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Abstract. We present a statistical study of the dependencies of the shapes and sizes of the
photospheric convective cells on the magnetic field properties. This analysis is based on a 2.5
hour long SST observations of active region NOAA 11768. We have blue continuum images taken
with a cadence of 5.6 sec that are used for segmentation of individual granules and 270 maps of
spectropolarimetric CRISP data allowing us to determine the properties of the magnetic field
along with the line-of-sight velocities. The sizes and shapes of the granular cells are dependent
on the the magnetic field strength, where the granules tend to be smaller in regions with stronger
magnetic field. In the presence of highly inclined magnetic fields, the eccentricity of granules is
high and we do not observe symmetric granules in these regions. The mean up-flow velocities in
granules as well as the granules intensities decrease with increasing magnetic field strength.
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1. Introduction
The majority of the solar surface is covered by granulation, convective cells that are

heating the photosphere. The properties of granules in the quiet Sun regions are well
described. Numerous studies show that there are no characteristic sizes of granular cells,
but the mean size amounts to values between 1” and 2” (e.g., Wohl & Nordlund 1985;
Roudier & Muller 1986; Hirzberger et al. 1997; Danilovic et al. 2008). Abramenko et al.
(2012) found a distinct population of small convective cells with a dominant spatial scale
below 600 km. These small granules were also found in high resolution solar radiation
hydrodynamics simulations by Lemmerer et al. (2014).

Granulation is also present in active regions. There are a number of case studies show-
ing the properties of convective cells in the presence of magnetic field. In the extreme
case of sunspot umbra, the magneto-convection results into the umbral dots (see e.g.,
Schussler & Vogler 2006; Ortiz et al. 2010). In the sunspot penumbra, where the field is
weaker and more horizontal, the magneto-convective cells are highly elongated and form
penumbral filaments (see e.g., Rempel 2011; Tiwari et al. 2013). Broad sunspot light
bridges show a granular pattern where the properties of convective cells are comparable
to the quiet Sun granules (Lagg et al. 2014), but they are smaller and have longer lifetimes
(Hirzberger et al. 2002). Very elongated granules are typically observed in flux emergence
regions (Schlichenmaier et al. 2010; Centeno et al. 2016) and granules in plage regions
are typically smaller and exhibit lower velocities than field-free granulation (Narayan &
Scharmer 2006).
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Figure 1. Blue continuum image of the observed region of NOAA 11768 on June 13, 2013 at
10:30 UT. The arrows point to the solar north and solar disc centre.

To our knowledge, the influence of the magnetic field on the properties of the solar
granulation has not yet been approached statistically. We apply this approach to the
SST data introduced in Sect. 2. The first results are described in Sect. 3 and discussed
in Sect. 4.

2. Observations and data analysis
The evolution of active region NOAA 11768 was observed on June 13, 2013 using the

Swedish Solar Telescope (Scharmer et al. 2003). In Fig. 1, we show the blue continuum
image of the analysed field of view (FOV). It contains the leading polarity sunspot in
active region NOAA 11768 and part of the following polarity. This active region appeared
on the solar disc on June 11, 2013 and at the time of observations, the intensive flux
emergence was still observed.

Blue continuum images reconstructed with the MOMFBD technique (van Noort et al.
2005) have a cadence of 5.6 s, spatial sampling of 0.034“, and were recorded between
8:21 UT and 10:50 UT. The CRISP observations (Scharmer et al. 2008) of the Stokes
profiles of the Fe i 525 nm line were taken with a cadence of 31 s, spatial sampling of
0.055”, and were recorded between 8:36 UT and 10:54 UT.

The imaging and CRISP data were co-aligned. The blue continuum images are used for
the segmentation of granules using the algorithm described in Lemmerer et al. (2014).
The spectropolarimetric CRISP data are used to derive the magnetic field strength,
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Figure 2. Maps of magnetic field strength (upper left), magnetic field inclination (upper right),
segmented intensity image (lower left), and LOS velocity (lower right) co-spatial and co-temporal
with Fig. 1. Regions with B < 200 G are masked out in γ map.

inclination, and azimuth along with the LOS velocity. We used the Milne-Eddington
inversion code VFISV (Borrero et al. 2011). The 180◦ ambiguity was solved using the
code AMBIG (Leka et al. 2009) and the magnetic field inclination and azimuth were
transformed to the local reference frame using the AZAM routines (Lites et al. 1995).

3. Results
In Fig. 2, we show an example of the resulting maps of physical properties in the

studied region along with the results of the segmentation algorithm. In the observed FOV,
we have all kinds of granulation, from convection in non-magnetised regions (upper-left
and lower-right regions of the FOV), through flux emergence regions (around x and y
coordinates [15”, 30”] and [25”, 15”]), granulation in the close vicinity of pores, granular
light bridges, penumbral filaments and umbral dots.

Using the segmentation results, we computed for every identified granule in every
CRISP scan its area and eccentricity (fitting an ellipse to the granule), mean intensity,
mean velocity, mean magnetic field strength and inclination. Currently, we do not take
into account the temporal evolution of granules and do not track them from one scan to
another.

In Fig. 3, we show scatter plots illustrating the influence of the magnetic field on
the properties of convective cells. The upper left plot shows that the maximum size of
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Figure 3. Scatter plots showing the dependences of the granules size on the magnetic field
strength (upper left), the granules intensities on the Bver (upper right), the granules eccentricities
on the Bhor (lower left), and the LOS velocities in the granules on the magnetic field strength
(lower right).

convective cells is significantly dependent on the magnetic field strength. The largest
granules are observed in non-magnetic regions, whereas the smallest ones correspond to
the umbral dots in the sunspot. The colour-coded magnetic field inclination indicates
that the strongest fields in the FOV are close to vertical. Please note that due to the
simplistic inversion scheme, we do obtain some magnetic field strength in all regions of
the FOV and that the weak fields are close to horizontal.

The upper right plot in Fig. 3 shows the dependence of the mean granular intensity
on the vertical component of the magnetic field. The higher the Bver is, the lower is the
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mean intensity of the granule. In this scatter plot, we also see the population of small
non-magnetised granules that have lower intensities than regular granules (Abramenko
et al. 2012; Lemmerer et al. 2014).

The lower left plot in Fig. 3 shows that the eccentricity of observed granules depends
on the horizontal component of the magnetic field. In regions with weak Bhor, we ob-
serve granules of all eccentricities. The higher Bhor is, the less frequent are the more
symmetric granules. As the granules are difficult to fit by ellipses, we need to investigate
other approaches to access the influence of the Bhor on the elongation of the convective
cells.

The lower right plot in Fig. 3 shows the influence of the magnetic field strength on the
mean LOS velocity in the convective cells. As expected, the higher B is, the lower is vLOS.
There is a distinct population of mainly small granules with positive vLOS, i.e., showing
on average a plasma down-flow. Such down-flows in small granules were observed by Yu
et al. (2011) and they are found also in simulations (Gadun et al. 2000; Lemmerer et al.
2014).

4. Discussion and conclusions
We investigated statistically the properties of convective cells in the presence of a mag-

netic field. The analysed FOV of the SST observations covered all kinds of granulation,
from convection in the quiet Sun to the sunspot magneto-convection. The first results
confirm the previous case studies of convection in the presence of a magnetic field.

The convective cells are getting smaller with increasing field strength. The intensity of
granules is decreasing with increasing vertical component of the magnetic field. However,
there is a population of small non-magnetised granules that have comparable intensi-
ties to those in regions with strong Bver . In the presence of strong horizontal fields,
we more likely observe asymmetric granules compared to non-magnetised regions. This
is in particular related to the flux emergence regions, where highly elongated granules
connect the opposite polarity patches. The mean up-flow velocity in the granules de-
creases with increasing magnetic field strength. There is also a distinct population of
predominantly smaller granules exhibiting down-flows that need to be investigated in
detail.

The next crucial step is to take into account the temporal evolution of individual gran-
ules, i.e., apply a tracking algorithm to the segmented granules. This step will allow us
not only to investigate the dependence of the lifetime of convective cells on the magnetic
field strength, but also elaborate the currently presented results by taking into account
the evolution of the magnetic field properties and LOS velocities during the lifetime of
the individual convective cells. We also need to filter the segmentation results for falsely
identified granules, e.g., magnetic bright points and penumbral bright grains.
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