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0. Introduction. Throughout the paper the letter A will denote a commutative,
semisimple, weakly sequentially complete and completely continuous Banach alge-
bra. The term ``completely continuous'' means that, for each a 2 A, the multi-
plication operator La : Aÿ!A, La�x� � ax, is compact. Now let G be an arbitrary
discrete group and A�G� be its Fourier algebra and VN�G� be its von Neumann
algebra, as de®ned by P. Eymard in [6]. The algebra A�G� possesses all the properties
imposed on A, see [6] and e.g. [16; Theorem 3.6]. The algebra A�G� is our main
example and throughout the paper special attention will be paid to it. As is well
known, on the second dual A�� of A there are two algebra multiplications extending
that of A, known as the ®rst and second Arens multiplications, whose constructions
are recalled below. Assume that A�� is equipped with the ®rst of them. Unless the
algebra A is Arens regular, the algebra A�� is not commutative and a characteriza-
tion of the central elements of A�� presents a certain interest. In this paper we study
about the algebras A and A�� the following four questions. (a) What are the central
elements of A��? (b) When is A Arens regular? (c) When does Arens regularity of A
imply that A is ®nite dimensional?; and (d) When is there a weakly compact homo-
morphism from A into C0��� with an in®nite dimensional range? Here � is the
Gelfand spectrum of the algebra A. For the Fourier algebra A�G� of an amenable
discrete group G, as will be explained below, all these questions are solved. On the
other hand, if G is a nonamenable discrete group, none of the these questions seems
to be solved for the algebra A�G�. In the case where G is amenable, Lau and Losert
in [11; Theorem 6.5] proved that the center of the algebra VN�G�� is A�G�. Again for
G amenable, in [13] Lau and Wong proved that the algebra A�G� is Arens regular if
and only if G is ®nite. In the case where G is nonamenable, concerning Arens reg-
ularity of A�G�, the best known result seems to be the one obtained by Forrest [7],
which says that if A�G� is Arens regular then each amenable subgroup of G is ®nite.
In the case where G is amenable, as proved by Granirer [8] and the author [16],
weakly compact homomorphisms on A�G� have a ®nite dimensional range and, as
remarked by Granirer [8], this result fails if G is not amenable. In these kinds of
problems, existence of a bounded approximate identity and knowledge of the center
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of the auxiliary algebra �AA��� play an essential role, as clearly displayed in the
paper [12]. For a nonamenable discrete group G, the algebra A�G� does not have a
bounded approximate identity and we do not know the center of the algebra
�A�G�VN�G�� ��. So we have had to follow a di�erent path. Concerning the ®rst
question, our main result says that an element m 2 A�� is in the center of this algebra
if and only if mA�� � A and A��m � A. Concerning the second and third questions,
we give several necessary and su�cient conditions for A to be Arens regular or ®nite
dimensional. At this point we remark that there exist nonre¯exive Arens regular
Banach algebras satisfying the conditions imposed on A. Concerning the fourth
question, we show that there exist weakly compact homomorphisms h : Aÿ!C0���
with in®nite dimensional ranges if, and only if, the functional zero is in the weak
sequential closure of � in A�. The main ingredients of the proofs are weak sequen-
tial completeness and the fact that any von Neumann algebra has the Grothendieck
property [14].

1. Notation and Preliminaries. Let A be a commutative Banach algebra, a; b two
elements of A, f an element of A� and m; n be two elements of A��. We de®ne the
elements f:a; a:f; m:f; f � n of A� and nm and n�m of A�� as follows.

< f:a; b >�< f; ab > < a:f; b >�< f; ab >
< m:f; a >�< m; fa > < f �m; a >�< m; af >
< nm; f >�< n;m:f > < n �m; f >�< m; f � n >

The operations �n;m�7ÿ!n:m and �n;m�7ÿ!n �m de®ne two Banach algebra multi-
plications on A��, known, respectively, as the ®rst and second Arens multiplication
of A��. The basic properties of these operations are the following: a:m �
m:a � a �m � m � a; for m ®xed, the mapping n 7 ÿ!nm is weak�-weak� continuous
on A��. However the mapping m 7 ÿ!nm need not be weak*-weak* continuous,
unless n is in the center of A��. The properties of the second multiplication is sym-
metric to those of the ®rst multiplication. For either multiplication, A is a sub-
algebra of A��. If, for all n;m in A��, the equality nm � n �m holds, then algebra A
is said to be Arens regular. From now on, we shall denote by A�� the algebra A��

equipped with the ®rst Arens multiplication and consider A as a subalgebra of A��.
All the results we need and use about Arens multiplications can be found in the
survey paper [4]. An element of A is said to be (weakly) compact if the operator
La : Aÿ!A, de®ned by La�b� � ab, is (weakly) compact. The algebra A is an ideal in
its second dual equipped with either of the Arens multiplications if and only if every
element of A is weakly compact [4]. The algebra A is said to be c.c. (=completely
continuous) if each element of A is compact. Now assume that A is an ideal in its
second dual, and let m be an element of A��. De®ne the mapping Lm : Aÿ!A by
Lm�a� � ma. Then the ®rst and second adjoints of Lm are given by L�m�f� �
m:f � f �m and L��m �n� � nm. The algebra A being commutative, as one can see it
readily, nm � m � n. Thus, an element m of A�� is in the center of the algebra A�� if
and only if for all n in A��, mn � m � n. By A��A� and AA� we denote, respectively,
the subspaces fm:' : m 2 A�� and ' 2 A�g and fa:' : a 2 A and ' 2 A� g of A�.
Finally we remark that, algebra A being commutative, the centers of the algebras
A�� and �A��; �� are the same.
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2. Central Elements of A�G���. Throughout the paper A will be a commutative,
semisimple, c.c. and weakly sequentially complete Banach algebra. By � we shall
denote the Gelfand space of A (the set of multiplicative functionals on A equipped
with the weak* topology induced by ��A�;A��. For m in A�� (so, for a in A) by m̂
we shall denote the function m̂ : �ÿ!C de®ned by < m̂; f >� m�f�. It is clear that
if ÿ : Aÿ!C0��� is the Gelfand transform, ÿ�� applies A�� into `1��� and
ÿ�m� � m̂: We now give some examples of Banach algebras satisfying the above
conditions.

Examples 2.1. The following Banach algebras satisfy all the conditions we have
imposed on A.

(a) The Fourier algebra A�G� of any discrete group G. See [6] and e.g. [16; The-
orem 3.6]. In particular, the group algebra L1�G� of a compact abelian group G.

(b) The space `1, considered as a Banach algebra with coordinatewise multi-
plication.

(c) The semigroup algebra `1�N�, where the set of the positive integers N is
equipped with the multiplication pq � minfp; qg [9; Example 11.1.5].

(d) The space

bv � f�xn�n2N 2 CN :jj �xn� jj�j x0 j ��n2N j xn�1 ÿ xn j<1g

equipped with coordinatewise multiplication.
(e) Any closed subalgebra of a Banach algebra that satis®es the properties

imposed on A:

Now let a be an element in A. For f in �, we have L�a�f� � f:a �< f; a > f so that
< f; a > is an eigenvalue of the compact operator L�a. This fact and well known
spectral properties of the compact operators show that the Gelfand space � of A is
discrete and the set

Sa � f 2 � :< f; a >6� 0g � [
n51ff 2 � :j< f; a >j5 1

n

� �
is countable. The weak* topology of A� being weaker than its weak topology, the
space (�;weak�Ðthe set � endowed with the topology induced by the weak topology
of A�Ðis also discrete. The ®rst main result of the paper is the following theorem.

Theorem 2.2. Let m be an element of the algebra A��. Then m is in the center of
A�� if and only if mA�� � A and A��m � A.

Proof. Assume ®rst that m is in the center of A��. Let us prove that the operator
Lm : Aÿ!A; Lm�a� � ma, is weakly compact. To this end let �an�n2N be a sequence
in the unit ball of A. Put Sn � ff 2 � :< f; an > 6� 0g and S � [n2NSn. The set S is
countable so that the subspace Span�S� of A� generated by S is separable. Hence, by
Cantor's diagonal process, from the sequence �an�n2N we can extract a subsequence,
denoted again �an�n2N, such that, for each ' in Span�S�, the sequence �< '; an >�n2N
converges. Since, for each f in �nS and all n in N, < f; an >� 0 and
Span��� � Span�S� � Span��nS�, we see that, for each ' in Span���, the sequence
�< '; an >�n2N converges too. The sequence �an�2N being bounded, we conclude that
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for each ' in Span���, the sequence �< '; an >�n2N converges. On the other hand,
since m is in the center of A��, for any ' in A�, ' �m � m:' and, the functional
' �m, which is in A�, actually is in A�A � f':a : ' 2 A� and a 2 A g. Indeed, if
�b���2I is a net in A converging to m in the weak�ÿtopology of A��, then

< ':b�; p >�< '; b� p > ÿ! < '; mp >�< '; m � p >�< ' �m; p >

for any p in A�� so that ':b�ÿ!' �m in the weak topology of A� and ' �m is in
A�A. Now let us see that A�A � Span���. The inclusion Span��� � A�A is clear
since, for f in � and a in A, f:a �< f:a > f. To prove the reverse inclusion, assume
that, for some ' in A� and a in A, we have ':a =2 Span���. Then, by The Hahn-Banach
Theorem, there is some p in A��, such that < ':a; p > 6� 0 but < f; p >� 0, for each f
in �. As ap is in A; < ap; f >�< a; f >< p; f >� 0, and as A is semisimple, we con-
clude that ap � 0. However this contradicts the inequality < '; ap > 6� 0. Hence, for
all ' 2 A�; m:' 2 Span��� and consequently the sequence �< ';man >�n2N con-
verges. This shows that the sequence �man�n2N is weakly Cauchy in A. As the algebra
A is weakly sequentially complete, the sequence �man�n2N converges weakly to some
point in A. This proves that the operator Lm�a� � ma is weakly compact on A so
that L��m �A��� � A��m � A. As m is in the center of A��, mA�� � A��m � A too.

To prove the reverse implication, assume that A��m � A and mA�� � A. Then,
for each n in A��, the products nm and mn are in A and since
< nm; f >�< n; f >< m; f >�< mn; f > for each f in �; A being semisimple, we get
that nm � mn. This being true for all n in A��, we conclude that m is in the center of
A��.

Remark 2.3. Let m be an element of A��. If m is in the center of A�� then, as
seen above, the mapping Lm : Aÿ!A; Lm�a� � ma, is weakly compact. But, if for
some m 2 A��; Lm is weakly compact, we can not say that m is in the center of A��.
Indeed, for any m in the annihilator of � in A��, Lm�A� � mA � f0g so that Lm is
weakly compact but m need not to be in the center of A��, see Theorem 3.2. below.
We also remark that from the inclusions mA�� � A and A��m � A, we can not
deduce that m 2 A, see Remark 3.4. below.

Corollary 2.4. If the algebra A has a bounded approximate identity, then the
center of A�� is A.

Proof. Indeed, in this case A�� has a right unit E so that for m in A��; mE � m.
This fact and the inclusion mA�� � A show that the center of A�� is A:

Thus, if G is a compact abelian group and A � L1�G� is its group algebra, then
the center of A�� is A. For a completely di�erent proof of this result (for a not
necessarily commutative G ) see the paper [10].

3. Arens Regularity of A(G) and Related Questions. In this section we study the
following three questions: a) When is the algebra A Arens regular? b) When does
Arens regularity of A imply that A is ®nite dimensional?; and c) When is there a
weakly compact homomorphism h : Aÿ!C0��� with an in®nite dimensional range?
The letter A will have the same signi®cation as in the previous section. Moreover in this
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section we assume that A� is a von Neumann algebra. The reader will observe that
most of the results below remain valid without this hypothesis but for the unity of
the statements we put this condition as a blanket assumption.

For the proof of the next theorem we recall that: a) A Banach space X is said to
be ``weakly compactly generated'' if, for some weakly compact subset E of X, X is
the closed linear span of E. A weakly compactly generated dual Banach space has
the RNP [1; p.76, Corollary 4.1.10]. b) As proved by P®tzner in [14], any von Neu-
mann algebra B has the so called Grothendieck property. i.e. In the space B�, weak�

convergent sequences are weakly convergent. Any continuous linear operator from a
space having the Grothendieck property into a weakly compactly generated Banach
space is weakly compact [5; p.179].

By �? we denote the annihilator of � in A�� and by Z the center of A��. For the
proof of the next theorem we need the following lemma. Before this we remark that,
for m in �?; mA � f0g since A is semisimple and A is an ideal in A��. This implies
that A��m � f0g. (But mA�� 6� f0g, unless m 2 Z).

Lemma 3.1. If �? is contained in Z then � is relatively weakly compact in A�.

Proof. Assume that �? � Z. Then for any n and m in A��, nmÿmn is in �?. So,
for any p in A��, p�mnÿ nm� � �mnÿ nm�p. Hence, by the above remark,
p�mnÿ nm� � 0 � �mnÿ nm�p so that, for all n;m; p in A��, we have pmn � nmp.
For p � m, we get that m2n � nm2 for all n in A��. This shows that m2 is in Z so that,
by Theorem 2.1 above, m3 is in A. It follows that, for any " > 0, the set

K" � ff 2 � :j< f;m >j5"g � ff 2 � :j< f;m3 >j5"3g

is ®nite. This proves that the second adjoint of the Gelfand transform maps A�� into
C0���. From this we conclude that the Gelfand transform ÿ : Aÿ!C0��� is weakly
compact. As � is contained in the image under ÿ� of the closed unit ball of `1���, we
deduce that � is relatively weakly compact in A�.

As an immediate corollary of this lemma we have the following result.

Corollary 3.2. If the algebra A is Arens regular then � is relatively compact in
�A�;weak�:

At this point we recall that the algebra A � `1 (example 2.1 (b) above) is Arens
regular (so its spectrum is relatively weakly compact in `1) but it is not ®nite
dimensional.

Theorem 3.3. For the algebra A the following assertions are equivalent.

(a) A is Arens regular.
(b) A��A�� � A.
(c) �? � Z
(d) For any m in A��, A��m � f0g implies that mA�� � f0g.
(e) A��A� � AA�.
(f) For each m in A��, the mapping Lm : Aÿ!A; Lm�a� � ma, is weakly compact.
(g) For eachm in A��, the mapping Sm : A��ÿ!A��, Sm�n� � nm, is weakly compact.
(h) A�� is Arens regular.
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Proof. Since A is Arens regular if, and only if, Z � A��, by Theorem 2.1 above,
the equivalence of the assertions (a) and (b) is clear.

b)�)c� and c)�)d). Implication b)�)c) being obvious, we prove implication
c)�)d). To prove this implication assume that c) holds. Let m 2 A�� be such that
A��m � f0g. The algebra A being semisimple, this implies that m 2 �?. Hence, by c),
m 2 Z. It follows that mA�� � A��m � f0g.

d)�)e). Assume that d) holds. Let m 2 A�� and ' 2 A�. If we had m:' =2 AA�,
we would have an n in A�� such that < m:'; n >�< '; nm > 6� 0 but < a ; n >�
<  ; na >� 0 for all a 2 A and  2 A�. This implies that an � na � 0 for all a in A.
This in turn implies that nm � 0, which contradicts the inequality < '; nm >6� 0 and
proves e).

e)�)f). Assume that e) holds. Let us ®rst prove that then c) holds. To see this
let m be an element in �?. Then A��m � f0g and, by e), for any ' 2 A� and
n 2 A��; n:' 2 AA�. We have to show that, for all n 2 A��;mn � 0. Assume, for a
contradiction, that for some n in A��;mn 6� 0. Then, for some ' 2 A�;
< mn; ' >�< m; n:' > 6� 0. On the other hand, since n:' 2 AA�; n:' � a: for some
a 2 A and  2 A�. Hence, < m; n:' >�< m; a: >�< ma;  >� < am; ' >� 0,
contradicting the inequality < mn; ' > 6� 0. This contradiction proves that �? � Z
so that, by Lemma 3.1, the space Span��� is weakly compactly generated. Now ®x
an m 2 A�� and consider the mapping �m : A�ÿ!A�, de®ned by �m�'� � m:'. By e),
�m applies A� into AA�. As we have seen in the course of the proof of Theorem 2.1,
AA� � Span���. From this, since A� has the Grothendieck property and the space
Span��� is weakly compactly generated, we conclude that the mapping �m is weakly
compact. As �Lm�� � �m, we conclude that f) holds.

f)�)g). Assume that f) holds. Then, since for any m 2 A��;L��m � Sm, g) holds.
g)�)a). Assume that g) holds. Then f) also holds and, for any m 2 A��,

A��m � A. It follows that, A��A�� � A, and by Theorem 2.1, A is Arens regular.
Implication h)�)a) being obvious, it remains to show that a)�) h). To prove

this implication, assume that A is Arens regular. For F 2 A��� and m 2 A��;F:m is
the functional de®ned on A�� by < F:m; n >�< F;mn >. Since A��A�� � A and
A��� � A� � A?;F is of the form F � f� � and F:m � f:m. It follows that

fF:m : m 2 A��; jj m jj41g � ff:m : m 2 A��; jj m jj41g:

Since A is Arens regular, the set ff:a : a 2 A; jj a jj41g is relatively weakly
compact in A�, and consequently

ff:m : m 2 A��; jj m jj41g � ff:a : a 2 A; jj a jj41g:

From this we conclude that the algebra A�� is Arens regular.

Remark 3.4. The inclusion A��A�� � A does not imply that the algebra A is
re¯exive. Indeed, let A � `1 (Example 2.1(b) above). Then, since A�� �
`1 � c?o ;A

��A�� � A but A is not re¯exive. Observe also that although A � `1 is
Arens regular, has an (unbounded) approximate identity, and A�A � co 6� `1 � A�:

For the sake of completeness we include the statement of the following known
result. One part of this proposition is proved in [16; Proposition 2.8 ] and the other
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part in [2; Corollary 2.8]. We also recall that � is closed in ( A�; weak� whenever A
has a bounded approximate identity [16; p. 361].

Proposition 3.5. Let G be any locally compact group and A�G� be its Fourier
algebra. Then the spectrum of the algebra A�G� is closed in �VN�G�;weak� if and only
if the group G is amenable.

Theorem 3.6. For the algebra A the following assertions are equivalent.

(a) The dimension of A is ®nite.
(b) The algebra A is Arens regular and � is closed in �A�;weak�.
(c) For m in A�� and ' in A�;m:' � 0 implies that < m; ' >� 0.
(d) A� � Span�:

Proof. Implication (a)�)(b) is clear. To prove the reverse implication, assume
that (b) holds. Then, by Corollary 3.2. above, (�;weak� is compact. Since (�;weak�
is also discrete, we conclude that � is ®nite. The algebra A being semisimple, the
dimension of A is ®nite.

As a ®nite dimensional semisimple Banach algebra is necessarily unital, impli-
cation (a)�)(c) is clear.

To prove implication (c)�)(d), assume that assertion (c) holds. Let m be in �?.
Then, for any ' 2 A�, m:' � 0. Hence by hypothesis, < ';m >� 0. This being true
for any ' 2 A� and m 2 �?, we conclude that �? � f0g so that Span� � A�.

Finally, to prove implication (d)�)(a), assume that (d) holds. This implies that
the algebra A is Arens regular so that � is relatively weakly compact and A� is
weakly compactly generated. As a weakly compactly generated dual space has the
RNP [1; p.76], A� has the RNP. However, since A is weakly sequentially complete, it
contains an isomorphic copy of `1 by Rosenthal's `1ÿTheorem [15] unless it is
re¯exive. Since the dual of a Banach space containing an isomorphic copy of `1

cannot have the RNP [1; p.75, Corollary 4.1.7], A must be re¯exive. Since a re¯exive
von Neumann algebra is ®nite dimensional, we conclude that the dimension of A is
®nite.

Now let G be a discrete group. If G is amenable then, as proved in [13] by Lau
and Wong, the algebra A�G� is Arens regular if, and only if, the group G is ®nite.
The question whether this result also holds for every nonamenable G seems to be
still open. Concerning this question, the best known result, as far as we know, is the
following one obtained by B. Forrest [7]: If A�G� is Arens regular then every amen-
able subgroup of G is ®nite. Next we present a completely di�erent proof of this
result.

Corollary 3.7. Let G be a discrete group. If the algebra A�G� is Arens regular
then every amenable subgroup of G is ®nite.

Proof. Assume that A�G� is Arens regular, and let H be an amenable subgroup
of G. The Fourier algebra A � A�H� of H, being isometrically isomorphic to a
quotient algebra of A�G� [6], is also Arens regular. Hence by Proposition 3.5 and
Theorem 3.6, A�H� is ®nite dimensional, so H is ®nite.
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At this point we remark that, if A�G� is Arens regular then its spectrum ( i.e. G )
is relatively weakly compact in VN�G� so that every subset of G which is closed in
�VN�G�;weak� is ®nite. This reproves the above corollary (Consider the quotient
homomorphism h : A�G�ÿ!A�H��.

Next we consider weakly compact homomorphisms from A into C0���. If the
algebra A is Arens regular then, by Corollary 3.2, every homomorphism
h : Aÿ!C0��� is weakly compact but need not have a ®nite dimensional range (take
e.g. A � `1�. On the other hand, if � is closed in �A�;weak� then every weakly
compact homomorphism h : Aÿ!C0��� has a ®nite dimensional range [16; Theorem
2.14]. Denote by �

sw
the sequential closure of � in �A�;weak�. Thus an element f of

A� is in �
sw

if, and only if, there is a sequence �fn�n2N in � that converges weakly to
f. Then we have the following result.

Theorem 3.8. There exists a weakly compact homomorphism h : Aÿ!C0��� with
in®nite dimensional range if and only if 0 2 �

sw
.

Proof. We ®rst recall that a continuous linear operator T from a Banach space
X into c0 is weakly compact if, and only if, there exists a sequence �fn�n2N in X�,
converging weakly to zero, such that T�x� � �< fn; x >�n2N [4; p.108]. Now assume
that 0 2 �

sw
. Then there exists an in®nite sequence �fn�n2N in � that converges

weakly to zero. Let h : Aÿ!C0��� be the mapping de®ned by h�a� � �< fn; a >�n2N.
Then h is a weakly compact homomorphism whose range is in®nite dimensional.
Conversely, if h : Aÿ!C0��� is a weakly compact homomorphism with in®nite
dimensional range, then, as one can easily see it, h is necessarily of the above form
for some in®nite sequence �fn�n2N in � that converges weakly to zero. It follows that
0 2 �

sw
.

Concerning the problems tackled in this paper, a certain number of questions
remain to be clari®ed. Below we have enumerated them as remarks and questions.

4. Remarks and questions. Let A be as in Section 3.

1) Corollary 3.2. shows that if the algebra A is Arens regular then its spectrum �
is relatively weakly compact in A�. We do not know if the converse of this result is
true.

2) If � is not closed in �A�;weak�, then �
w � � [ f0g [16; p. 361]. We do not

know if, even for A � A�G�, in this case, we have 0 2 �
sw
.

3) If A�� � A��? then A is Arens regular. We do not know if the converse
result is true. We do not know either, when A is separable, whether the quotient
space A��=�?, which is a commutative semisimple Banach algebra, is separable. In
which case the functional zero would be in �

sw
.

4) Assume that � is closed in �A�;weak�. Is then Z � A? At this point we
remark that � may be closed in �A�;weak� even if A has no bounded approximate
identity, see example 2.9 in [16].

5) It is still not known if there exits an in®nite group G for which A�G� is Arens
regular.
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