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ABSTRACT. The problem of ice flow over three
dimensional basal irregularities is studied by considering the 
steady motion of a fluid with a linear constitutive equation 
over sine-shaped basal undulations. The undisturbed flow is 
simple shear flow with constant depth. Using the ratio of 
the amplitude of the basal undulations to the ice thickness 
as perturbation parameter, equations to the first order for 
the velocity and pressure perturbations are set up and 
solved. 

The study shows that when the widths of the basal 
undulations are larger than 2-3 times their lengths, the 
finite width of the undulations has only a minor influence 
on the flow, which to a good approximation may be 
considered two-dimensional. However, as the ratio between 
the longitudinal and the transverse wavelength L/ W 
increases, the three-dimensional flow effects becomes sub
stantial. If, for example, the ratio of L to W exceeds 3, 
surface amplitudes are reduced by more than one order of 
magnitude as compared to the two-dimensional case. The 
L / W ratio also influences the depth variation of the ampli
tudes of internal layers and the depth vanatlOn of 
perturbation velocities and strain-rates. With increasing L / W 
ratio, the changes of these quantities are concentrated in a 
near-bottom layer of decreasing thickness. Furthermore, it is 
shown, that the azimuth of the velocity vector may change 
by up to 100 between the surface and the base of the ice 
sheet, and that significant transverse flow may occur at 
depth without manifesting itself at the surface to any 
significant degree. 

INTRODUCTION 

A theory for the velocity and stress fields associated 
with ice flow over basal irregularities was first presented by 
Budd (1970), who based his analysis on work by Yosida 
(1964). Later, the analysis was significantly improved (Hutter 
and others, 1981) by systematic application of perturbation 
theory. Using the ratio of the amplitude of the basal 
undulations to the ice thickness as perturbation parameter, a 
hierarchy of boundary-value problems of increasing order 
(zeroth, first, second, etc.) was set up. Furthermore, Hutter 
and others (1981) showed that the non-linear, temperature
dependent flow law of ice can be considered within the 
framework of a systematic perturbation theory. The 
approach of Budd (1970), as well as that of Hutter and 
others (1981), deals with plane (two-dimensional) flow over 
cylindrical, sine-shaped basal irregularities. The "undisturbed" 
flow is simple shear, i.e. flow with uniform ice thickness, 
vanishing velocity perpendicular to the mean bottom, and 
with a non-changing longitudinal velocity profile. 

When applying the theory to real ice masses, the 
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above-mentioned idealizations, introduced to ensure strictly 
correct mathematics, will have to be abandoned and replaced 
by less strict assumptions in closer agreement with the 
conditions in real ice sheets and glaciers. This was done by 
Reeh and others (1985) and Dahl-Jensen (1985) in their 
modelling of the ice flow over the irregular bottom along 
the Dye 3 flow line in south Greenland. The ice flow was 
divided into a "basic" flow, accounting for the flow over a 
smoothed base, and a "perturbation" flow accounting for the 
influence of the basal irregularities. A fairly realistic "basic" 
flow solution was found , and local velocity and stress values 
from this solution were applied in the formulation of the 
perturbation problem. The irregular shape of the basal 
perturbations was considered by resolving the irregularities 
in their Fourier components, calculating the velocity and 
stress solution for each of these, and adding the solutions to 
the "basic" one. 

However, in the Dye 3 flow-line study, two problems 
concerning the modelling of ice flow over basal 
irregularities were not considered: (1) the influence on the 
flow pattern of the limited width of the basal irregularities , 
and (2), the inability of a first-order theory to model 
properly the ice flow close to the bottom, if the amplitudes 
of the basal irregularities are larger than a few per cent of 
the ice thickness. 

Whereas the latter problem will be dealt with 
elsewhere, this paper is concerned with the former problem, 
presenting a three-dimensional perturbation flow theory. 
Being a first attempt to dig into this subject, the level of 
ambition is limited. The idea is just to gain some insight 
into how the results of the established two-dimensional 
perturbation theory are modified by considering the finite 
width of the basal irregularities. 

Therefore, the simplest possible model will be 
considered, i.e. a first-order perturbation flow model with 
linear ice rheology. The ice will be assumed to be stuck to 
the base (no basal sliding) corresponding to the conditions 
at the base of a glacier frozen to the bed. 

Because of the application of a linear constitutive 
equation for ice instead of the actual non-linear 
temperature-dependent (and probably non-isotropic) ice-flow 
law, the results of this study cannot be applied to explain 
quantitatively observed behaviour of glaciers and ice sheets. 
At the qualititative level, however, the results are believed 
to be useful in explaining actual ice-sheet flow past basal 
obstacles as, for example, discussed by Robin and Millar 
(1982) and Whillans and others (1984). 

FORMULATION OF THE THREE-DIMENSIONAL PER
TURBA TION PROBLEM 

Coordinate system and zeroth-order flow 
Consider an ice slab of constant thickness H moving 

down an inclined bed of constant slope ex (Fig. I). A 
Cartesian coordinate system is introduced with the x-y 
plane coinciding with the top surface of the slab, the x
and y-axes being parallel to and perpendicular to the slope, 
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Fig. 1. Box-shaped cut of model ice sheet . showing 
coordinate system. upper and lower boundary surfaces. and 
main ice-flow direction. 

respectively. The z-axis is normal to the top and bottom 
surfaces of the slab. 

The ·undisturbed· motion is assumed to be simple 
gravity shear flow in the direction of the slope ex. The 
corresponding stress and velocity solutions (the zeroth-order 
solutions) are 

000 
Ox - ay - Oz - pg cos a z. (I) 

o 0 0 
T xz - -pg sin ex z, T xy - T yz 0, (2) 

o 2 
u - --A(pg sin exfHn+l(1 - (-z/H)n+l), (3) 

n + I 

(4) 

where ox' ay, and Oz are normal stress components, T xy' 
T xz' and T yz are shear-stress components, and u, v, and w 
are velocity components in the X-, y-, and z-directions, 
respectively. The numbers above the symbols indicate the 
order of , the solution. 

p is ice density, g is acceleration due to gravity, nand 
A are ice-flow law parameters corresponding to a Glen-type 
ice-flow law; see for example Paterson (1981, p. 26-33). In 
the linear viscous approximation n = I, and A = 1/(27), 
where 7) is viscosity. 

Now, an harmonic perturbation of the bottom surface 
of the slab is introduced, writing 

B(x.y) '" -H + (b 1 cos W X + b2 sin W x) cos IjI y. (5) 

The amplitude b = (b1
2 + b2

2)1/2 is supposed to be small 
compared with the ice thickness H, and E = b/ H « I is 
used as perturbation parameter; see Hutter and others 
(l981). The wavelengths in the x- and y-directions are L = 

2T!/w and W = 2T!/tP, respectively. 
The basal undulations will perturbate the zeroth-order 

velocity field, and will also generate undulations of the top 
surface. Experience from two-dimensional perturbation flow 
theory indicates that a phase shift between surface and 
basal undulations will occur in the flow direction. However, 
for reasons of symmetry, no such phase shift can be 
expected in the transverse direction. 

Accordingly, the equation of the perturbated upper 
surface will be of the form 
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S(x.y) = h cos W x cos IjI y (6) 

where h is the amplitude of the surface undulations. 
It appears that the origin of the x-y-z coordinate 

system is positioned in the mean upper surface just below 
the top of a surface undulation. 

One important quality of Equations (5) and (6) should 
be noted. Not only do these expressions ensure an overall 
mean ice thickness of the magnitude H . Also, the mean 
thickness along any line parallel to the direction of motion 
is equal to H. If this were not so, the zeroth-order flow 
could not be parallel flow as presumed above; respective 
zones of converging and diverging zeroth-order flow would 
then develop along the lines where the base was generally 
depressed or elevated in proportion to the mean basal plane; 
see Reeh (1982). 

Field equations 
Generally, a steady state, slow viscous flow problem in 

two dimensions can be solved by introducing the stress and/ 
or stream functions. 

Solutions thus obtained will automatically satisfy all 
field equations, Le. (i) the equation of continuity, (ii) the 
equation of stress equilibrium, and (iii) the constitutive 
equation. 

This technique was applied in the previously mentioned 
studies of two-dimensional ice flow over basal perturbations. 

A similar facility does not apply to the corresponding 
three-dimensional flow problem. However, some reduction of 
the field equations is also possible in this case. The follow
ing system of differential equations in the velocity 
components u, v, and w, and the pressure p = -1/3(ax + 
ay + az) appears to be appropriate; see for example Lamb 
(I932, p. 577). 

au Bv Bw 
(7) -- +-+ -- 0, 

ax By az 

Bp 
7)'72u 

Bx 
0, (8) 

Bp 
7)'72 V 

By 
0, (9) 

Bp 
7)'72w 

Bz 
0. (10) 

In these equations, 

represents the Laplace operator. Gravity terms have already 
been accounted for by the zeroth-order solution, Equations 
(1)-(4), and therefore have been omitted from Equations 
(7)-(10), which apply to the perturbations. 

Boundary conditions 
The physical conditions at the boundary surfaces of the 

ice mass are that the top surface is stress-free (taking 
atmospheric pressure as zero reference) and material (assum
ing zero mass balance), and that the ice is stuck to. the 
bottom surface (assuming no sliding, melting, or refreezmg). 
In mathematical terms these conditions may be written 

At the top surface: 
BS BS 

Txy -- + Ox - T xz 
ay Bx 

0, 

0, 

0. 

as as 
u--+v w 

ax By 
0. 
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At the base: 

u = 0, 
v = 0, 
w = 0. 

These exact boundary conditions which are valid along 
the undulating boundary surfaces of the ice mass, will be 
replaced by approximate ones, referring to the mean top 
and bottom surface planes, by application of Taylor series 
expansions, as described by Hutter and others (1981) for the 
two-dimensional problem. This approach leads to a set of 
boundary conditions for each of the zeroth-, first-, second-, 
... , order problems. The zeroth-order conditions are satisfied 
by the solution, given by Equations (1)-(4). The first-order 
conditions read, after introducing dimension less variables 
dividing all lengths by the ice thickness H, all velocities b; 

o I 
the zeroth-order surface velocity Us = - pg sin a H2 and 

217 ' 

all stresses by pgH: 

At the top surface: 

1. 
Txz S sin a, 

1. 
Tyz 0, 

1 
'3z = -S cos a, 

1 dS 
W 

dX' 

At the base: 
0 

1 du 
U B, 

dz 

1 
V 0, 

I 
W = 0. 

In these equations a tilde above a symbol denotes a dimen
sionless quantity. 

For n = I and A = 1/(217), it can be deduced from 
Equation (3) that at the base (z = -I), we have 

o 
du 

dz 

I 
-pg sinaH. 
17 

Using this expression, and transforming stress 
components to strain-rates and pressure by means of the 
constitutive equation for a linear viscous material, the 
first-order boundary conditions in dimensionless form, will 
read: 

At the top sur face (z = 0): 

sin a 
Oz 

I 
Bu -
BZ- = h(2 + Gj2)cOS W X cos I/J y, 

I 
Dv 

Bz 

I 
P 

I 
IV 

-hw~ sin w x sin I/J y, 

-h cos a cos W x cos I/J y , 

-Qh sin w x cos I/J y . 

(11 ) 

(12) 

(13) 

(14) 

Reeh: lee flow over an undulating base 

At the base (z -1): 

1 -2(bl cos W X + b2 sin w x) cos I/J y, (15) u 

1. 0, (16) v 

1 
(17) IV 0. 

SOLUTION OF THE FIRST -ORDER PERTURB A nON 
PROBLEM 

Looking for harmonic solutions in x and y, the dimen-

I 1 I 
sionless velocity components u, V, and W, and the dimen-

1 . sionless pressure pare wntten 

I 
u (U1(z) sin w x + U2(z) cos w x) cos I/J y, (18) 

1 v (Vl(Z) cos w x + V 2(Z) sin w x) sin I/J y, (19) 

1 
IV (W

1
(Z) cos w x + W2(Z) sin w x) cos IjJ y, (20) 

I 
P = (Pl(Z) cos w x + P2 (z) sin w x) cos IjJ y. (21) 

By substituting these expressions into Equations (7)-{ I 0), we 
obtain the following two systems of ordinary differential 
equations for the z-dependent terms: 

2Gi 2Q 
-'\;2v +V "+--P =0' -'O)2U +U "---P =0' (8a, b) 

I I sin ai' 2 2 sin a 2 ' 

2 2 
-1i2W + W "---P , = 0; -'O)2W + W "---P . 

I 1 sin a 1 2 2 sin a 2 = O. 

(lOa, b) 

In these equations, a prime denotes differentiation with 
respect to z, (one prime z first derivative, two primes = 
second derivative, and so on). Ii denotes the geometric mean 
of Q and ~, i.e. Ii = (w2 + ~2)l/2. 

By differentiations and substitutions, it is possible from 
Equations (7a)-{ lOa) and (7b)-{1 Ob) to derive two identical 
fourth-order differential equations for the vertical velocity 
functions W land W 2: 

(22a, b) 

The solution of Equation (22) is 

where Cl ' C2, CS' and C. are arbitrary constants, to be 
determined by the boundary conditions. 

Substituting Equations (IS)-{21) into the boundary con
ditions in Equations (11 )-(17), we obtain a set of relations 
between the U, V, W, and P functions and their derivatives 
at the boundaries z = ° (the surface) and z = -I (the 
base): 
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U 1' (0) 0; (lla, b) 

VI' (0) 0; (l2a, b) 

W1(0) = 0; W 2(0) = -{))h; (14a, b) 

U1(-I) = -2b2; U2(-I) = -2b
1

; (l5a, b) 

V 1(-I) = 0; V2(-I) = 0; (16a, b) 

W1(-I) = 0; W2(-I) = O. (l7a, b) 

By means of Equations (7a)-(IOa) and (7b)-(IOb), these 
boundary conditions can be expressed in terms of the 
vertical velocity functions W1 and W2 , and their derivatives. 
The following five sets of conditions are obtained: 

W2(0) = Glh; (24a, b) 

W' l (O) = 0; w· 2(0) = Gl};(2 + V2); (25a, b) 

I -
3W ' (0) - - W -(0) = -2cot a h' 

1 il2 1 ' 

I 
3W ' (0) - - W -(0) = O· 2 v2 2 ' 

(26a, b) 

W2(-I) = 0; (27a, b) 

W2' (-I) = -2G:ib1. (2Sa, b) 

These conditions are sufficient to determine the two sets of 
constants (C\ ' C1

2, C1
3, Cl,) an? (c2

1, C2
2, C2

3, C2
,) .and 

the two ratios h/ b
l 

and h/b2• This completes the determma
tion of the vertical perturbation velocity field . The results 
are: 

I - tanh(~) I - [(I +~2)eV -Il Cl = -h cot(a) --- C2 = -Glh 3 2 \} ' 3 2 v cosh(iI) , 

Cl Cl. C2, = C 2
3 - hW I + v2 

4 3' V 

Cl 
1-

C2 1-
- h cot(a)/ v; --hw' 2 2 2 2 ' 

Cl 
I - C1

2; C2 
I 

C2 . 
2' 

2Gl~ cosh(v) 2 cosh(v) 
h/b

2 
= _ _ _tan(a); h/b

1 
= (29a, b) 

cosh(v)sinh(v) - v cosh2(v) + I + v2 

Combining Equations (29a) and (29b), the following 
expressions are obtained for the transfer function (the ratio 
of the surface amplitude to the base amplitude) and for the 
phase shift between surface and base undulations: 

h 2~2 cos h( v) 

b {(cosh(v)sinh(v) - v)2 (~cot a)2 + v 4 (cosh2 (v ) + I + V2) 2}1/2 

(30) 

and 
b (cosh(v) sinh(v) - v)~ cot a 

tan .p = .::l.- = ----------
bl (COSh2(V) + I + V2)V2 

(31 ) 

In Equation (30), the base amplitude b is equal to (b2
1 + 

b2
2

)1 / 2. 

ISO 

What now remains to be done is to express the hori
zontal velocity functions UI' U2, VI ' V2 , and the pressure 
functions P I and P 2 in terms of the vertical velocity 
functions W I and W 2' After some manipulation, we obtain 

Gl , - ~] 2 cosh( vz) --Wl - 2b2 ; 

v2 v cosh(v) 

(32a, b) 

~ - i/iGl cosh(vz) 
VI = --W' + 2b -----'-~ 

v2 I 2 v2 cosh(v) 

V
2

=-...!...W
2

' -2 r\ +h e-v]~ cosh(vz) +2~~eVZ. 
v 2 r v v2 cosh(v) v2 V ' 

- tanh(~) 
PI = hcos a --- cosh(vz); 

V 

Strain- rates can be found by differentiation of the 
velocities. We find 

1 au 
ax - (Ulz)Glcos w x - U2(z)Glsin w x )cos tjJ y; (33) 

I aw 
az (W I ' (z)cos W X + W2' (z)sin w x)cos tjJ y; 

1 1 

~[au+CW) 2 ay ax = -l-([ipUI(z) + wVp)]sin w x + 

(35) 

+ [V2' (z ) - ipWp )]sin w x )sin tjJ y. 

Then , stress deviators can be obtained by means of the 
constitutive equations, which in dimensionless form read 

1 
'!' 

xy 

I 
CWI 

sin a-, oz' ay 

I mv 
sin a az ' 

sin a ~ [a[; + (]v) t xz = sin a ~ [at + a~ ) 
2aji Bx ' 2 Bz Bx ' 

I 

I [CW sin a- - + 
2 az 

afv) . 
ay 
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Finally, the stresses are obtained by subtracting the pressure 
from the stress deviators. Thus, the complete perturbation 
velocity, strain-rate, and stress fields can be determined. 

COMP ARISON WITH RESULTS FROM TWO-
DIMENSIONAL PERTURBATION THEORY 

In equation (75) of Hutter and others (1981), 
expressions are given for the transfer (filter) function and 
the phase-Iag angle for the two-dimensional problem, which 
corresponds to the three-dimensional problem considered in 
this paper. With the notation of the present paper, these 
expressions read: 

and 

(cosh( Gl) sinh( Cl) - Gl) cot ex 
tan ~ = -'----'---'----'--'-----.:...-- (37) 

In the limit V" Q, Equations (30) and (31) are identical to 
Equations (36) and (37), except for the term I + v2 

occurring in Equations (30) and (31) which is replaced by 
w2 in the above equations. This difference can be traced 
back to the boundary condition for the shear stress at the 
upper surface, where a small term has been neglected in 
the work by Hutter and others (1981). 

It appears from Equations (30) and (31) that the 
response of the surface to three-dimensional bedrock per
turbations can be described in terms of two parameters, V 

v 
and - cot ex, respectively. In the two-dimensional case the 

w ' 

response is also a function of two parameters, viz. Cl and 
cot ex. The form of Equations (30), (31), (36), and (37) 
shows that the same set of curves applies to both two- and 
three-dimensional situations, if we replace two-dimensional 
parameters Q and cot ex with the three-dimensional ones, v 

v 
and iJ cot ex, respectively. 

The same substitutions apply to the vertical velocity 
functions W1(Z) and W2(Z), and the pressure functions P (z) 
and P 2(Z); the three-dimensional distributions of t~ese 
quantities emerge from the two-dimensional distributions 
simply . by replacing Q and cot 0: with v and V/Q cot ex, 
respectIvely. As regards the horizontal velocity functions 
U1(z), U 2(z), V1(z), and V 2(Z), however, such simple sub
stitutions do not apply. these functions depend on three 
parameters, e.g. V, V/w cot ex, and W/w. 

RESULTS AND DISCUSSION 

Filter- function and phase angle 
Figure 2a and b shows the filter function h/b 

respectively the phase-angle ~, plotted against 211H /v = 
L / {H(1 + (L/W)2)1/2) and parameterized for various values 
of v / w cot ex = {I + (L/W)2}1/2cot 0:. Figure 2b confirms the 
well-known result, that for slope angles typical of ice sheets 
(tan ex < 0.01) and not too small wavelengths (greater than 
twice the ice thickness), the phase shift in the direction of 
ice flow between surface and basal undulations is close to 
11/2. 

In order to illustrate more clearly the dependence of 
the filter function on the ratio of the longitudinal wave
length to the transverse wavelength L/W, Figure 3 shows 
for the case of L/ H = 3 a semi-logarithmic plot of the 
filter function versus L/W, parameterized for various values 
of tan ex. 

It appears from the figure that the filter function de
creases rapidly with increasing L/W. For slope angles typical 
of ice sheets (tan 0: < 0.0 I), the ratio of surface amplitudes 

Reeh: l ee flow over an undulating base 

",0 10 15 20 <Xl 

ci 
, 

ci 

a 

'" '" ci ci 

D ... ... ..... . ci ",,0 

N N 

ci ci 

0 0 

ci ci 

0 10 
L/h.{ L/W)'/H 

15 0.001 20 

0
0 5 10 15 20

0 

N 

b 
N 

: ~0.001 
, 0 .002 
; 0.005 

~ ~ 
0.01 
0 .02 

0.05 
So ;l ;l 

0 .1 

'" '" ci ci 

0 0 
ci ci 

0 10 15 · 20 
Llh.(L/w)'/H 

Fig . 2. Filter function (a) and phase angle (b) plotted 
versus dimension less effective wavelength L / ( H( J + 
(L / W;Z )1/2) and parameterized for various values of the 
effective slope lanex/ (J + (L / W)2yI/2. 

to basal amplitudes is less than 10-3 if L / W > 3, indicating 
that only basal irregularities of widths greater than one
third of their lengths will manifest themselves at the surface 
of the ice sheet to a significant degree . 

Figure 4a and b illustrates the depth variation of the 
amplitude and the phase angle of the undulations of internal 
flow paths for the particular case of L/ H = 3 and tan 0: = 
0.005, parameterized for various values of L / W. 

The relative amplitude and phase angle of the internal 
flow paths are calculated as 

and 

respectively, where the term (1 - z2) accounts for the 
depth variation of the undisturbed horizontal velocity. 

The main reason for dealing with the internal flow 
paths is that they may be taken as representing the 
internal layering of an ice sheet or glacier, as far as the 
depth variations of amplitudes and phase angles are 
concerned. 

It appears from Figure 4a that, when L/W is small, the 
amplitude change with depth is fairly uniform, whereas for 
large L/W the amplitude of the internal flow paths/layers is 
negligible in the upper half or more of the ice sheet, and 
then increases rapidly towards the base. Thus the magnitude 
of the ratio L/W manifests itself rather distinctly in the 
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Fig. 3. Semi-logarithmic plot of filter function versus the 
wavelength ratio L/W and parameterized for various 
values of the slope tan a. L/H has been put equal to 3. 

shape of the amplitude-depth curve of the internal layers of 
an ice sheet, which can be obtained from radio echo
sounding Z-scope records; see for example Robin and Millar 
(1982, fig . I). However, one should be careful not to 
interpret the shape of the amplitude-depth curve solely in 
terms of the L/W ratio, since also the depth variation of 
the effective viscosity of the ice, which is characteristic of 
actual ice-sheet flow but which has been neglected in the 
present analysis, has a pronounced influence on the 
amplitude-depth curve. 

Figure 4b shows that the phase shift virtually takes 
place in a near-surface layer less than one-fifth of the ice 
thickness. This result is a theoretical confirmation of the 
fact that the undulations of the internal layers of an ice 
sheet revealed by radio echo-soundings in general appear to 
be in phase with the bottom undulations, if the ice-flow 
direction and sounding-track direction coincide; the large
amplitude undulations in the deep parts of the ice sheet are 
essentially in phase with the base undulations, whereas only 
the hardly recognizable small-amplitude undulations of the 
uppermost layers are subject to a phase shift. 

Perturbation velocities and strain-rates 
For small slope angles (tan a < 0.01) and L / {H(I + 

(L/W)2)1/2) > 2, Figure 2b shows that the phase shift 
between surface and basal undulations is very close to n/ 2, 
(b2 »b\ in Equation (5». Under these conditions, the 
perturbatIon velocity functions and the pressure function 
with index 2 are numerically much less than the 
corresponding functions with index 1. Hence, comparing 
Equations (18)--(21) with Equation (6), it is realized that at 
the surface the longitudinal velocity component u exhibits 
its maxima above the basal hills, the transverse veloci ty 
component v exhibits its maxima above the saddle points of 
the basal topography, whereas the pressure p has its maxima 
above the maximum basal up-slopes. The surface value of 
the vertical velocity component w is zero to the first order. 
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Fig. 4. Variation with depth of amplitude (a) and phase 
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tan a = 0 .005. and parameterized for various values of 
L/ W. 

However, at depth the maxima of the vertical velocity occur 
above the maximum basal up-slopes. 

The distributions with depth of the dominant perturba
tion velocity components Ut<'z) , V1(z), and WlZ) are 
illustrated in Figure Sa, b, and c for the case of L/ H = 3, 
tan a = 0.005, and parameterized for various values of 
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L / W. It appears from Figure 5 that generally the magnitude 
of the perturbation velocities u and w decreases as the ratio 
of L to W increases, whereas v attains its maximum value 
for L / W - 0.5-1. For large L/W ratios , the perturbations of 
the surface velocities are insignificant, whereas significant 
perturbations of the velocity field still occur at depth . Also, 
it is remarkable that for values of L/ W ~ I, the transverse 
flow is "extrusion" flow, showing a distinct velocity 
maximum at a certain distance from the bottom. The 
position of the velocity maximum is closer to the bottom, 
when the ratio L /W is larger. 

As regards the strain-rates, it follows from Equations 
(33) and (34) that, under the condition of small surface 
slopes and moderately long wavelengths, both the 
longitudinal and the transverse strain-rates attain their 
maximum values at the location of the surface hills, i.e. 
above the maximum basal up-slopes. 

In order to illustrate the influence of the ratio L /W on 
the perturbation strain-rates, dimensionless surface 
strain-rates are plotted versus L / W in Figure 6 for the case 
of L / H = 3 and tan 0: = 0.005. The figure shows that 
numerically the longitudinal and the vertical strain-rates are 
at a maximum for L/ W = 0, i.e. for infinitely wide basal 
undulations . Obviously, in this case the transverse strain-rate 
and the horizontal shear strain-rate are both zero. However, 
already for L / W = 0.7 the magnitude of the transverse 
strain-rate is equal to the longitudinal one and for larger 
ratios of L / W the transverse strain-rate is dominant. The 
maximum value of the transverse strain- rate occurs when 
L / W = I. The corresponding value of the longitudinal 
strain-rate is only about one-third as large as the transverse 
strain-rate. 

The horizontal shear strain- rate attains its maximum 
value for L /W - 0.6, and is of the same order of 
magnitude as the normal strain-rates. Since the perturbation 
strain-rates at the surface may easily reach values of the 
same order of magnitude as the zeroth-order strain-rates 
for rough basal topographies (Whillans and others, 1984), it 
is evident that the principal directions of short-distance 
surface-strain ellipsoids may be expected to change 
dramatically within distances on the order of the wavelength 
of the basal undulations . Hence, flow directions and short
distance principal strain-rate directions at the surface of an 
ice sheet cannot be expected to show any accordance, if the 
basal topography is essentially three-dimensional. 
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Fig. 6. Amplitudes 0/ perturbation surface strain-rates plotted 
versus the wavelength ratio L IW for the case of L I H = 3 
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The transverse flow 
The importance of the transverse flow for the motion 

of the ice past the basal obstacles is illustrated in Figure 7. 
This figure shows the depth variation of the amplitude of 
the azimuth (the angle with the x-direction) of the velocity 
vector. The azimuth is calculated as 
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and in the figure it is parameterized for various values of 
LjW. Lj H and tan a have been put equal to 3 and 0.005, 
respectively. 

Taking b/ H = 0.1, one obtains from the figure that the 
azimuth of the velocity vector can be expected to display a 
direction change of up to 5-10 0 between the surface and 
the base of the ice sheet, if L/W is greater than 0.5. More
over, the greater the ratio of L/W, the more the azimuth 
change will be concentrated in a narrow layer close to the 
bottom. 

The significance of the transverse flow can also be 
illustrated by comparing the ice flux per unit width P¥sing 
a basal hill and a basal hollow, respectively. In the two
dimensional case, these f1uxes are equal for reasons of 
continuity. In the three-dimensional case, the quantity of ice 
passing the hollows is greater than that passing the hills. 
The difference is exactly equal to the local transverse ice 
flux due to diversion of ice to the sides of the hills and 
into the hollows. 

Neglecting the small U2 term, the deviation of the ice 
flux from the average flux per unit width normal to the 
main flow direction can be obtained from Equation (18) as 

t:.q = usH J U1(Z) sin w x cos.p y dZ. 
-1 

By means of Equation (32a), t:.q is found to be 

- [W]2 tanh(\i) 
t:.q = -2us Hb2 [; -\i-- sin w x cos.p y. 

The relative change of q with respect to the average value 
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is therefore 

- C!]2 tanh(<;1) 
-3b2 L \i . -\i- sin w x cos.p y . 

Figure 8 shows a plot of the amplitude of the right- hand 
member of this equation 
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Fig. 8. Amplitude of the flux change over basal hills and 
hollows relative to the mean flux plotted versus the 
wavelength ratio L /W for the case of L / H = 3 and 
tan a • 0.005. 

versus LjW for the particular case of Lj H = 3 and tan a = 
0.005. This amplitude is the relative reduction/augmentation 
of the ice flux over the crest of a hill and, respectively, 
the bottom of a hollow. It appears from the figure, that the 
maximum "channeling" effect corresponding to a relative 
flux change of ±0.55b/ H is found for LjW - 1.5. Since it 
is not unusual that the ratio of basal amplitudes to ice 
thickness may reach values of 0.1 or more, the results 
shown in Figure 8 suggest that the ice flux through the 
basal valleys may be augmented by 10% or more relative to 
the ice flux over the basal hms. This indicates that a non
negligible "channeling" effect of the basal irregularities is to 
be expected. For larger values of LjW, the "channeling" 
effect is less, but still about 8% for LjW = 3, according to 
Figure 8. With this value of L/W, it appears from Figures 
3 and 6 that no significant manifestations of the flow per
turbations are to be expected at the ice-sheet surface, 
neither in the form of undulations nor in the form of 
strain-rate deviati'ons. In other words, significant 
"channeling" may occur without leaving any visible sign at 
the ice-sheet surface. 

CONCLUDING REMARKS 

As stated in the introduction, the results of the present 
analysis cannot be expected to explain quantitatively the 
behavior of actual glacier and ice-sheet flow past basal 
obstacles. The main reason is that the analysis is based on 
the unrealistic assumption that ice obeys a linear constitutive 
equation. However, there is no fundamental difficulty 
involved in extending the analysis to considering also the 
non-linear and temperature-dependent flow law of ice, using 
an approach similar to the one presented by Hutter and 
others (1981) and Dahl-Jensen (1985) for the corresponding 
two-dimensional case. 
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Another assumption made in the present analysis is that 
the mean motion of the glacier is either in the direction of, 
or perpendicular to, the ridges and valleys of the basal 
topography. However, in the general situation, where the 
flow direction makes an angle with the ridge- and valley
directions, the velocity vector can be resolved in its 
components parallel to and perpendicular to the "lineation" 
of the basal topography, and the perturbations of the flow 
field can be calculated for each component. These flow 
fields can then be composed to the complete perturbation 
velocity field for the diagonal motion. 

In two-dimensional perturbation-flow theories, a more 
general boundary condition has been considered (Budd, 
1970; Hutter and others, 1981; Whillans and Johnsen, 1983) 
than the one used in this analysis, i.e. that the ice may 
slide over the base. In this case, the magnitude of the 
sliding velocity combined with a tangency condition 
determines the basal boundary condition of the vertical per
turbation velocity. In the three-dimensional case, the corres-

ponding boundary condition of the vertical (~) and the 
1 

transverse (v) perturbation velocities is ambiguous, since the 
tangency condition at the base can be satisfied for a whole 

1 1 
one-parametric set of w- and v-values. In this case, one of 
the basal boundary conditions will probably have to be re
placed by another condition on the flow field, e .g. an 
energy consideration as suggested by Robin and Millar 
(1982). 

As pointed out by Hutter and others (1981), the 
perturbation scheme applied seems to be inadequate for 
small slope angles a, because the basal shear-stress perturba
tions will then reach values that are large compared with 
the zeroth-order values. This seems to prevent application 
of the theory to ice sheets with their generally small 
surface slopes, unless the perturbation parameter E = bl H is 
supposed to be even smaller than the surface slope. A closer 
examination of the limiting case al E .... 0 indicates that 
what happens for small a and moderate E is that the 
velocity boundary conditions are not very well satisfied at 
the actual undulating base of the ice sheet. However, 
evaluation of the second-order perturbations for the 
two-dimensional case with linear ice rheology (to be 
presented elsewhere) shows that a second-order perturbation 
theory results in a substantial improvement as to how well 
the basal boundary conditions are satisfied, even for short 
wavelengths (L / H = 2), small surface slopes (tan a = 0.001), 
and relatively large basal amplitudes (blH = 0.1). 

This suggests that the perturbation scheme applied is 
also reasonable for small slope angles, even though the 
results of the first-order perturbation theory become 
increasingly inaccurate as the base is approached. 
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