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Abstract

A one-dimensional tiling is a bi-infinite string on a finite alphabet, and its tiling semigroup is an inverse
semigroup whose elements are marked finite substrings of the tiling. We characterize the structure of
these semigroups in the periodic case, in which the tiling is obtained by repetition of a fixed primitive
word.
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1. Introduction

The fundamental algebraic representation of the structure of a tiling T of Rn is its tiling
semigroup S(T ), see [2]. S(T ) is an inverse semigroup with zero, whose nonzero
elements comprise translation classes of connected, finite portions of T with two
distinguished tiles. The product of two such classes in S(T ) is the class of the union of
translates, matched by using the distinguished tiles. Informally, the tiling semigroup
records the structure of T in terms of its assembly from finite pieces.

In this paper we consider only one-dimensional tilings, that is tilings of the real
line R. In this case, the theory has special features that merit a separate study. A
tiling of R can be regarded as a bi-infinite string on some alphabet, and the nonempty
substrings of the tiling constitute the language of the tiling. One-dimensional tilings
and their tiling semigroups are studied from a language-theoretic viewpoint in [5, 8].
In this paper we concentrate on the algebraic structure of tiling semigroups and give a
complete description of the tiling semigroups of one-dimensional periodic tilings.

At the heart of our description is the free monogenic inverse monoid FIM1, which
(with a zero adjoined) is the tiling semigroup of the one-dimensional tiling using a
single repeated tile (see [3, Theorem 4.5.4]). The structure of the tiling semigroup
S(T ) of a general periodic one-dimensional tiling T is given in our main result
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(Theorem 4.1). The structural description has two components, reflecting the coarse
and the fine structure of elements of the tiling semigroup. The free monogenic inverse
monoid is used to record the coarse structure, and a coordinatization given by subsets
of Zm (where m is the length of the period of the tiling) is used to record the fine
structure that is determined by the combinatorics of the period. Our description also
evinces the strongly E∗-unitary property of tiling semigroups (see [7]): that is, we
exhibit S(T ) as a Rees quotient of an E-unitary inverse semigroup. In detail, we show
that S(T ) embeds into a Rees quotient of a semidirect product in which FIM1 acts on
the subsets of Zm , and we characterize which subsemigroups arise in this way.

2. One-dimensional tiling semigroups

We immediately adopt a point of view close to formal language theory, which is
adequate for our purposes. For a more general account of tiling semigroups, see [2].

Let 6 be a finite alphabet with cardinality n. A word over 6 is called primitive if
it is not a proper power in the free semigroup 6+. A one-dimensional tiling T over 6
is a bi-infinite string . . . t−1t0t1t2 . . . over 6, and a pattern in T is a finite string over
6 that occurs as a substring of T . We say that T is periodic if there exists a positive
integer k such that ti = ti+k for all i ∈ Z. The smallest k satisfying this condition is
called the period of T . If T is a periodic tiling of period k, then a pattern of T of
length k is called a period of T . Clearly a period of T is a primitive word.

A marked pattern is a pattern with two (not necessarily distinct) distinguished
letters in the string, called the in-tile and the out-tile. When writing marked patterns,
we shall mark the in-tile a with a grave accent à and the out-tile b with an acute accent
b́ – this is the reverse of the conventions in [3, 5] but agrees with those of [8]. If
the in-tile and the out-tile coincide then we have a pointed string, and we mark the
distinguished tile with a check accent ǎ.

Following Lawson [5], we define the tiling semigroup via an intermediate
construction. The Kachel semigroup K (6) of 6 is the semigroup with zero whose
nonzero elements are all the marked strings over the alphabet 6 (with no reference to
any tiling T ). The product of two such marked strings u and v is formed as follows.
Match the out-tile of u with the in-tile of v and examine the overlap of the strings: if
the letters in the overlap all agree, then the product uv is the string equal to the union
of u and v with the letters in the overlap identified, marked at the in-tile of u and the
out-tile of v. If the letters of the overlap do not agree, then uv = 0.

EXAMPLE 1. Take u = ab̀cbćab and v = b́c̀abbc. Match the out-tile of u with the
in-tile of v:

a b̀ c b ć a b
b́ c̀ a b b c.

Look at the overlap: since the overlapping letters agree then uv is the combined
string

uv = ab̀cb́cabbc.

However, if u = ab̀cbćab and v = b́c̀bcbc then uv = 0.
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PROPOSITION 2.1 [3, Theorem 9.5.3]. The Kachel semigroup K (6) is an inverse
semigroup with zero. The semilattice of idempotents E(K (6)) is the set of pointed
strings over 6, with partial order given by u 6 v if and only if v is a marked substring
of u.

Now recall our interest in the tiling T . As in [5], let I (T ) be the set of marked
strings in K (6) whose underlying string is not a pattern in T , together with 0. Then
I (T ) is an ideal in K (6), and the Rees quotient K (6)/I (T ) is the tiling semigroup
S(T ) of T . So S(T ) is the semigroup with zero whose nonzero elements are all the
marked patterns in T . Two marked patterns u and v are multiplied as follows: uv is
the product of u and v in the Kachel semigroup K (6) if the underlying string of this
product occurs in T , and otherwise their product is 0.

We begin with the simplest tiling of all: the one-dimensional tiling using a single
tile. This will serve as a first insight into the general structure of tiling semigroups,
and as a motivating example for our specific investigation into the structure of the tiling
semigroups of one-dimensional periodic tilings.

Let T be such a tiling, with tile t . A pattern in T is just a finite string on the
singleton alphabet {t} and so is determined by its length, and a marked pattern is such
a string with two distinguished occurrences of t . A marked pattern in T is therefore
determined by a triple of integers (i, j, k) where i 6 0, j > 0 and i 6 k 6 j , which
describes a pattern whose tiles are indexed by the integers r with i 6 r 6 j and with
in-tile 0 and out-tile k. The product of two such elements is given by

(i, j, k)(a, b, c)= (min(i, k + a),max( j, k + b), k + c).

This is one of the possible descriptions of the elements of the free monogenic inverse
monoid FIM1, and their multiplication: see [9, Proposition IX.1.1].

PROPOSITION 2.2. The tiling semigroup of the one-dimensional tiling using a single
tile is isomorphic to the free monogenic inverse monoid with a zero adjoined.

For this tiling, the zero of S(T ) is removable, and this is the convention followed
in the statement of [3, Theorem 9.5.4]. Our main result (Theorem 4.1) may be seen as
a generalization of Proposition 2.2: we describe the structure of the tiling semigroups
of any one-dimensional periodic tiling.

3. Power sets, partitions, and cadences

In this section we introduce the notions needed to formulate our structural description
of the tiling semigroup of a one-dimensional periodic tiling.

3.1. Power sets and semidirect products Let S be a semigroup and let G be a
group with a homomorphism λ : S→ G. Let P(G) be the power set of G, and set
P∗(G)= P(G) \ {∅}. If Y ⊆ G is nonempty and g ∈ G, then we define Y g = {yg |
y ∈ Y }. If Y = ∅, we set Y g = ∅. Then S acts on P(G) on the right as follows:
given Y ∈ P(G) and s ∈ S we define s · Y = Y (sλ)−1. Using this action, we can form
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the semidirect product P(G)o S with underlying set P(G)× S and multiplication
(X, s)(Y, t)= (X ∩ s · Y, st). Then P(G)o S is a semigroup, and {∅} × S is a two-
sided ideal. We denote the Rees quotient (P(G)o S)/({∅} × S) by P(G, S, λ).

The properties of P(G, S, λ) are as follows:
• (K , s) is a (nonzero) idempotent in P(G, S, λ) if and only if s is an idempotent

in S;
• if S is regular then so is P(G, S, λ), for if t is an inverse for s in S then (t · K , t)

is an inverse for (K , s);
• if S is inverse then so is P(G, S, λ);
• if S is E-unitary then P(G, S, λ) is strongly E∗-unitary;
• if S is F-inverse then P(G, S, λ) is F∗-inverse, for if s 6 ŝ with ŝ maximal, then

0 6= (K , s)6 (G, ŝ ) with (G, ŝ ) maximal.
We refer to [4, 7] for further information on the class of strongly E∗-unitary
semigroups, and its relationships with the algebra of tilings.

In what follows we shall only need to consider P(G, S, λ) when G = Zm , S is
the free monogenic inverse monoid FIM1, and λ is the composite FIM1→ Z→ Zm
of the map from FIM1 to its maximum group image Z followed by the canonical
map Z→ Zm . Since Zm is written additively, for u ∈ FIM1 and B ⊆ Zm we have
u · B = B − uλ. Hence P(Zm, FIM1, λ) is a semigroup with zero whose underlying
set of nonzero elements is P∗(Zm)× FIM1, with the product of (A, u) and (B, v)
defined by

(A, u)(B, v)=

{
(A ∩ (B − uλ), uv) if A ∩ (B − uλ) 6= ∅,

0 if A ∩ (B − uλ)= ∅.

Well-known properties of FIM1 then imply that P(Zm, FIM1, λ) is a strongly F∗-
inverse semigroup.

3.2. Sifting partitions Let 5 be a partition of Zm with blocks B1, . . . , Bk . The sift
σ 1(5) of 5 is the partition of Zm whose blocks are the nonempty subsets of the form
Bi ∩ (B j − 1), where 1 6 i, j 6 k. Clearly σ 1(5) is a refinement of 5. We define
the r th sift σ r for r > 0 by σ 0(5)=5 and σ r (5)= σ 1(σ r−1(5)), and we call 5
a sifting partition if, for some r > 0, the r th sift of 5 is the partition of Zm into m
singleton blocks. Sifting partitions may be characterized as the following result.

PROPOSITION 3.1. A partition 5 of Zm is a sifting partition if and only if the only
congruence refining 5 is the equality congruence on Zm .

PROOF. Suppose that some congruence 4 is a refinement of 5, and let C be a block
of4. Then C + 1= C ′ for some block C ′ of4, and so C = C ∩ (C ′ − 1) is contained
in some block of the sift σ 1(5). It follows that 4 refines every sift of 5, and so if 5
is sifting, then 4 must be the equality congruence.

On the other hand, if 5 is not sifting, then σ r (5)= σ r+1(5) for some r , with
σ r (5) not the partition of Zm into singleton sets. Then for each block Bi of σ r (5),
since Bi is also a block of σ r+1(5), there exists a block B j such that Bi ⊆ B j − 1.
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Hence if a, b ∈ Bi then a + 1, b + 1 ∈ B j and σ r (5) is a congruence refining 5, and
not equal to the equality congruence. 2

Since any congruence on Zm is given by congruence modulo some subgroup, we
may restate Proposition 3.1 as the following result.

COROLLARY 3.2. A partition5 of Zm is not a sifting partition if and only if the block
containing 0 also contains a nontrivial subgroup H of Zm such that every block is a
union of cosets of H.

3.3. Cadences We shall need a specific construction of a sifting partition associated
to any one-dimensional periodic tiling. This is obtained from the cadences of the
period, as defined in [6] (generalizing the original definition of cadence in [1]).

Let6 = {t1, t2, . . . , tn} be an alphabet and let w be a word on6 that involves each
letter of6. Suppose that |w| = m and writew = ti0 ti1 . . . tim−1 . For each t j ∈6 define

C j (w)= {r ∈ Zm | tir = t j in w}.

The set C j (w) is called the t j -cadence of w, and records the locations of occurrences
of t j in w. The set of cadences {C j (w) | 1 6 j 6 n} of w is a partition of Zm , which
we call the w-cadence partition.

PROPOSITION 3.3. Let w ∈6+ involve each letter of 6. Then w is primitive if and
only if the w-cadence partition is a sifting partition of Zm .

PROOF. Suppose that the w-cadence partition is not a sifting partition. Then by
Corollary 3.2 we may suppose that 0 ∈ C1(w), that C1(w) contains the subgroup
〈r〉, (r > 1) of Zm and that each block is a union of cosets of 〈r〉. Let u be the prefix
of w of length r : then w = u|w|/r and so is a proper power.

Conversely, suppose that w = uk with |u| = r and k > 1. Then i ∈ C j (w) if
and only if {i, i + r, . . . , i + (k − 1)r} ⊆ C j (w), which implies that the cadence
containing 0 also contains the subgroup 〈r〉 of Zm , and every cadence is a union
of cosets of this subgroup. Hence, by Corollary 3.2, the cadences do not form a
sifting partition. 2

We also have a useful interpretation of the sifts of the w-cadence partition. Recall
that a word v ∈6+ is called w-periodic (see [6]) if it is a subword of some power wq

of w. An easy induction on the length r of a w-periodic word v then establishes the
following result.

LEMMA 3.4. A subset A ⊆ Zm is a block in the rth sift of the w-cadence partition if
and only if it is the set of locations of the initial letter of a w-periodic word v with
length r + 1.

4. The main theorem

In this section we establish our characterization of the tiling semigroups of one-
dimensional periodic tilings. We give a coordinate system to describe patterns in one-
dimensional periodic tilings, so that each pattern is specified uniquely by a certain
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triple of integers and a subset of Zm , and we show that choosing coordinates gives
an embedding of the tiling semigroup into the inverse semigroup P(Zm, FIM1, λ).
Moreover, we specify precisely which inverse subsemigroups of P(Zm, FIM1, λ) arise
as images of such embeddings.

To this end, we make the following definition. An inverse subsemigroup S of
P(Zm, FIM1, λ) is a sifting subsemigroup if it satisfies the following conditions:
• the collection of subsets5(S)= {B ⊆ Zm | (B, 0, 0, 0) ∈ S} is a sifting partition

of Zm ;
• (L , i, j, k) ∈ S if and only if L + i is a block in the (−i + j)-sift of 5(S).

THEOREM 4.1. A semigroup S is the tiling semigroup of a one-dimensional periodic
tiling with period of length m if and only if it is isomorphic to a sifting subsemigroup
of P(Zm, FIM1, λ).

PROOF. Let 6 be a finite alphabet and T be a one-dimensional periodic tiling over 6.
Let p = p0 . . . pm−1 be a period of T . Let S(T ) denote the tiling semigroup of T . For
s ∈ S(T ) let π(s) denote the pattern underlying s. That is, if s = z1 . . . źi . . . z̀ j . . . zk
or s = z1 . . . z̀i . . . ź j . . . zk , then π(s)= z1 . . . zk . For s = z1 . . . z̀i . . . ź j . . . zk ∈

S(T ), we set τ(s)= (1− i, k − i, j − i). The absolute value of the first component
of τ(s) tells us the number of tiles preceding the in-tile of s, the second component
tells us the number of tiles succeeding the in-tile of s and the absolute value of the
third component tells the distance between the in-tile and the out-tile of s. Clearly
1− i 6 0 6 k − i and 1− i 6 j − i 6 k − i and so τ(s) ∈ FIM1. Given s ∈ S with
τ(s)= (i, j, k), we set

�(s)= {r ∈ Zm | π(s)= pr−i . . . pr . . . pr+ j }.

Hence r ∈�(s) precisely when s = pr−i . . . p̀r . . . ṕr+k . . . pr+ j or when
s = pr−i . . . ṕr+k . . . p̀r . . . pr+ j . In the remainder of the proof, we shall assume
for notational convenience that k > 0, that is the out-tile is placed to the right of the
in-tile.

Define ϕ : S(T )→ P(Zm, FIM1, λ) by s 7→ (�(s), τ (s)), 0 7→ 0. By construc-
tion, s ∈ S(T ) is completely determined by (�(s), τ (s)) and so ϕ is injective.

Next, we show that ϕ is a homomorphism. Let s, t ∈ S(T ) and assume that
τ(s)= (i, j, k) and τ(t)= (a, b, c). First we assume that st 6= 0. Matching the out-
tile of s and the in-tile of t , we find that π(s) and π(t) agree on their overlap. By
glueing together these patterns along the overlap we obtain π(st). By the definition
of the multiplication in S(T ), we know that the absolute value of the number of tiles
preceding the in-tile of st will be min(i, k + a), the number of tiles succeeding the
in-tile of st will be max( j, k + b) and the absolute value of the distance between the
in-tile and the out-tile of st will be k + c. Hence,

τ(s)τ (t)= (i, j, k)(a, b, c)= (min(i, k + a),max( j, k + b), k + c)= τ(st).

We set u =min(i, k + a) and v =max( j, k + b). Let r ∈�(s) ∩ (�(t)− k). Then

s = pr+i . . . p̀r . . . ṕr+k . . . pr+ j
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and

t = pr+k+a . . . p̀r+k . . . ṕr+k+c . . . pr+k+b.

It follows that st = pr+u . . . p̀r . . . ṕr+k+c . . . pr+v verifying that r ∈�(st).
Conversely, let r ∈�(st). Then st = pr+u . . . p̀r . . . ṕr+k+c . . . pv and it follows
that

s = pr+i . . . p̀r . . . ṕr+k . . . pr+ j

and

t = pr+k+a . . . p̀r+k . . . ṕr+k+c . . . pr+k+b

verifying that r ∈�(s) ∩ (�(t)− k). Thus we may conclude that if st 6= 0, then

(sϕ)(tϕ) = (�(s), τ (s))(�(t), τ (t))

= (�(s) ∩ (�(t)− k), τ (st))= (�(st), τ (st))= (st)ϕ.

If st = 0, then the patterns underlying s and t do not agree on their overlap. It follows
that �(s) ∩ (�(t)− k)= ∅, and so

(sϕ)(tϕ)= (�(s), τ (s))(�(t), τ (t))= (�(s) ∩ (�(t)− k), τ (st))= 0= (st)ϕ.

This completes the proof that ϕ is a homomorphism.
To see that the image of S(T ) is a sifting semigroup in P(Zm, F I M1, λ), we make

the following observations. Since p is a period of T , it is a primitive word. Clearly
the p-cadence partition is 5(S), and by Proposition 3.3, 5(S) is a sifting partition
of Zm . Now let s ∈ S with sϕ = (L , i, j, k). Then π(s) has length −i + j + 1 and
r ∈ L precisely when s = pr+i . . . p̀r . . . ṕr+k . . . pr+ j , and so L + i is the set of
locations of the initial letter of π(s). By Lemma 3.4 it follows that L + i is a block in
the (−i + j)th sift of 5(S).

Conversely, suppose that S is a sifting subsemigroup of P(Zm, 1). Then 5(S)
is a sifting partition of Zm . If 5(S) has n blocks B1, . . . , Bn , then we construct a
period p = p0 p1 . . . pm−1 of length m on an alphabet {t1, . . . , tn} with pi = t j if and
only if i ∈ B j . Let T be the one-dimensional tiling with period w. Then 5(S) is the
w-cadence partition, and (L , i, j, k) ∈ S(T )ϕ if and only if L + i is a block in the
(−i + j)-sift of 5(S). It follows that S(T )ϕ = S. 2

4.1. When the period involves each tile exactly once The description of the
structure of the tiling semigroup of a one-dimensional periodic tiling given above
simplifies considerably in the case when the period p involves each tile exactly
once, so that n = m. We write p = p0 p1 . . . pm−1, and the cadence partition is the
partition of Zm into m singleton blocks. The sifting subsemigroups of P(Zm, FIM1, λ)

corresponding to this sort of tiling are those in which all the elements have the form
({x}, i, j, k), and every such subsemigroup is trivially a sifting subsemigroup.

We can simplify the structural description given in Theorem 4.1 as follows. The
length of the period is a complete invariant for the tiling, and so determines the
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tiling semigroup. Let Pm be the semigroup with zero with underlying set of nonzero
elements Zm × FIM1 and with the product of two nonzero elements given by

(x, i, j, k)(y, a, b, c)=

{
(x,min(i, a + k),max( j, b + k), c + k) if x + k = y,

0 otherwise.

THEOREM 4.2. Let T be a one-dimensional periodic tiling for which the period has
length m and involves each tile exactly once. Then the tiling semigroup S(T ) is
isomorphic to Pm .
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