edge segments of fewer than Te connected edge pixels.
A typical threshold value is Te = 5. This filtering reduces the
number of edges produced by imaging noise.
In this version, the LBPs are formed such that a threshold,

T , for the absolute difference between the middle point and
the reference points is applied; here we use T = 10. The

Fig. 3. An example of the edge detection for a selected part of a radar image (25 February 2011): the radar image (left) and the edges (black
tone, right). The origin is located at the right side of the image in the middle.
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reference points are the eight points with the angular step of
Π/4 around the middle point within a given distance RLBP;
here we use RLBP = 2. After computing the local binary
pattern for each pixel location, the minimum of all the cyclic
shifts of the eight-bit number is selected as the LBP for the
pixel. This operation makes the values rotationally invariant.
These LBP values can then be interpreted as edges (LBP value
15), corners (31) and sharp corners (63). We also recognize
the LBP values of 31 and 63 as corner points, i.e. allowing
one-bit deviation in the LBP.

TRACKING ALGORITHM
The tracking is performed for each pair of successive radar
images of a radar image sequence, which here is a radar
image time series with a constant temporal sampling rate.
The object locations in the first image of the image pair are
known (either based on the the initial object detection from
the first image or as a result of the tracking for later images).
The algorithm is based on phase correlation between the
two image windows around the centers of the objects. The
phase correlation is computed in two resolutions for each
object. First, candidates for the motion are defined in a coarse
resolution, then the final motion estimate is defined in a fine
scale. Some multi-resolution phase-correlation algorithms
for sea-ice drift estimation between SAR image pairs have
been developed previously (e.g. Thomas and others, 2004;
Karvonen, 2012). In a tracking algorithm the computation
is performed for the located objects only, and because the
number of objects is restricted, computation is much faster
than computing the motion for a whole common area of
two images. The objects are also selected in such a way
that they can reliably be traced, reducing the possibility of
confusion (similarization errors) associated with correlation-
based algorithms.
The regular image window size is W × W ; we have

used W = 16. This image size was selected experimentally.
Two factors restrict the size of the window: the fast Fourier
transform (FFT) used in the computations requires the size
to be a power of two, and the window must contain
enough information for reliable tracking. On the other hand,
selecting a larger window size than necessary reduces
the spatial resolution (traceable objects become larger). To
compute the phase correlation, the two-dimensional FFT (2-
D FFT) is applied to the data windows sampled from the two
images around the object location (in the first image, where
it is known). Then FFT coefficients of the two image windows
are normalized by their magnitudes, the FFT coefficients
of the two image windows are multiplied by each other
and the inverse 2-D FFT is applied. The phase correlation
array is also computed from the the normalized cross power
spectrum. The best matching displacement in a Cartesian
(x, y ) coordinate system is defined by the maximum of the
phase correlation, here denoted by PC:

(dx, dy ) = argmax(x ,y ) {PC(x, y )}
= argmax(x ,y )

{
FFT−1

(
(X1∗(k ,l)X2(k ,l ))
|X1∗(k ,l)X2(k ,l )|

)}
.

(5)

Because the FFT assumes the data are periodic, a
Gaussian window is applied to the data windows before
the transformation. The drift is estimated in the row–column
(r, c) coordinate system in whole pixels at two resolutions,
i.e here we make a replacement: x ← r , y ← c. The
displacement vector in the row and column coordinates is

denoted by (dr , dc). In practice there often occur several
correlation maxima which can be close to each other, and
it is reasonable to use more than just one drift candidate for
one window pair, and make the final decision only at the
fine-resolution level.
For the low resolution, the two images are first down-

sampled to a given resolution. Because the FFT is used,
the down-sampling rate RS should be a power of two, i.e.
RS = 2

n−1; we have used n = 3, corresponding to RS = 4,
which is an adequate value for 10min radar motion. The
two low-resolution images are generated by successively
applying a half-band low-pass finite impulse response filter
designed for multi-resolution image processing (Aiazzi and
others, 1998).
After down-sampling to the low resolution, we go through

objects in the first image, and for each object location
we make the two W × W sample windows and find
the correlation maxima. At the low resolution the phase
correlation for each object is also computed for rotated
windows, such that the data windows sampled from the
first image, in which the object is centered, are rotated
between –15◦ and +15◦ in steps of 5◦. This also allows
the cases of slight object rotation, assuming the rotation
for the selected time interval is between –15◦ and +15◦.
The M maximum correlations among all seven orientations,
the corresponding motion coordinates (drL,dcL) and rotation
are stored. These values are here called low-resolution drift
candidates. We use the parameter value M = 12. If the
zero-motion case (dr , dc) = (0, 0) is not included in the
M low-resolution drift values indicated by the maxima, it
is included and the low-resolution drift candidate with the
lowest phase correlation is excluded. This list of M drift
candidates, corresponding phase correlations and rotation
angles for each object location is then delivered to the fine-
resolution processing. At the fine-resolution level, all the
displacements from the low-resolution level, scaled up by
the down-sampling rate RS, are considered as potential low-
resolution ice-drift candidates. All the low-resolution drift
candidates are gone through by sampling the image windows
around the object locations in the first image, and around
the corresponding first-image locations shifted by the low-
resolution shift and scaled by RS in the second image. The
rotation angle is also passed from the low resolution, and the
sampling is performed according to it. The phase correlation
maximum among the low-resolution candidate drifts in the
high resolution is located, and the final drift of an object is
the scaled low-resolution shift added by the high-resolution
shift corresponding to the high-resolution maximum.
As a measure of the estimation quality at each temporal

step, we use the quality measure Q :

Q = PC1/Np, (6)

where PC1 is the value of the maximum phase correlation
and Np is the number of correlation values higher then
f × PC1; we have used f = 0.7 here. The quality decreases
if there exist other relatively high-correlation peaks, in
addition to the maximum peak. This is a natural condition,
because if multiple high-correlation peaks are present, it
is more probable that the algorithm will fail and pick a
wrong maximum, because there also exist other considerable
maxima candidates. To reduce the risk of failures, we apply a
quality threshold Tq, and only accept the drift estimates with
Q > Tq, otherwise the tracking of an object is stopped and

https://doi.org/10.3189/2013AoG62A042 Published online by Cambridge University Press

https://doi.org/10.3189/2013AoG62A042


Karvonen: Tracking recognizable sea-ice objects 45

the object is lost by the algorithm. We have used the value
Tq = 0.05 in our experiments.

EXPERIMENTAL RESULTS
During the 2010/11 and 2011/12 winters, FMI had the
image-capturing device installed at two coastal radar
stations, Tankar (63.95◦N, 22.84◦ E), and Marjaniemi
(65.04◦N, 24.57◦ E) on Hailuoto island. The radar locations
are shown in Figure 4. The radar range (radius 20 km) is
indicated by the circles in the figure.
Ice in the Marjaniemi radar image time series did not show

much motion, so we concentrate on time series acquired
by the Tankar coastal radar. The ice field in the vicinity of
the Marjaniemi coastal radar is mostly fast ice, and motion
there typically occurs only in the early and late ice season,
when the ice is thin and not yet or no longer stuck to
the shallow coast. The fast-ice area around Marjaniemi can
be seen in Figure 1 which shows typical fast-ice regions.
Ice in the Tankar coastal radar area is more dynamic, and
several cases of significant ice motion occur each season.
Here we concentrate on two cases, from the 2010/11 and
2011/12 winters respectively, to demonstrate the potential
and properties of our algorithm. In the first case, from 25
February 2011, the tracking time is ∼12 hours and the
temporal resolution is 10min. In the second case, from 8
February 2012, the tracking time is 24 hours and the temporal
resolution is 10min. Figures 5 and 6 show the radar images
at the beginning and end of the test periods, along with the
trajectories of the tracked objects. The objects are indicated
by colored circles, and the colors signifying each location are
the same in all panels of Figures 5 and 6. At the beginning
all the objects detected by the object-detecting algorithm are
shown; at the end only the objects tracked from beginning to
end are shown; the object trajectories are shown only for the
objects tracked from the beginning to the end of the period.
During the tracking period, some of the objects disappear,
i.e. at some stage their quality value falls below the assigned
quality threshold Tq. Most of these cases occur because the
objects drift too far from the origin, and the radar signal-
to-noise ratio becomes too low for reliable tracking. Some
small objects also disappear due to their deformation within
the 10min time interval between each image pair.
We computed the mean velocity, 10min acceleration and

the direction for each tracked object (Figs 7 and 8). In the 25
February 2011 case, all the objects move uniformly, there
is a short break in the motion and then it restarts. In the 8
February 2012 case, one object starts moving earlier than
the other two. The direction of the motion is not temporally
uniform: it changes from about 270◦ to 215◦ and back again.
In the 2012 test period, one of the tracked object trajectories
contains some erroneous tracking. However, the errors seem
to be corrected by the algorithm and it continues on the
correct track after the error. Inspection of an animation of
the tracking showed that another error was made because
two ships moved across the object area; the other error case
was simply due to a low signal-to-noise ratio and algorithm
confusion. This kind of error can be avoided by increasing
the quality threshold Tq. However, increasing Tq can lead
to fewer tracked locations from the beginning to the end of
the period. The erroneous point here causes high values of
the velocity and acceleration. Based on these characteristics,
the erroneous tracking in this case can easily be detected,

Fig. 4. Locations of the FMI radar study sites during the 2010/11 and
2011/12 winters. The coastal radars are located at the centers of the
circles; the circle radius corresponds to the radar image radius of
20 km.

and even filtered out, because the algorithm returns to the
correct track.
For these test cases, some of the 10min maximum veloci-

ties exceed 0.3m s−1, and some of the maximum absolute
values of the velocity change rate exceed 0.3mms−2. The
ice-drift velocity values are typical: generally 0–1m s−1, and
in rare cases up to 3m s−1 (the ‘ice river’ phenomenon;
Leppäranta, 2005). The directions shown in Figures 7 and
8 are rotated by 50◦ clockwise, i.e. to obtain the actual
(compass) directions 50◦ must be added to the values in the
figures. This rotation has been performed to obtain better
image coverage of the ship track leading to Kokkola harbor.
The 10min acceleration is shown in Figures 7b and 8b.

Even during the uniform motion (25 February 2011 Tankar
case) the 10min accelerations can be 0.10–0.15mms−2,
presumably indicating smaller-scale compression and de-
compression events within the moving ice field. We also
computed estimates of the divergence, based on the motion
of the detected objects. Because the object grid is spatially
not very dense, divergence values are computed from
interpolated motion fields for the object locations. An
example of the estimated divergence for two 25 February
2011 case objects is shown in Figure 9. The divergence time
series closely follows the acceleration time series in Figure
7b. At the beginning of the ice motion the divergence of
the object closer to the opening is higher (green line) than
that of the object within the moving ice field (blue line), but
later, during the relatively uniform motion, this difference
has disappeared. This kind of dynamic ice information is
important for fine-scale ice models. It enables the fine-scale
dynamic phenomena within sea ice to be modeled better,
and the model parameters to be adjusted to the prevailing
ice conditions.
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Fig. 5. Tracking results for the Tankar test period 25 February 2011, 03:01 to 16:50 Eastern European Time (EET). The images are cut to
present the area of interest, i.e. the area where ice motion can be detected. The radar (image origin) is the small bright dot near the right
side and midway up the image. There are fast ice and some small islands in the rightmost part of the radar image (left and middle panels).
The objects are indicated by colored circles. The figure shows the original object locations (of all the detected objects; left panel) in the
beginning drawn over the first radar image of the image time series, and at the end drawn over the last radar image of the time series
(only the objects tracked from the beginning to the end of the period; middle), and their trajectories (right). The beginning of a trajectory is
indicated by the open circle, and the end by the filled circle.

Fig. 6. Tracking results for the Tankar test period 8 February 2012, 00:00 to 23:53 EET. The radar (image origin) is the small bright dot near
the right side and midway up the image. There are fast ice and some small islands in the rightmost part of the radar image (left and middle
panels). The figure shows the original locations (of all the detected objects; left) in the beginning, and at the end (only the features tracked
from the beginning to the end of the period; middle), and the trajectories (right). The area shown is the same as in Figure 5.
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Fig. 7. The drift velocity (a), 10min acceleration (b) and drift
direction (c) for the Tankar test period 25 February 2011, 03:01
to 16:50 EET. The Tankar radar images have been rotated 50◦
clockwise, so the true direction is that given plus 50◦. The values
are shown only for selected objects with nonzero drift and tracked
from the beginning to the end of the period.

We also studied the change in quality as a function of the
tracking time. Typically the quality drops significantly as the
ice starts to move, and has lower values for the moving ice
objects. The variation between image pairs is typically higher
for moving ice. There is also a decreasing trend in quality as
the ice moves further from the origin (radar location). Figure
10 shows the quality for the three moving objects in the
2012 case dataset. The decreasing trends, taking into account
only the quality values after the objects have started moving
(from a tracking time of 5 hours), using a linear least-squares
fit, were –0.0069h−1, –0.0050 h−1 and –0.0021 h−1 for the
three tracked ice objects. This reflects the fact that, as the
objects move away from the origin, tracking becomes more
difficult and finally impossible, i.e. the objects are then lost
by the algorithm.

Fig. 8. The drift velocity (a), 10min acceleration (b) and drift
direction (c) for the Tankar test period 8 February 2012, 00:00 to
23:53 EET. The values are shown only for selected features with
nonzero drift and tracked from the beginning to the end of the
period.

CONCLUSIONS AND FUTURE PROSPECTS

We have developed an algorithm for selecting and tracking
traceable sea-ice objects. Manual selection of the initial
objects is also possible. We have demonstrated that the
algorithm works well for our two test cases. The object
trajectories given by the algorithm can be used instead of ice-
drifter buoys to indicate short-time radar-scale ice motion.
Ships, shown as bright dots in radar, are also found

and tracked by the algorithm. We are only interested in
locating and tracking ice features, not ships. Assuming they
are surrounded by open water, the ships can efficiently be
removed by removing bright dot-like features. We do not do
this here, because ships are typically lost by the algorithm
anyway, since it can only find object motion to an upper
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Fig. 9. Estimated divergence computed for two of the 25 February
2011 examples. The green line corresponds to an object closer to the
opening, and the object corresponding to the blue line was located
in the middle of the moving ice zone. The divergence estimates are
based on the motion of the detected objects and interpolation.

limit defined by the low resolution and the window size.
For example, if the temporal resolution is 10min, the low
spatial resolution is 132m (4 × 33m) and the window size
is 16 pixels, then motion of ∼1056m or less in 10min,
corresponding to 176 cm s−1 or 6.4 kmh−1, can be detected
by the algorithm, and objects with a higher speed are
lost. Using such a simple ship-filtering algorithm may also
remove small ice segments with high radar backscattering, so
some traceable objects may be lost. A more advanced ship
filtering could, for example, additionally utilize the ship’s
AIS (Automatic Identification System) data to obtain the ship
locations, and then perform ship filtering only near the ship
locations given by AIS.
The method could probably also be applied to SAR data,

though it has not been tested with SAR data yet. The specific
problem with SAR data is the coarser temporal resolution,
currently 1–3 days over the Baltic Sea. This situation will
be improved by the existing and future SAR constellations
(COSMO-SkyMed, RADARSAT, Sentinel-1).
The algorithm can be made faster by excluding land points

from the computation. Currently we have not applied land

Fig. 10.Quality as a function of time for the 2012 Tankar test dataset.
In the beginning the objects do not move, and the quality suddenly
drops as motion begins. As the objects move away from the origin,
a decreasing trend can be seen.

Fig. 11. A detailed example of filtering a radar image. The small
details (segments) are removed by this filtering. The size of the details
to be removed can be adjusted by a size threshold.

masking, and the static land points are included in the
computation.
We have not applied any other filtering to the radar

data, except the temporal median filtering. To improve the
tracking, we could use some kind of noise suppression
filtering (e.g. the anisotropic mean filter (Karvonen, 2010)).
Another useful filtering approach would be to apply filtering
removing small details. This can be implemented based on
image segmentation and then merging the segments with
a size lower then a given threshold (e.g. 50 pixels) with
the neighboring larger segments, i.e. removing the small
segments. After this segment merging, the new filtered image
can be produced by computing the segment means for the
filtered segmentation. This filtering removes, for example, the
small bright dot-like objects, which in many cases are ships
or ship lead marks. A disadvantage of the method is that it
also removes small ice features, which consist of segments
lower than the threshold. However, edge shape details of
large segments are not affected by the algorithm. An example
of such filtering for one radar image is shown in Figure 11.
By using filtered images we could raise the quality threshold
Tq, because the quality is less reduced by noise.
An advantage of this kind of filtering is that the objects in

the filtered image represent larger bodies than in the case
without filtering, and their change (deformation) rate and
motion are typically slower than for very small objects. It is
also less likely to create confusion between similar objects
in the algorithm, because larger objects typically have a
more complex shape than small ones. This filtering not only
reduces the number of possible traceable objects, but also
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reduces the possibility of similarization errors since fewer
very small objects are present.
Another possibly applicable filtering technique is to utilize

the temporal motion history. At each temporal step, the
motion of an object at the previous time-steps can be
compared to the current motion candidates, and candidates
that deviate too much from the previous motion values can
be rejected, leaving only the feasible candidates for the
final selection by the maximum phase correlation. This can
physically be reasoned by preservation of the motion.
The thresholding of the quality index Q we have used

here as a stopping condition for single-object tracking
might be improved by adding thresholding of the local
image contrast. We would then stop the tracking after
either Q becomes lower than Tq or the local image contrast
measure falls below a contrast threshold. Examples of simple
measures of the local image contrast are the local image
pixel value standard deviation and the local image pixel
value range within an image window.
The statistics of the exact rotation angles could also be

included in the algorithm. After locating the drift, the two
windows can be sampled in polar coordinates, and the
rotation angle can be defined based on the angular shift,
corresponding to the maximum correlation in the polar
coordinate system.
The resolution of the current system is restricted to one

pixel. However, sub-pixel resolution drift can be estimated
by interpolating either the correlation or the image windows
to be correlated (oversampling). The one-pixel accuracy is
typically enough for 10min time interval tracking, but if we
want to perform the tracking at a higher temporal resolution
(e.g. 1–2min), interpolation is required to obtain reliable
tracking results. When the ice is moving, a maximal time-
series length, for which we can track some features from the
beginning to the end of the time series, is typically 24 hours
or less, depending on the initial object locations and themag-
nitude of the drift. We have presented one case of 24 hour
tracking, and the tracked objects have already moved close
to the range where they are already lost by the algorithm.
We have not performed numerical validation of the

algorithm, because we do not have any fine-scale ice-
drift reference data within the area covered by the radars.
However, we have visually analyzed the image sequences
(animations consisting of the image sequences), and noticed
that the algorithm tracks the objects reliably, except for the
far-range areas, where some errors can occur. Because the
quality value reduces towards the far range, this behavior can
be corrected using a slightly higher value for the threshold
Tq. This naturally also leads to earlier loss of the objects.
In future ice seasons, FMI will install image-capturing

devices at several coastal stations for operational sea-
ice monitoring. We have also performed preliminary
experiments with the image-capturing device installed on a
ship (R/V Aranda). The ice conditions can also be monitored
using an on-board radar, when the ship speed is low enough
for the same ice fields to be visible in two adjacent radar
images, and the radar images have a long enough temporal
difference for radar resolution ice motion to occur. This
naturally requires ship motion compensation, which can be
done based on the ship-positioning system based on GPS.
With efficient and reliable algorithms, coastal radar data can
be comprehensively utilized in direct radar-scale ice motion

estimation, in fine-scale ice model development and at the
final phase of data assimilation into numerical ice models.
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Leppäranta M and Seina A (1985) Freezing, maximum annual
ice thickness and breakup of ice on the Finnish coast during
1830–1984. Geophysica, 21(2), 87–104
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