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Abstract. The amplitude modulation of a finite amplitude drift wave by zonal flows
in a non-uniform magnetoplasma is considered. The evolution of a nonlinearly
coupled drift wave-zonal flow (DW-ZF) system is governed by a nonlinear equation
for the slowly varying envelope of the drift waves, which drives (via the Reynolds
stress of the drift wave envelope) the second equation for zonal flows. The nonlinear
dispersion relation for the modulational instability of a drift wave pump is derived
and analyzed. In a special case, the DW-ZF system of equations reduces to the
cubic nonlinear Schrödinger equation, which admits localized solutions in the form
of DW envelope solitons, accompanied by a shock-like ZF structure. Numerical
solutions of the nonlinearly coupled DW-ZF systems reveal that an arbitrary spatial
distribution of the DW rapidly decays into an array of localized drift wave structures,
propagating with different speeds, that are robust and, in many respect, behave as
solitons. The corresponding ZF evolves into the sequence of shocks that produces a
strong shearing, i.e. multiple plasma flows in alternating directions.

It is widely recognized that large-scale sheared flows [1–3] (also referred to as
convective cells (CCs) or zonal flows (ZFs)) play a very important role in regulating
the cross-field turbulent transport in magnetically confined fusion plasmas. Typically,
the ZF is a poloidally and toroidally symmetric structure with radial variation, whose
potential fluctuation (in comparison with Te/e, where Te is the electron temperature
and e is the magnitude of the electron charge) is much bigger than the relative
zonal flow density perturbation (in comparison with the equilibrium plasma number
density n0).

In magnetically confined fusion plasmas, there exist free energy reservoirs in the
form of density, temperature and magnetic field inhomogeneities, which are re-
sponsible for exciting the low-frequency (in comparison with the ion gyrofrequency),
short-scale (of the order of the ion gyroradius or the ion sound gyroradius) DW-
like fluctuations [4–6]. The linearly growing drift modes interact among themselves
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and attain large amplitudes in due course of time. The Reynolds stress of finite
amplitude DWs, in turn, nonlinearly generates convective cells (CCs) and sheared
flows/ZFs [7–13], via decay and modulational instabilities [8], respectively. Guo
et al. [16] used the governing equations of [8] for the DW-CC turbulence system
to investigate the radial spreading of the DW-ZF turbulence via soliton formation.
There are recent review articles presenting the status of theoretical and simulation
works [13], as well as experimental observations [14,15] concerning the dynamics of
DW-ZF turbulence system.

In this paper, we study the amplitude modulation of finite amplitude drift wave
packets by ZFs. We consider a non-uniform magnetoplasma in an external magnetic
field ẑB0, where ẑ is the unit vector along the z−axis in a Cartesian coordinate
system and B0 is the strength of the homogeneous magnetic field. The density
gradient ∂n0/∂x is along the x−axis. The dynamics of finite amplitude low-frequency
(compared with the ion gyrofrequency ωci = eB0/mic, where mi is the ion mass and c
is the speed of light in vacuum) electrostatic DWs in the presence of ZFs is governed
by [17]
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where φ is the DW potential, V∗ =Csρs/Ln, Cs = (kBTe/mi)
1/2 is the ion sound speed,

kB is the Boltzmann constant, Te is the electron temperature, ρs =Cs/ωci is the ion-
sound gyroradius, Ln = (∂lnn0/∂x)

−1, νin is the ion-neutral collision frequency, νii is
the ion–ion collision frequency and ρi is the ion gyroradius.

The evolution of the ZF potential ψ in the presence of the Reynolds stress of the
DWs is governed by(
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where σ=Ti/Te in the ratio between the ion to electron temperatures. In the
derivation of (1) and (2) we have neglected the small corrections due to the finite
ion Larmor radius.

We now normalize the time and space variables by ω−1
ci and ρs, as well as φ and

ψ by kBTe. In the normalized units, we can rewrite (1) and (2), respectively, as(
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where, for convenience, we have neglected the contributions of ion-neutral and
ion–ion collisions.

We now consider the amplitude modulation of the DW packet by ZFs. Accord-
ingly, we introduce the two time and space scale analyses by supposing that the
DW amplitude varies on the spatio-temporal scales (εx, ε2t) of ZFs, where ε� 1
is a small ‘bookkeeping parameter’. We use the envelope ansatz ψ=ψ(εx, ε2t) and
φ(x, y, t) = εϕ(εx, ε2t) exp(−i εωt+ ikxx+ ikyy), where εω is the normalized frequency
of the linear drift wave, εω= kyρs/Ln(1 + k2

⊥), k2
⊥ = k2

x + k2
y , and we assumed a
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weak inhomogeneity ρs/Ln = O(ε). Then, substituting in (3) ∂/∂t → −iεω + ε2∂/∂t,
∂/∂x → ikx + ε∂/∂x and ∂/∂y → iky , and with the accuracy to the leading order
terms in the small parameter ε, (3) and (4) take the following forms, respectively[(
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x, where Vg and P are identified as the x-components
of the group velocity of the DW packet and the coefficient of the DW group
dispersion, (5) and (6) take the simple form[

i

(
∂

∂t
+ Vg

∂

∂x

)
− P

∂2

∂x2
− ky

∂ψ

∂x

]
ϕ = 0, (7)

and
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Equations (7) and (8) can be used to investigate the modulational instability of a
constant amplitude drift wave pump and the long-term evolution of the amplitude-
modulated DW packet and the excitation of the ZF structures by localized DW
perturbations.

In the particular case when the zonal flow is a stationary function, traveling
with a constant speed, (7) and (8) reduce to the standard nonlinear Schrödinger
(NLS) equation, with a cubic nonlinearity, for the modulated DW envelope. In the
reference frame moving with the group velocity, taking ∂ψ/∂t= −(U + Vg) ∂ψ/∂x
and (∂/∂t + Vg ∂/∂x)ϕ= ∂ϕ/∂t′, where U is the phase speed in the moving frame,
we have (

−i ∂
∂t′

+ P
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)
ϕ = 0, (9)

where the coefficient of the nonlinear term is a function of the velocity of propagation
U, and it is given by Q= −2kxk

2
y/(U + Vg). It is worth noting that the character

of nonlinearity in (9) can be either focusing (Q/P > 0) or defocusing (Q/P < 0),
depending on the signs and the magnitudes of the DW wave numbers and the phase
velocity of the ZF, viz.
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Equation (9) describes the parametric modulational instability of the drift waves,
when the ZF is sought in the form ψ= exp [iκ(x−Ut)] with a complex phase
velocity U, as well as coherent nonlinear solutions in the form of solitary waves.

In the parametric regime, we seek the DW envelope as the sum of a constant DW
pump and two DW sidebands, ϕ=ϕ0 +ϕ+ exp[−i(Ωt− κx)] +ϕ− exp[i(Ωt− κx)] +
C.C., with |ϕ+| ∼ |ϕ−| � |ϕ0|. After the substitution into (9), we have

(−Ω + Pκ2)ϕ+ + Q(ϕ∗
0ϕ+ + ϕ0ϕ

∗
−)ϕ0 = 0, (11)
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− + Q(ϕ∗
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Then, from the requirement that (11) and (12) have nontrivial solutions ϕ−, ϕ+ � 0,
we obtain the following dispersion relation(

−Ω + Pκ2 + Q |ϕ0|2
)(
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)
= Q2 |ϕ0|4 . (13)

Making use of Ω/κ=U, (13) simplifies to
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which is a cubic algebraic equation for the frequency Ω. It is readily solved as
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Obviously, the frequency Ω may be complex. The threshold for the DW-ZF
modulational instability, i.e. the DW amplitude |ϕ0T | for which there is a double
root of dispersion relation (14), is given by
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The solitary wave solution is easily constructed using the standard methods, e.g.
by the ansatz ϕ=Φ(x − Ut) exp[i Θ(x − Wt)], where Φ and Θ are purely real
functions of their arguments, and U is the phase velocity of the ZF introduced
earlier. In the simple case when Θ is a linear function of its argument, we can use a
textbook expression for the NLS soliton, yielding

ϕ =

√
2P

Q
K sech [K (x−Ut)] × exp
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[
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4
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, (17)

and

ψ = −4P kxky
QKU

tanh [K (x−Ut)] . (18)

Here K is an arbitrary parameter, and the coupling coefficient Q depends on the
speed of the propagation of the wave envelope U, in contrast to the standard NLS
soliton, for which it is a given constant. The solution presented in [16] is the special
case of our (17) and (18), obtained for U= 0.

It is worth noting that our basic equations (7) and (8), describing the coupled DW-
ZF system, are not fully integrable and that the solitons, (17), are only particular
solutions. In the general case, they might not be stable structures that emerge from
arbitrary initial conditions. To check their stability, we studied the evolution of a
localized DW packet in an initially quiescent plasma that did not feature any zonal
flows. The system of (7) and (8) was solved numerically, assuming the absence of
zonal flows at t= 0, ψ(x, t= 0) = 0, and using the initial distribution of the drift waves
in the form of a Gaussian, ϕ(x, t= 0) =Φ exp(−x2/2L2). Such initial conditions are
well localized in space, but with a shape that is sufficiently different from the solitary
structure (17) and (18), so that they can be regarded as ‘near-arbitrary’. We used the

https://doi.org/10.1017/S0022377810000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377810000061


Evolution of nonlinearly coupled drift wave-zonal flow system 669

Figure 1. The evolution of a narrow drift wave packet (solid line) and the corresponding
structure of the zonal flow (dashed line) in the case of a narrow initial DW distribution. The
parameters in (7) and (8) are Vg = −0.1, P = 1, ky = 1, kx = 0.5, the initial condition is given
by ψ(x, t= 0) = 0 and ϕ(x, t= 0) =Φ exp(−x2/2L2), with L= 1, Φ= 1.2 and the size of the
computational box being l= 1000.

Figure 2. The evolution of the drift wave envelope (solid line) and the zonal flow (dashed line)
in the case of an initial DW distribution with a medium width. All parameters are the same
as in Fig. 1, except the initial DW distribution, whose parameters are L= 10 and Φ= 0.5. The
size of the computational box is l= 800.

Figure 3. The evolution of the drift wave envelope (solid line) and the zonal flow (dashed
line) in the case of a broad initial DW distribution. The parameters are the same as in Fig.
1, except L= 30 and Φ= 0.5. The size of the computational box is l= 1650.

numerical method of lines, with a spatial discretization in the variable x, with 5–10
thousand points. A periodic boundary condition was used with a sufficiently large
computational box, and the calculations were terminated before any appreciable
reflection from the boundary was detected. Three different initial distributions of
the drift wave were studied, labeled as the narrow, the medium and the wide, and
the results are displayed in Figs. 1–3.

For all initial distributions studied in this paper, the large amplitude packet of
drift waves was split into two packets propagating in opposite directions. The one
propagating opposite to the group velocity was subjected to the linear dispersion,
and gradually spread to a width much broader than that of the initial packet.
Conversely, the packet propagating in the direction of the group velocity did not
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undergo dispersion. For a narrow initial DW distribution, only one such peak was
created that propagated for a long time with a constant speed and with very little
change (see Fig. 1). For the medium and the wide initial packets, the portion of
DW moving in the direction of the group velocity was almost immediately divided
into several peaks, similar in shape to the sole peak in Fig. 1. The number of such
peaks grew with the initial width of the packet. The peaks propagated with different
speeds. In the case of the wide initial DW distribution, a number of overtaking
collisions amongst them occurred, which they survived seemingly unchanged. In
other words, these peaks demonstrated the features of true solitons, apart from
the periodic oscillations of their amplitudes that were observed in some cases. The
zonal flow was generated in a short time, t ∼ 1. Initially, the ZF potential was also
peaked, but it was later stretched by the moving DW wave packets. In the direction
opposite to the group velocity, the slope of the ZF potential gradually decreased,
together with the spreading of the corresponding DW packet due to dispersion. In
the direction of the group velocity, the ZF potential evolved into a shock-like shape
in the case of a single DW soliton, while in the presence of several DW solitons,
it developed into a staircase-like sequence of shocks. Such ZF potential produces
the usual pattern of strong shearing observed at the tokamak edge, i.e. the multiple
poloidal plasma flows, having opposite directions.

In conclusion, we have studied the evolution of a nonlinearly coupled DW-ZF
system that is governed by a nonlinear equation for the slowly varying envelope of
the drift waves, which also drives, by the Reynolds stress, the second equation for
zonal flows. The nonlinear dispersion relation for the modulational instability of a
constant amplitude drift wave pump has been derived and solved for the growth
rate and threshold. Furthermore, it has been shown that the full nonlinear system of
equations reduces to a cubic NLS equation, which possesses localized solutions in
the form of DW envelope solitons. Numerical studies have revealed that an arbitrary
spatial distribution of the DW rapidly decays into the array of coherent structures,
propagating with different speeds, that are robust and behave as true solitons, while
the corresponding ZF evolved into the sequence of shocks, yielding multiple plasma
flows in alternating directions.
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