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ABSTRACT. We present a method for analyzing the errors involved in measuring
three-dimensional glacier velocities with interferometric radar. We address the surface-
parallel flow assumption and an augmented approach with a flux-divergence (FD) term.
The errors in an interferometric ERS-1/-2 satellite radar dataset with ascending- and des-
cending-orbit data covering StorstrÖmmen glacier, northeast Greenland, are assessed. The
FD error assessment is carried out on airborne 60 MHz ice-sounding radar data from the
same area. A simple model of an interferometric radar system is developed and analyzed.
The error sources considered include phase noise, atmospheric distortions, baseline calibra-
tion errors, a dry snow layer, and the stationary-flow assumption used in differential
interferometry. The additional error sources in the analysis of FD errors are noise, bias and
unknown variations of the ice thickness, and approximations of the ice-flow model. The
example glacier is now building up following a surge. The analysis shows that in the case
study presented the errors are small enough to justify the use of both the estimated surface-
parallel flow term of the vertical velocity and the estimated FD term of the vertical velocity.

1. INTRODUCTION

This paper addresses the accuracy of three-dimensional ice
velocities derived from a combination of interferometric
synthetic aperture radar (InSAR) measurements, glacier
flow modeling, and ice-sounding radar measurements of
ice thickness. The approach to deriving three-dimensional
ice-sheet velocities, is described in Reeh and others (1999)
and applied to StorstrÖmmen glacier, northeast Greenland
in Reeh and others (2003). The surface-parallel flow
assumption approach described in Joughin and others
(1996) is extended with a submergence/emergence term
derived from the principle of mass conservation. For the
ablation zone of a grounded glacier (ice of constant density
from bed to surface), the equations for deriving the three-
dimensional velocity become

~v ¢ n̂a ˆ va …1a†
~v ¢ n̂d ˆ vd …1b†
~v ¢ ~ns ˆ ¡div…Fh~vH† ; …1c†

where va and vd are the projections of the unknown glacier
velocity ~v on the line-of-sight unit vectors n̂a, n̂d for ascend-
ing and descending orbits, respectively. The surface normal,
~ns, is calculated by …¡@S=@e; ¡@S=@n; 1†, where S is the
surface and …e; n† are Cartesian horizontal coordinates
(Reeh and others, 2003). The flux-divergence (FD) term on
the righthand side of Equation (1c) is the submergence/
emergence velocity, h…e; n† denotes ice thickness, ~vH…e; n†
is the horizontal surface velocity, and F is the column mean
value divided by the surface value of j~vH…e; n†j.

One purpose of the present paper is to provide tools to
establish a reasonable error budget for specific applications
of InSAR to glaciological measurements. The second pur-

pose of the paper is to present an error analysis for the data-
set used in the companion paper (Reeh and others, 2003),
which presents three-dimensional flow results from Stor-
strÖmmen, based on ERS-1/-2 tandem data and airborne
ice-sounding radar measurements. The paper is organized
in three main parts:

1. Method descriptions (sections 2^5), providing the basic
equations for the error analysis.

2. Anassessment/applicationexample (sections 6^8), describ-
ing how numbers are put into the basic equations.

3. Results (section 9), where the error analysis is summarized.

2. METHOD OVERVIEW

The error analysis is carried out in three steps described in the
following three sections.The error analysis assumes that error
sources are so small that the output error is a linear superposi-
tion of the various error contributions. This assumption
allows us to deal with the error sources independently.

Firstly, interferometric errors arising directly from va

and vd are assessed, assuming that the surface normal, ~ns,
and the FD term in Equation (1c) are known.

Secondly, the errors in the underlying surface-parallel
flow inversion are addressed. The coupling between Equa-
tions (1a^1b) and Equation (1c) is ignored, corresponding
to assuming a level surface and ignoring the submergence/
emergence velocity. This is acceptable for the error analysis.

Thirdly, the errors relating to the FD term in Equation
(1c) are addressed. This term depends both on the interfero-
metrically derived velocities and on the ice thickness derived
from ice-sounding radar measurements.

Journal of Glaciology, Vol. 49, No. 165, 2003

210
https://doi.org/10.3189/172756503781830791 Published online by Cambridge University Press

https://doi.org/10.3189/172756503781830791


After assessment of the direct error sources, the coupling
of Equations (1a^1c) is addressed in `̀ Results’’, which also
summarize our method. An overview of the different error
sources considered and the corresponding sections is pro-
vided in Figure1.

3. METHOD FOR INTERFEROMETRIC ERRORS

We assume that a double-difference method is used to obtain
line-of-sight velocities and terrain elevations (Kwok and
Fahnestock,1996). In our approach we unwrap and calibrate
each interferogram individually, by using ground-control
points (GCPs). After calibration, the line-of-sight velocities
and terrain elevations are found, assuming a stationary flow.

3.1. Geometric calibration

Geometric calibration (geocodingaccuracy) is not addressed
in the present paper. In Mohr and Madsen (2001) it is shown
that the European Remote-sensing Satellite (ERS-1/-2) map-
ping system can achieve a geometric accuracy corresponding
to 10 m rms horizontally on the ground. This is not the final
geocodingaccuracy, as phase errors (static or noise) decrease
the accuracy of the interferometrically derived elevations,
which again cause a horizontal shift of the image in the
cross-track direction. The horizontal error is 1= tan ³ times
the elevation error, where ³ is the angle of incidence.Thus, a
typical elevation error of 10 m rms corresponds to a horizon-
tal error of 25 m rms for ERS-1/-2 where ³ º 23³. This will
degrade the co-registration of ascending and descending
data. This is, however, negligible considering that ice
velocities on glaciers in Greenland and Antarctica typically
vary slowly spatially.

3.2. Interferometric path-length distortions

Both the troposphere and the ionosphere cause path-length
distortions equivalent to path-length changes from surface
displacements. Perturbations with magnitudes and spatial

appearance similar to those of atmospheric path-length errors
might additionally be caused by a dry uneven snow layer,
which could potentially change the interferometric phase if
superimposed between the two acquisitions (Mohrand others,
1998). Recently, Guneriussen and others (2001) investigated
this phenomenon, which is not described in detail in the litera-
ture. However, for our StorstrÖmmen glacier (northeast
Greenland) example we disregard the effect (see section 6.3.2).

In Mohr and Madsen (1996), a simplified interfero-
metric measurement model is described and analyzed. In
the following the resulting key equations for error analysis
are summarized.

For convenience we use interferometric path lengh, ’0,
for the error analysis, not interferometric phase, ’. We
define ’0 ˆ ¶’=…4º† ‡ Bjj, where ¶ denotes radar wave-
length and Bjj is the parallel baseline (corresponding to
the flat-Earth phase).The direct effect of path-length distor-
tions on the measured line-of-sight velocity, v, and eleva-
tion, h, depends on the orthogonal baselines B?;1 and B?;2

andtemporal baselines T1 and T2 for the two interferograms
denoted 1 and 2. For interferogram 1, the sensitivities are
found to be

@h

@’0
1

ˆ ¡ T2

B?;1T2 ¡ B?;2T1
R sin ³ …2†

@v

@’0
1

ˆ ¡ B?;2

B?;1T2 ¡ B?;2T1
; …3†

where R denotes slant range and ³ the angle of incidence.
Similar equations can be derived for interferogram 2. We
here assume that the errors in the two interferograms
acquired at different epochs are independent.

The sensitivity of the equation system (1a^1b) to errors in
the line-of-sight velocities depends on the line-of-sight unit
vectors. The line-of-sight unit vectors are parameterized by
their angle of incidence (with respect to a level surface), ³,
and angle of the ground swath track, Á, with respect to north.
An approximate expression for Á, as function of the geo-
graphic latitude of the point of interest and its ground-track

Fig. 1. Overview of the different error sources and mechanisms included in the error analysis. Numbers in parentheses refer to
equations. Other numbers refer to sections in the method part of the paper and to the results section.
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distance, is given in Appendix A. To simplify the error
analysis, we assume that the point of interest is mapped at
the same ³ in both the ascending and descending pass, which
again assures that Á are numerically equal in both passes.
Solving Equations (1a) and (1b) for ve, vn and vu yields

ve ˆ 1

2 cos Á sin ³
…va ¡ vd† …4†

and

vn sin Á sin ³ ¡ vu cos ³ ˆ 1

2
…va ‡ vd† : …5†

This shows that the east velocity, ve, can be found unam-
biguously from interferometric radar data alone. Thus, the sur-
face-parallel flow assumption, i.e. Equation (1c), possibly
modified with the FD term or another constraint, is
required only to separate the north, vn, and up, vu, compon-
ents. For the further error analysis we assume no vertical
motion, which leads to

vn ˆ 1

2 sin Á sin ³
…va ‡ vd† : …6†

To summarize, the velocity errors caused by a path-length
distortion canbe assessed, by using Equation (3) or a similar
equation for each of the two pairs of interferograms, fol-
lowed by an application of Equations (4) and (6).

3.3. Interferometric phase noise

The Cramer^Rao bound for the interferogram phase stan-
dard deviation is

¼’ ˆ 1�������
2N

p
�������������
1 ¡ ®2

p

®
; …7†

where N is the number of looks and ® the correlation coeffi-
cient (Rodriguez and Martin,1992). The phase noise can be
converted to an equivalent path-length noise by a divisionby
4º=¶, which subsequently can be used to assess velocity
errors through the equations presented in section 3.2. The
phase noise is not correlated from interferogram to interfero-
gram. It is also uncorrelated from resolution cell to reso-
lution cell (i.e. approximately from pixel to pixel), as
opposed to the effects of the atmosphere and dry snow, which
both are expected to exhibit large spatial correlations within
one interferogram. A snow event between the two image
acquisitions, though, would also increase phase noise since
it inevitably causes decorrelation.

3.4. Other phase distortions

Phase unwrapping errors are not considered. Errors are usual-
ly detectable by inspection, as theyappearas linearly fragmen-
ted features. In specific applications where unwrapping errors
are expected, the error analysis could be carried out similar to
that for atmospheric disturbances. Also, a possible clock drift
(Massonnet and Vadon,1995) in ERS-1/-2 is ignored. Again,
the error analysis could be carried out similar to that for
atmospheric disturbances. For small areas (e.g. one standard
frame) clock drift is not expected to be significant.

3.5. Baseline calibration

In order to measure elevation and displacements using
repeat-track interferometric data, the baselines have to be
calibrated using GCPs. In the following, GCPs are assumed
to be located on stationary terrain.The following sources of
errors are considered:

Phase errors due to the atmosphere and dry snow.

Phase noise (described by the decorrelation).

GCP elevation errors due to digital elevation model
(DEM) inaccuracies and misregistration between
DEM and SAR data.

When a double-difference approach is used, and the
same GCPs (with known line-of-sight displacement (e.g.
zero)) are used for both interferograms, the GCP elevation
errors will be identical in the two interferograms. Using
equations (1) and (3) from Mohr and Madsen (1996) it can
be shown that such a GCP elevation error common to inter-
ferograms1and 2 will cancel out when the velocity is calcu-
lated. The derived elevations will, of course, be affected by
the error in the GCP elevation. This decoupling of height
references and velocity measurements is fundamentally dif-
ferent from the approach where the topographic phase is
removed from one interferogram by using an independent
DEM. In that case, the velocity error depends on the spatial
and temporal baselines and the quality of the applied DEM.

In the following, a double-difference approach is assumed,
so the velocity error from GCP elevation errors is ignored,
leaving the phase noise and propagation delays as the error
sources. It can be shown that a linear baseline variation in
azimuth is approximately equivalent to a phase variation of
the form

’0
c…x; y† ˆ a ‡ bx ‡ cy ‡ dxy ; …8†

where x is the along-track coordinate, y the across-track
coordinate, and a, b, c and d the constants to be determined
by the calibration.The coefficients may be found by a least-
squares estimation in a general linear model,

Y ˆ X  ‡ " ˆ
1 x1 y1 x1y1

..

. ..
. ..

. ..
.

1 xn yn xnyn

0

B@

1

CA

a
b
c
d

0

BB@

1

CCA ‡ " ; …9†

where Y is the phase errors at the GCP pixels, " the phase
distortions at the GCP pixels originating from phase noise,
atmosphere, dry snow, etc., and n is the number of GCPs
used. If the covariance matrix for the phase distortions at
the GCP pixels is denoted §, the covariance matrix for the
parameter estimate, ̂ , is …XT §¡1 X†¡1, where superscript
T indicates transposition. Thus, the standard deviation of
the estimate of the phase correction value at a point …x; y†
with z ˆ …1; x; y; xy† is

¼’0
c

ˆ z…XT §¡1 X†¡1zT
h i1

2 …10†

assuming there is no correlationbetween the phase distortion
at any GCP pixel and the phase distortion at the point of
interest …x; y†.This is the case for phase noise, but is oftenalso
a reasonable assumption for phase distortions caused by the
troposphere and dry snow, provided that the GCPs (on
stationary terrain) used to calibrate the interferograms are
located at some distance (e.g. at least 10 km) from the areas
of interest on the glacier. If the assumption of independence is
violated, our method will overestimate the errors since both
the direct effect of a phase distortion and the indirect effect
through the baseline calibration are taken into account.

After calculation of the standard deviations of the phase
errors caused by inaccurate baseline calibrations, the
impact can be calculated by using a method similar to that
used for path-length changes. It is further noted that the
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baseline calibration errors described by Equation (10) are
highly correlated spatially. This is also the case for the com-
bined effect of baseline calibration errors, which is a linear
combination of the error in each of the four interferograms
used (ignoring the stretch of the interferograms introduced
during ground range transformation).

3.6. Non-stationary flow ö same orbit family

The double-difference approach relies on an assumption of
identical velocities during the observation periods for the
two interferograms. For the purpose of analyzing the
impact of a flow change, the velocity projections onto slant
range, v1 and v2, corresponding to each of the two interfero-
grams, are expressed in terms of an average value, vr, and a
difference, v", thus v1 ˆ vr ¡ v"=2 and v2 ˆ vr ‡ v"=2. Note
that the velocity corresponding to an interferogram is the
average velocity between the acquisition dates of the images
composing the interferogram. If it is assumed, incorrectly,
that v" is zero, the estimated velocity projection becomes

vm ˆ vr ‡ v"

2

B?;1T2 ‡ B?;2T1

B?;1T2 ¡ B?;2T1
: …11†

In the ERS-1/-2 tandem case, where T1 ˆ T2 ˆ 1day, it is
desirable to choose spatial baselines with opposite signs, as
in that case j…B?;1 ‡ B?;2†=…B?;1 ¡ B?;2†j <1.This implies
that vm will be in the range ‰v1; v2Š. In other words, the
measured velocity projection is between the velocities at
the two intervals of acquisitions. If spatial baselines are of
equal sign, the ratio is larger than 1 and the combined esti-
mate of the line-of-sight velocity thus more sensitive to flow
changes. Optimal baselines are further discussed in Mohr
and Madsen (1996). The elevation estimate is similarly

hm ˆ hr ‡ v"R sin ³
T1T2

B?;1T2 ¡ B?;2T1
: …12†

Again, spatial baselines of opposite sign minimize the sensi-
tivity to flow variations.

3.7. Non-stationary flow ö different orbit family

A non-stationary flow between the ascending- and descend-
ing-orbit acquisitions also affects the direction and magni-
tude of the derived flow. To analyze the effect, the flow
vectors corresponding to each look direction are expressed
in terms of the average velocity ~vr and a difference ~v", i.e.
~vd ˆ ~vr ¡ ~v"=2 and ~va ˆ ~vr ‡ ~v"=2. The measured line-of-
sight velocities thus become vd ˆ ~vd ¢ n̂d and va ˆ ~va ¢ n̂a

for the descending and ascending datasets, respectively.
Assuming a level flow, the error velocity ~v" is written as
…j~v"j sin ²; j~v"j cos ²; 0†, where ² is the direction of the
change. The resulting difference between the derived
velocity ~vm and the average value ~vr becomes

~vm ¡ ~vr ˆ 1

2
j~v"j

tan Á cos ²
cot Á sin ²

0

0

@

1

A …13†

(see Mohr and Madsen,1996). For glaciers with a seasonally
varying velocity, the direction of flow is often constant, and
only the magnitude changes. From Equation (13) it is seen
that even given a constant flow direction, the measured flow
will not necessarily be aligned with the flow. This is illus-
trated in Figure 2. It is also noted that the magnitude of the
measurement error vector is never zero but alwaysbetween
j~v"j tan Á=2 and j~v"j cot Á=2.

4. METHOD FOR SURFACE-PARALLEL FLOW
ERRORS

The error in the surface-parallel flow term of the derived
vertical velocity, vu, i.e. the ve…@S=@e† ‡ vn…@S=@n† term
in Equation (1c), is

¼vs
ˆ @S

@e

³ ´2

¼2
ve

‡ @S

@n

³ ´2

¼2
vn

‡ v2
e¼

2
@S
@e

‡ v2
n¼2

@S
@n

" #1
2

: …14†

Here the coupling between Equations (1c) and (5) is ignored.
Since the velocity errors, ¼2

ve
and ¼2

vn
, in the east and north

directions are generallydifferent, the error generally depends
on the direction of the terrain slope. The third and fourth
contributions in Equation (14) are the surface slope errors
multiplied by the actual horizontal velocities. With proper
averaging, the dominating source of surface slope errors is
usually not noise. With a good distribution of GCPs, base-
line calibration errors are also of minor importance, due to
large spatial correlation of the elevation errors caused by
baseline errors.This leaves the atmospheric path-length dis-
tortions as the primary mechanism for creating slope errors.
If atmospheric distortions, and thus slope errors, are

Fig. 2. Magnitude (a) and directional (b) deviation from
the average flow with a §5% flow magnitude change
between ascending- and descending-orbit acquisitions.Track
angles of 18³, 28³ and 38³ correspond to approximately 67³,
76³ and 80³ N for ERS-1/-2 at mid-swath.
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assumed independent of direction, Equation (14) can be
simplified to

¼vS
ˆ @S

@e

³ ´2

¼2
ve

‡ @S

@n

³ ´2

¼2
vn

‡ v2
H¼2

@S
@x

" #1
2

; …15†

where ¼@S=@x denotes slope-error rms in one specific direction.

5. METHOD FOR FLUX-DIVERGENCE ERRORS

In this section, the errors in the FD, i.e. the righthand side of
Equation (1c), are discussed. First, we describe how we calcu-
late the FD. Then, errors arising from Fh uncertainties and
~vH uncertainties are discussed in two separate subsections.

5.1. Flux-divergence calculation

The FD, i.e. the submergence/emergence velocity, V , is cal-
culated numerically, as

Vi;j ˆ Ei‡1;j ¡ Ei¡1;j

2¢e
‡ Ni;j‡1 ¡ Ni;j¡1

2¢n
; …16†

where E ˆ F hve, N ˆ Fhvn, and ¢e and ¢n denote the
grid spacing in the east and north directions, respectively.
It proved necessary to smooth the FD field (Reeh and
others, 2003) to obtain convergence of our solution. An
analysis of the criteria for stability of the solution is beyond
the scope of the present analysis. We use a …2m ‡ 1† by
…2m ‡ 1† box filter, i.e.

V k;l ˆ 1

…2m ‡ 1†2

Xk‡m

iˆk¡m

Xl‡m

jˆl¡m

Vi;j : …17†

For convenience we skip the …k; l† indices from V , E and N,
and assume a common grid spacing ¢x.We then find

V ˆ 1

2¢x…2m ‡ 1†2

¢
³ Xm

jˆ¡m

Em‡1;j ‡ Em;j ¡ E¡m;j ¡ E¡m¡1;j

‡
Xm

iˆ¡m

Ni;m‡1 ‡ Ni;m ¡ Ni;¡m ¡ Ni;¡m¡1

´
:

…18†

Thus, the FD at the centre of the box filter onlydepends on the
E and N values at theboundarylines of the filter andthe values
at the adjacent points immediately outside the boundary.

5.2. Flux divergence ö …Fh† errors

This subsection concerns errors in the derived vertical
velocity, vu, originating from the Fh term in the FD, i.e.
¡div…Fh~vH† in Equation (1c). For the error analysis we
again ignore the coupling between Equations (1c) and (5).
The error sources considered are:

Noise in h measurement.

Bias in h measurement.

Grid interpolation errors in h.

Variations of F associated with flow over an undulating
base.

Bias in F due to changing basal sliding conditions.

Assumptions and notation for h and F errors, respectively,
are described below, followed by an analysis of the effect of
the different errors after the applied grid averaging (Equa-
tion (18)).

5.2.1. Ice-thickness errors
Ice-thickness noise is denoted "h and is assumed independ-
ent from gridpoint to gridpoint.

Ice-thickness bias is denoted  h. In order to simplify the
error analysis, the bias is assumed constant for all grid-
points along one border of the filter (Equation (18)). The
biases on different borders of the filter are assumed uncorre-
lated. A bias could, for example, be caused by spatial vari-
ations in surface and bottom echo amplitudes which again
bias the echo location algorithm and thereby the derived
ice thicknesses.

Ice thickness is assumed measured with profiling ice-
sounding radar.This leaves gaps between the profiles which
are filled by interpolation. Inspection of the measured
thickness profiles shows an undulating behavior. For simpli-
city, we model these undulations as a sinusoidal with an
amplitude d, and unknown angular frequency, ! ˆ 2º=L,
and unknown phase, ’.

5.2.2. F -value variations
Flow over basal irregularities causes variations of the F fac-
tor, from large values over basal highs to smaller values over
basal lows. In the following it will be shown that this reduces
the impact of an unknown basal relief.

For the purpose of error analysis, we consider plane flow
over an undulating base.The ice flux is assumed not to vary
in the direction of the flow, i.e. flux changes due to surface
mass balance are neglected. For ice-sheet conditions, which
apply to StorstrÖmmen, the surface undulations are out of
phase by º=2 and an order of magnitude smaller than the
bottom undulations (Paterson, 1994, p.265). In that case,
the ice thickness, h, can be assumed to vary as

h ˆ h0…1 ¡ d cos…!s†† ; …19†
where h0 is the mean ice thickness, d is the ratio between the
amplitude of the basal undulations and the mean ice thick-
ness, ! ˆ 2º=L, where L is the wavelength of the basal
undulations, and s is the distance in the direction of flow.
Using Reeh (1987) it can be shown that in the plane-flow
case the Fh product is approximately

Fh ˆ F0h0…1 ¡ cd cos…!s†† ; …20†
where F0 is the F factor of the mean flow and c a dimension-
less parameter in the range [0; 1], depending on the h0=L
ratio, ice properties, etc. A typical value is c ˆ 0.5. Equation
(20) shows that the variation over the undulation of Fh is
reduced by a factor c as compared to the h variation.

If the ice-thickness distribution was known in a dense
grid, a glacier flow model could in principle be used to cal-
culate c and thus an accurate F h value for each gridpoint.
For the less detailed ice-thickness distribution of our Stor-
strÖmmen example, the latter term of the righthand side of
Equation (20) is not known at the gridpoints, and therefore
must be treated as an error term.

Bias in the F value is denoted  F . In order to simplify
the error analysis, the bias is assumed constant for all grid-
points within the filter.

5.2.3. Effect of grid averaging
For the error analysis, the E and N terms in Equation (18)
are treated separately but similarly. According to the dis-
cussion in section 5.2.2, we write F and h as

F true ˆ …F grid ‡  F †‰1 ‡ …1 ¡ c†d cos…!s ‡ ’†Š …21a†
htrue ˆ …hgrid ‡  h†‰1 ¡ d cos…!s ‡ ’†Š ‡ "h : …21b†
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The ice-thickness noise, "h, is assumed independent from
gridpoint to gridpoint. The phase of the unknown bottom
undulations, ’, and ice-thickness bias,  h, are assumed fully
correlated for all gridpoints along one border of the filter,
but values on the different sides of the filter are assumed
uncorrelated. The bias in F ,  F, is assumed constant for all
gridpoints.

Errors of ve are neglected for the moment, but will be
treated in section 5.3. Ignoring second- and higher-order
terms, we may express an Em;j value at a gridpoint …m; j† as

Em;j ˆ
©

Fm;jhm;j 1 ¡ cd cos…!j¢n ‡ ’†‰ Š
‡ Fm;j…"h ‡  h† ‡ hm;j F

ª
ve m;j :

…22†

For clarity, indices of the error terms, i.e. ’, "h,  h and  F ;
are omitted. After some calculations (see Appendix B), we
find

¼V º
n F0h0vH

¢x…2m ‡ 1†

³ ´2h 1

2m ‡ 1

¼"h

h0

³ ´2

‡ 2
¼ h

h0

³ ´2

‡ 2mcd

2m ‡ 1

³ ´2i
‡ ¼ F

F0

³ ´2

V
2

e ‡ V
2

n

± ²o1
2

…23†

for the rms of the error in the vertical velocity, ¼V, caused by
errors in the …Fh† term. In Equation (23), ¼"h

, ¼ h
and ¼ F

are the rms values of "h,  h and  F , respectively. To simplify
Equation (23), the center-point (or average) values F0, h0

and vH are introduced. The terms V e and V n are the emer-
gence/submergence velocities originating from east^west
and north^south FD, respectively. In Appendix B, alterna-
tive expressions for V e and V n are given.

5.3. Flux divergenceö interferometric errors

This subsection addresses errors in the derived vertical
velocity, vu, originating from the interferometric velocity
term, ~vH, in the flux divergence, i.e. ¡div…Fh~vH† in Equa-
tion (1c). For the error analysis we ignore again the coupling
between Equations (1c) and (5).We consider:

Noise; independent from gridpoint to gridpoint.

Undulations; with some point-to-point correlation.

Biases; i.e. long scale variations.

Noise on the horizontal ice velocity is denoted "ve and "vn

for the east and north components, respectively.
Velocity undulations, ¢ve and ¢vn, of the east and

north velocity components are here modelled as

¢ve ˆ
���
2

p
Ave cos…!es ‡ ’e† …24a†

¢vn ˆ
���
2

p
Avn cos…!ns ‡ ’n† ; …24b†

where Ave and Avn are the rms values of the distortions, !e

and !n the unknown spatial frequencies, and ’e and ’n the
unknown phases. Undulations could, for example, be
caused by atmospheric distortions or a dry snow layer.

Velocity biases are denoted  ve and  vn for the east and
north components, respectively. In order to simplify the
error analysis, the biases are assumed constant for all grid-
points. A bias could, for example, be caused by a baseline
calibration error.

5.3.1. Effect of grid averaging
Similar to section 5.2.3, we write

Em;j ˆ Fm;jhm;j

£
ve m;j ‡ "ve

‡
���
2

p
Ave cos…!e¢n ‡ ’e† ‡  ve

¤ …25†

for an E term. For clarity, indices of the error terms, i.e. "ve ,
’e and  ve, are omitted. The noise on the velocity, "ve, is
assumed independent from gridpoint to gridpoint. The
phase of the unknown velocity undulations, ’e, is assumed
fully correlated for all gridpoints along one border of the fil-
ter, but values on the different sides of the filter are assumed
uncorrelated.The velocity bias,  ve, is assumed constant for
all gridpoints. Carrying out the analysis similar to that for
the F h term yields

¼V º
»

F0h0

¢x…2m ‡ 1†

³ ´2µ 1

2m ‡ 1
¼2

"vH
‡ 2

2m

2m ‡ 1

³ ´2

A2
vH

¶

‡ ¼2
 ve

@F h

@e

³ ´2

‡ ¼2
 vn

@Fh

@n

³ ´2¼1
2

; …26†

where ¼"vH
is the rms value of the horizontal velocity noise,

AvH the rms of horizontal velocity undulations, and ¼ ve
and

¼ vn
the rms of the velocity bias in the east and north direc-

tions, respectively.

6. ASSESSMENT OF INTERFEROMETRIC ERRORS

In this section, errors in the interferometric measurements
of the horizontal velocities and surface elevations are quan-
tified. The aim is to compile a table with typical values for
the impact of different error sources. ERS-1/-2 data from
StorstrÖmmen, northeast Greenland (Reeh and others,
2003), are used as an example. The characteristics of the
data are summarized inTable1.

The area covered by both satellite and ice-sounding
radar measurements is approximately 30 km by 80 km.
The glacier is building up from a surge. The vertical emer-
gence velocities range from up to 6 m a^1 in the northwestern
upper part to around 0 m a^1 in the southern lower part.
The corresponding horizontal velocities are between 260
and 0 m a^1.

It is emphasized that it is not possible to compile a gener-
ally applicable error budget.The magnitude of the errors has
to be calculated on a case-by-case basis based on acquisition
geometry (baselines and latitude), processing approach
(interferometric configuration, number of GCPs, etc.) and

Table1. Characteristics of theERS-1/-2C-band (¶ˆ 0.0566 m)
example data from StorstrÖmmen (Reeh and others, 2003)

Date B? ®i ®r

m

D1 28 October1995 ^19 0.90 0.95
D2 2 December1995 1 0.80 0.90
A1 31January1996 ^139 0.65 0.85
A2 10 April 1996 20 0.85 0.95

Notes: Interferograms D1 and D2 were acquired from descending orbits, A1

and A2 from ascending; all tandem data with T ˆ 1day. At mid-swath
the slant range is R ˆ 860 km, the incident angle ³ ˆ 23³, and the track
angle Á ˆ 28³ (Equation (A1)). Dates are for the ERS-1 images. B?
denotes orthogonal baseline. Typical correlation values for ice, ®i, and
rock, ®r, are from Mohr (1997, p.59^62).
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the characteristics of the glacier (penetration depth, flow dir-
ection, stationarity of flow, etc.).

6.1. Summary of interferometric error budget

The error budget for the direct effects of interferometric errors
in the example data used is presented in Table 2. Each of the
contributions is described in separate subsections below.

For reasons also described below, we consider the atmos-
phere andbaseline errors (closely related to the atmospheric
phase delays) the major error sources. With a 0.3 cm rms
atmospheric path-length error, the combined effect of
atmospheric and baseline errors in the area of interest is
typically 6.2 m a^1 rms for the horizontal velocity and 16 m
rms for the elevation. This is in line with the empirical
results from Mohr and others (1998) and Reeh and others
(2003). It is noted that for larger areas of interest and for
more humid climates, significantly larger atmospheric
path-length distortions, and thus also baseline calibration
errors, could be expected.

6.2. Geometric calibration

The effect of misregistration between ascending- and des-
cending-orbit interferograms is ignored as glacier velocities
in Greenland and Antarctica typically vary slowly. How-
ever, it should be noted that the processing system used in
Reeh and others (2003) was not fully calibrated geometri-
cally, so the co-registration error is likely to be slightly
larger than estimated here.

6.3. Interferometric path-length distortions

In this subsection, path-length distortions caused by the
atmosphere and dry snow are assessed.

6.3.1. Atmosphere
Atmospheric path-length distortions may originate from
both the ionosphere and the troposphere (Tarayre and
Massonnet,1996).

Ionospheric irregularities typically have greater spatial
correlation lengths than tropospheric irregularities (Hanssen

and others,1999). Over the small scales relevant in the pres-
ent study, ionospheric distortions are only significant during
unusual conditions, as the interferometric product is cali-
brated with GCPs spaced at most a few tens of kilometers
from the study area (Gray and others, 2000). Thus, in the
present error analysis, ionospheric distortions are ignored
as a separate error source, but are lumped together with
the tropospheric path-length distortions.

The spatial characteristics of tropospheric path-length dis-
tortions are significantly different from day to day (Hanssen,
1998). Typical values for the spatially non-linear phase distor-
tions (tropospheric and ionospheric) over a 21km by 21km
arctic area are foundto be §0.5 cm peakto peak, correspond-
ing to §1rad (Mattar and others, 1999). This is consistent
with other reports. In the following analysis, we use 0.3 cm
rms for the atmospheric path-length variation.

Given 0.3 cm path-length distortions in each of the four
example interferograms, the effect on the decomposed line-
of-sight velocities and elevations is calculated from Equa-
tions (2) and (3). The results are given inTable 3. The com-
bined rms error is, using Equations (4) and (6) and thus
assuming surface-parallel flow, found to be 2.1m a^1 in ve

and 3.9 m a^1 in vn. Thus, the total horizontal velocity error
is 4.4 m a^1 rms, as listed inTable 2. In our approach, the sur-
face elevation is determined from the ascending-orbit inter-
ferograms only, and thus the total elevation error is 9 m rms
as listed inTable 2.

The small spatial baselines of the descending-orbit data
of course reduce the accuracy of the elevations (Equation
(2)). However, since the baseline ratio is close to zero, the
accuracy of the velocities is not severely affected (Equation
(3)). The geocoding accuracy, which is important when
ascending- and descending-orbit data are combined, is
degraded, but this could in principle be circumvented by
using the ascending-orbit DEM as topography reference
for the velocities derived from descending-orbit data.

6.3.2. Dry snow
The effective path-length delay for a pixel is determined by
the average value of the snow-layer thickness difference
between the individual SAR acquisitions. Thickness vari-
ations within an interferogram pixel, which typically has a
size of 50 m by 50 m, or more, will cause phase decorrelation.
Since the interferograms are calibrated with GCPs, it is the

Table 2. Effect of different error sources using the example
data fromTable 1

Interferometric error
Source ¼ve ¼vn ¼vH ¼h Note

m a^1 m a^1 m a^1 m

Atmosphere1 2.1 3.9 4.4 9 0.67 rad
Dry snow2 3.9 7.5 8.5 17 [0;10] cm
Phase noise3 0.3 0.6 0.7 2 ice
Phase noise3 0.2 0.4 0.4 1 rock
Baseline4 2.1 3.9 4.4 13 in AOI
A^A ~v"

5 0 0 0 3 2.0 m a^1

D^D ~v"
5 0 0 0 26 2.0 m a^1

A^D ~v"
6 0.5 1.8 1.9 0 2.8 m a^1

Atm.+Basl.7 3.0 5.5 6.2 16 in AOI

Notes: 1A non-linear phase error with a 0.67 rad rms. 2A homogeneous layer
in each pixel, with a rectangular thickness distribution of 0^10 cm from
pixel to pixel. 3Twenty looks and correlationvalues fromTable1. 4Typical
values within the area of interest (AOI) enclosedby the six GCPs. 5Effect
of a 2.0 m a^1 horizontal flow change averagedover all directions. 6Effect
of a 2.8 m a^1 horizontal flow change averagedover all directions. 7Com-
bined atmospheric and baseline error.

Table 3. Effect of a 0.3 cm path-length error (i.e. 0.67 rad)
applied successively to each of the StorstrÖmmen interferograms
inTable 1

¢hd ¢ha ¢vd ¢va ¢ve ¢vn

m m m a^1 m a^1 m a^1 m a^1

D1 50.4 0 0.05 0 ^0.08 0.15
D2 ^50.4 0 1.04 0 ^1.51 2.84
A1 0 6.3 0 0.14 0.20 0.38
A2 0 ^6.3 0 0.96 1.39 2.61

Notes: The descending elevation error, ¢hd, in the double-difference solu-
tion is calculated from Equation (2), using the D1, D2 baselines.The des-
cending line-of-sight velocity error, ¢vd, is calculated from Equation (3).
The ascending elevation and line-of-sight velocity errors are calculated
likewise. The corresponding horizontal velocity errors, ¢ve; ¢vn, are
calculated from Equations (4) and (6).
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spatial variations of the average snow layer from pixel to pixel
which cause path-length distortions, not the average value.

The standard formula for the relative dielectric constant,
", as a function of the snowdensity, »s, fordry non-dense snow
is " ˆ 1 + 0.0019»s (Ulaby and others, 1986, p.2063), which is
consistent with Ma« tzler (1996). Awind-compacted snow layer
with a density of 250 kg m^3 is hence found to have a relative
dielectric constant of approximately 1.5 corresponding to an
index of refraction of 1.2. The index of refraction decreases to
1.1for newly fallen snow with a density of 100 kg m^3.We here
proceed using a 10 cm snow layer with an index of refraction
1.2, which thus causes a 2 cm delay difference.

At a glacier like StorstrÖmmen, it is expected that a dry
snow layer will be distributed unevenly. Assuming a rectan-
gular distribution between 0 and10 cm for the average snow
layer from pixel to pixel, the path-length variation is thus 2
=

�����
12

p
º 0.58 cm rms. The effect of such a differential snow

layer simultaneously but statistically independent in each of
the four interferograms is shown inTable 2.

However, it seems reasonable to ignore the dry-snow
contribution as a significant error source for the example
data. We did not observe significant decorrelation in any of
the interferograms, which would indicate a precipitation
event. This is considered the normal situation, since the
snowfall on StorstrÖmmen is limited (most likely 50.5 m
snow per year) and since the precipitation events only affect
the interferometric measurements if coincident with one or
more of the four 1day periods of SAR acquisition.

6.4. Interferometric phase noise

For the StorstrÖmmen example, the number of looks is
approximately 20, large enough for Equation (7) to be used
to represent phase noise. Observed correlation values for
rock and ice are provided inTable1 for each of the four inter-
ferograms. Converting the correlationvalues to phase noise,
combined with the results presented in Table 3, yields the
estimated phase-noise error terms presented in Table 2. It
should be noted that these values are applicable for the com-
parison with pole measurements presented in Mohr and
others (1998), but during the derivation of the vertical emer-
gence/submergence velocity presented in Reeh and others
(2003) a further averaging was applied, which reduced the
phase variance with a factor on the order of 10.

6.5. Baseline calibration

For the example data, the number of GCPs is 6. Although two
GCPs are located within 8 km of each other and two within
11km, the phase distortions are assumed uncorrelated
between the pixels where GCP calibration is performed, i.e.
§ ˆ ¼I, where I is the unity matrix of order n. Note that for
a denser GCP network, it is important to include the co-
variance structure of the (atmospheric) phase noise in §.This
structure is discussed, for example, in Williams and others
(1998). In Figure 3, the spatial variation of ¼’0

c
…x; y† is shown

assuming ¼ ˆ1rad at the six GCPs in the example data. It is
observed that in the area enclosed by GCPs the standard devi-
ation of the calibration residual is typically1rad. In line with
Joughin and others (1996), it is also seen that outside the area
enclosed by GCPs the errors increase rapidly.

For the evaluation of the baseline contribution to the
velocity errors, only phase noise and atmospheric distur-
bances are included. Disturbances due to a dry snow layer
are unlikely, as argued above. From Figure 3, it is seen that

within the area in the example data enclosed by GCPs, the
baseline error is typically equal to the error at the GCPs. A
typical value for the rms velocity errors is thus estimated to
be equal to the velocity errors originating from the atmos-
phere and phase noise (Table 2). In most cases, though, we
use a spatially varying velocity error (of baseline calibration
origin), based on the factor ¼’0

c
=(1rad) times the combined

error originating from the atmosphere and phase noise.
With respect to elevation, the elevation errors on the

GCPs also have to be included. Assuming a 10 m rms error
on the GCPs, the corresponding phase error terms are,
using the baselines from Table 1, found to be 0.92 rad and
0.13 rad for A1 and A2, respectively. Again ignoring the
dry-snow contributions, adding the phase noise and atmos-
pheric disturbances and using the results fromTable 3 yields
an elevation rms error of 13 m originating from improper
calibration of baselines (Table 2).

6.6. Non-stationary flow ö same orbit family

For the example data, the baseline values for the ascending-
orbit data have different signs (Table 1). This implies that in
the case of a non-stationary flow, the derived line-of-sight
velocity (displacement rate) will be a weighted average of
the velocities at the two interferogram observation periods
(Equation (11)). Thus, the derived velocity has been present
at least at one instant in the period from the acquisition of
the first to that of the last SAR image. In other words, the
line-of-sight velocities derived from the ascending-orbit

Fig. 3. StorstrÖmmen glacier, northeast Greenland. Phase (base-
line) calibration errors in radians in one example interferogram
assuming a 1rad uncorrelated rms noise at the GCPs. All four
example interferograms are calibrated using the six GCPs indi-
cated by the grey `̀ ‡’’symbols.The location of the area is indi-
cated by the insert. The light-gray area is covered by SAR
interferometry.The dark gray area is additionally covered by
ice-sounding radar. Arrows indicate line-of-sight directions
from ascending and descending orbits at the center of the area.
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interferograms are correct for at least one specific but
unknown epoch in the period between the acquisitions. The
same argument applies to the descending-orbit data. The
baseline ratios of 1/7 and 1/19 for ascending- and descending-
orbit data, respectively, though, give large weights to the
velocities at the acquisitions with short spatial baselines.

A non-stationary flow will, on the other hand, change the
measured elevations. The change of line-of-sight velocity
being known, the impact on the measured elevation can be
calculated from Equation (12). For the StorstrÖmmen
example, it is unknown whether or not the velocity changes
during the winter, since there are no global positioning
system (GPS) measurements fromthe winter. It is knownthat
the summer velocities over much of the glacier are larger
than the annualmeans.We believe that the increased summer
velocity is caused by meltwater penetrating to the bottom
and thereby enhancing sliding. During winter (September^
May) there is no meltwater, so we assume a negligible seasonal
velocity variation during the observation period. GPS meas-
urements of surface velocities during the observation period
(1992^95) show a general decrease on the order of 10 ma^1 per
year (Reeh and others, 2003). If assumed to be uniform, this is
a decrease of 2 ma^1 during the observationperiod.

Using Equation (12), and the interferogram parameters
fromTable 1, it is found that a 1m a^1 change in the across-
track component of the horizontal velocity causes a ^2.3 m
change in the measured elevation. Changes in the along-
track direction have no effect, as these do not change the
line-of-sight velocity. If the flow change is averaged over all
directions, the rms error is reduced to 2.3=

���
2

p
ˆ1.6 m.Thus,

a 2 m a^1 rms horizontal across-track velocity change cor-
responds to 3.2 m rms (Table 2).

6.7. Non-stationary flow ö different orbit family

From Equation (13) it is seen that the ratio of the flow meas-
urement error and the flow change jv̂"j=2 is between tan Á
and1= tan Á.The direction of the flow measurement error is
not necessarily aligned with the direction of the flow
change.Thus, for our study area, where Á º 28³ (see Equa-
tion (27)), a 1m a^1 flow change between the ascending- and
descending-orbit acquisitions will at most result in a
0.9 m a^1 deviation from the average value.

For StorstrÖmmen, flow changes are expected to be
primarily in the direction of the flow. This is supported by
repeated measurements of positions of poles drilled into the
ice. The pole measurements also suggest that the potential
flow changes are rather independent of flow magnitude,
except for the areas with very small or zero velocities. Since
the flow directions are varying over a large azimuth inter-
val, the correct approach would be to compile a map with
the effect of a potential flow change. However, as shown
below, the effect is expected to be less important than atmos-
pheric distortions and baseline calibration errors. There-
fore, we simplify the error analysis to provide one number
for the effect instead of a map. This is done by estimating a
value for the standard deviationof the potential flow change
and assuming an unknown direction. For other glaciers,
with a more unidirectional flow, it might be more appropri-
ate to assume a fixed direction of the flow change.

If a flow change, ~v", is assumed having a magnitude of
1ma^1 and averaging over all directions, the east and north
errors are found to be tan Á=…2

���
2

p
† ˆ 0.19 ma^1 and

cot Á= …2
���
2

p
† ˆ 0.66ma^1 rms, respectively, for the StorstrÖm-

men example (Equation (13)). As described above, no direct
information is available on the flow changes during winter.
Again, a 10 m a^1 change per year is assumed, correspond-
ing to 2.8 m a^1 in the period between the ascending- and
descending-orbit interferograms with the shortest spatial
baselines.Thus, the errors due to flow changes are estimated
to be 0.5 m a^1 in the east direction and1.8 m a^1 in the north
direction, i.e. 1.9 m a^1 horizontally (Table 2).

Since the non-stationary flow contribution is small com-
pared to the atmosphere and baseline errors and since we
have no clear evidence for the phenomena, we do not con-
sider the non-stationary flow a major error source for our
example data.

7. ASSESSMENT OF SURFACE-PARALLEL FLOW
ERRORS

Equation (15) describes the error in the vertical velocity ori-
ginating from the surface-parallel flow term, i.e. the left-
hand side of Equation (1c). It depends on the magnitude
and error of the horizontal velocity and the error in the sur-
face normal.

For the example data, the surface slope is generally 50.01,
but it reaches 0.06 in a fewareas.This implies that the 6.2 ma^1

rms on the horizontal velocity scales down to 50.36 ma^1 rms
on vu, and in most areas even less than 0.06 ma^1.

The surface slope errors are more difficult to quantify,
even when the phase noise and baseline calibration errors
are ignored, so that distortions of the surface elevation meas-
urements caused by the atmospheric path-length changes are
the primary error source. Assuming a sinusoidal distortion
with a wavelength L, a §A

���
2

p
m amplitude, and averaging

over all directions of the slope error, the slope error is found
to be 2ºA=L rms in one specific direction. For A ˆ 9 m and
L ˆ 10 km, the slope error is thus 0.0057 rms. For horizontal
velocities of 0 ^260 m a^1 in the study area, the resulting error
in vu is thus 0^1.5 m a^1 rms.

The combined effect of east velocity errors, north
velocity errors and slope errors is shown in Figure 4a. Note
that in this figure the spatial variation of the baseline error
(see Equation (10)) is taken into account. The values are
0^1.4 m a^1 in the area of interest.

8. ASSESSMENT OF FLUX-DIVERGENCE ERRORS

8.1. Flux-divergence error assessmentö …Fh† errors

In section 5.2 above, five types of errors are considered: noise,
bias and grid interpolation errors in ice thickness h, errors
due to undulations in F, and bias in F. The resulting error
in the vertical velocity can be calculated by using Equation
(23). In this subsection, the magnitude of each contribution,
required for an application of Equation (23) is assessed, and
the results for our StorstrÖmmen data shown in Figure 4b.

8.1.1. Noise in ice-thickness measurements
The top and bottom echoes from ice-sounding radars are
located using the shape of the received (and averaged)
radar pulses. The accuracy depends on the thermal noise.
The varying signal to clutter level of the bottom echo might
also disturb the location algorithm, in effect adding noise.
For our ice-radar measurements we assume a radar noise
term of 6 m rms (Christensen and others, 2000).

In addition, there are uncertainties from short-scale
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variations of h that are smoothed out in the interpolation
procedure we use to form a 500 m by 500 m grid of eleva-
tions from the ice-thickness profiles. Comparing the meas-
ured ice thickness along the radar flight-lines with the
corresponding smoothed ice thickness of the gridded model
shows a standard deviation of 12.5 m. The 12.5 m includes
both real variations in the ice thickness and noise in the ice
radar measurements. Since the gridding procedure includes
averaging, the error at a gridpoint is primarily due to ice-
thickness variations, and thus smaller than 12.5 m, since a
part of the 12.5 m is caused by radar noise.

We will, however, use ¼"h
ˆ 12.5 m and assume it to be

uncorrelated from gridpoint to gridpoint.

8.1.2. Bias in ice-thickness measurements
There are several effects which potentially cause biases in the
ice-radar measurements. A firn/snow layer with unknown
thickness and dielectric properties, and thus an unknown
wave propagation speed, could be present, but this is not the
case for the example dataset, which is in the ablation zone.
Water on the surface or water percolating into the ice could
also change the dielectric constant. During the ice-radar
measurements, lakes were present at the surface, but corres-
ponding disturbances in the radar echoes were not detected.
Varying surface and bottom echo amplitudes may also bias
the echo location algorithm. Finally, bottom undulations
cause a bias as the radar detects the closest echo, not the nadir
echo. In total a bias of up to 10 m is (somewhat arbitrarily)
assumed. Assuming a rectangular distribution, the rms
becomes ¼ h

ˆ 20=
�����
12

p
m.

8.1.3. Grid interpolation error in ice thickness
Inspection of the measured thickness profiles in the upper
region of the glacier, where the ice thickness is 600^800m,
shows that sub-ice relief is characterized by amplitudes of
approximately 100 m with wavelengths of approximately
10 km. Nearer to the glacier terminus, both the ice thickness
and the amplitude of the basal relief decrease. As the dis-
tance between the ice-radar flight-lines is 5 ^10 km, thick-
ness variations in between the flight-lines on these length
scales will not be picked up by the gridding procedure, sug-
gesting that the relative error of a grid value of h could be
10% or more. On average we assume a magnitude of the
relative thickness undulations of d ˆ 0.1.

8.1.4. Short-scale undulations of F
Flow over basal irregularities causes variations of the F fac-
tor, which reduce the effect of unknown ice-thickness vari-
ations by a factor c (Equation (20)). We assume a constant
value of c ˆ 0.5.

8.1.5. Long-scale variations of F
At StorstrÖmmen, variations of F with spatial correlation
lengths of tens of kilometers are expected due to changes in
the basal sliding conditions. The observed increase of the
ratio of summer velocities to mean annual velocity along
the glacier (Reeh and others, 2003) indicates that, when
approaching the glacial terminus, basal sliding constitutes
an increasing fraction of the forward motion of the glacier.
Accordingly, the F factor will increase along the glacier
during summer months. Avariation from F ˆ 0.9 (no basal

Fig. 4.Vertical velocity errors from the surface-parallel flow and FD terms, for the StorstrÖmmen example. (a) Rms of vertical
velocity errors (see Equation (15)), originating from the surface-parallel flow term.We use ¼ve

ˆ 2.1m a 1̂(atmosphere), ¼ve
ˆ

2.1¼’0
c
…x; y†m a 1̂(baseline), ¼vn

ˆ 3.9 m a 1̂(atmosphere), ¼vn
ˆ 3.9¼’0

c
…x; y† m a 1̂(baseline) and ¼@S=@x ˆ 0.0057. (b)

Rms of vertical velocity errors (see Equation (23)), originating from the Fh term in the flux divergence. In the calculation of flux
divergence we use F0 ˆ 0.95 (constant), a grid with ¢x ˆ 500 m, and a box filter with m ˆ 10.The errors assumed are ¼"h

ˆ
12.5 m (normal distribution), ¼ h

ˆ 20=
�����
12

p
m (rectangular distribution), ¼ F

ˆ 0:1=
�����
12

p
(rectangular distribution), c ˆ

0.5 (typical value) and d ˆ 0.1 (i.e. §10%). (c) Rms of vertical velocity errors (see Equation (26)), originating from the
interferometric velocity term in the flux divergence.With the same inversion parameters as in (b) we use ¼"vH

ˆ 0.7 m a 1̂(phase
noise), AvH

ˆ 4.4 m a 1̂ (atmosphere), ¼ ve
ˆ 2:1¼’0

c
…x; y† m a 1̂ (baseline), and ¼ vn

ˆ 3:9¼’0
c
…x; y† m a 1̂ (baseline)

(Table 2). All maps are in Universal Transverse Mercator (UTM), zone 27, with the lower left corner at (435 000, 8 515 000),
and10 km between grid ticks.World Geodetic System1984 (WGS84) datum. Dots and numbers indicate positions of stakes used in
the companion paper (Reeh and others, 2003).
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sliding) to F ˆ 1 (fully developed basal sliding) can be
expected. The InSAR velocities are measured in the winter,
when observations indicate that basal sliding is less devel-
oped (Reeh and others, 2003). Nevertheless, for the calcula-
tion of the FD term, we use a constant F ˆ 0.95, and assume
a bias of §0.05 with a rectangular distribution, i.e. F0 ˆ0.95
and ¼ F

ˆ 0:1=
�����
12

p
m in Equation (23).

8.2. Flux-divergence error assessmentö interfero-
metric errors

In section 5.3 above, three types of errors are considered:
noise, undulations, and bias of the horizontal velocity, ~vH.
The resulting error in the vertical velocity canbe calculated
by using Equation (26).The magnitude of each contribution
required for an application of Equation (26) is assessed in
this subsection, and the results for our StorstrÖmmen data
shown in Figure 4c.

8.2.1. Noise
Phase noise is assumed to have a normal distribution. The
effect of the noise is summarized inTable 2, i.e. ¼"vH

ˆ0.7 ma^1.

8.2.2. Undulations
Of the error sources considered in section 6 above, the
atmosphere and dry snow potentially cause velocity undula-
tions. For the reason explained in section 6.3 above, the
effect of dry snow is ignored. This leaves the atmosphere as
the primary error source, i.e. AvH

ˆ 4.4 m a^1.

8.2.3. Biases
The effect of a baseline calibration error is independent of
the actual glacier velocities.The baseline error (see Equation
(10)) is slowly varying within the FD filter area, but this vari-
ation is neglected.The effect of baseline calibration errors is
summarized in Table 2, but here we take into account the
spatial variation described by Equation (10). We use ¼ ve

ˆ
2.1¼’0

c
…x; y† m a^1 and ¼ vn

ˆ 3.9¼’0
c
…x; y† m a^1.

9. RESULTS

This section describes how the final error budget for the
three velocity components, ve; vn; vu, is compiled.

The first step is to compile a table similar toTable 2 using
the approach described in section 6 above. From this analysis
the error in ve can be found. For our example dataset, the
major error source is the atmospheric disturbances which also
indirectly affect the accuracy through the spatially varying
baseline error (Equation (10)). The rms value of the ve error
is shown in Figure 5a.

The error in the vn and vu components requires further
analysis since they cannot be found from the interferometric
measurements alone (Equation (5)). Our approach to separ-
ate the vn and vu components includes a surface-parallel
flow assumption. The corresponding error in the vertical
velocity can be estimated using Equation (15), in conjunc-
tion with results fromTable 2 and Equation (10). Dependent
on the origin of the surface DEM, the analysis may differ
slightly from the one described in section 7. The result is
shown in Figure 4a.

If the FD assumption is also applied, we estimate the
corresponding errors in the vertical velocity by using Equa-
tions (23) and (26), in conjunction with results fromTable 2
and Equation (10).The results are shown in Figure 4b and c.

The error in vu can now be calculated as the sum of the
three vertical velocity error terms from Figure 4.The result
is shown in Figure 5c.

With the above approach, the coupling between vn and
vu is ignored. In the error analysis, we account for the cou-
pling by assuming that vu errors are independent of the dir-
ect interferometric errors in vn. In the error assessment for
vn, the coupling between vu and vn is then accounted for by
adding the vu errors scaled by a factor cot ³= sin Á (see
Equation (5)) to the direct effects of errors in the interfero-
metric measurements.

For the direct effects of interferometric errors in our

Fig. 5. Final …ve; vn; vu† error estimates for the StorstrÖmmen example data. (a) Rms of the east velocity (ve) errors found by
combining a constant error of 2.1m a 1̂(atmosphere) and a spatially varying error of 2.1¼’0

c
…x; y†m a 1̂(baseline). (b) Rms of

the north velocity (vn) errors found by combining a constant error of 3.9 m a 1̂(atmosphere) and a spatially varying error of
3.9¼’0

c
…x; y† m a 1̂(baseline) with the vertical velocity error from (c) scaled by a factor cot 23³/sin28³º 5.0. (c) Rms of the

vertical velocity component (vu) errors found by combining the results from Figure 4a^c. Map projection as in Figure 4.
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example data, we use a constant of 3.9 ma^1 for the vn error
(atmosphere) and a spatially varying vn error of 3.9¼’0

c

…x; y† ma^1 (baseline).The scale factor for vu errors is cot 23¯=
sin 28¯ º 5.0, resulting in a vn error as shown in Figure 5b.

10. CONCLUSIONS

In this paper, a model for a differential interferometric
radar system has been developed. It is shown that by using
observations from two look directions (e.g. ascending- and
descending-orbit data) one velocity component, typically
the east component ve, can be found unambiguously. In
order to separate the two other components, typically vn

and vu, additional information or assumptions are required
(e.g. an assumption of surface-parallel flow).With the com-
bination of interferometric measurements from different
epochs, a stationary-flow assumption is furthermore
needed. It is shown that if the spatial baselines are of differ-
ent sign, non-stationary flow between acquisitions from the
same orbit family (e.g. ascending) results in a measured
displacement which has actually occurred at a specific but
unknown epoch between the two observations. The error
arising from non-stationary flow between different orbit
family acquisitions is also quantified.

Relations between interferometric phase errors and dis-
placement andelevation measurements havebeen developed.
These relations include an equation which relates the phase
noise and the position of GCPs to corresponding phase errors
after baseline calibration. This is used to compile an error
budget for our example data from StorstrÖmmen (Reeh and
others, 2003), including the effect of the atmosphere and
phase noise.

A relation between surface slope and velocity errors and
the corresponding surface-parallel-flow vertical velocity has
been developed. Also, a method for quantifying the vertical
velocity error corresponding to the FD term was established.
This includes both errors from the Fh term and errors from
the horizontal velocity, ~vh.

For our StorstrÖmmen example, the rms error of the FD
vertical velocity component relative to the magnitude of this
component is typically 530% in areas with FD compon-
ents 41.0 m a^1. The magnitude of the FD component is
between ^2.3 and 6.2 m a^1, with typical values between
^0.5 and 2.5 m a^1.
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APPENDIX A

The sensitivity of the three-dimensional interferometric
measurements depends on the angle of incidence, ³, and
the angle of the ground swath track, Á, for the ascending-
and descending-orbit data which are combined.

The ground swath track angle, Á, measured clockwise
relative to north, depends on the target latitude, ¿, the orbit
inclination, i, the angle, y0 ˆ y=Re, between the ground
swath track and the nadir track, where y is the ground swath
track distance (positive to the right), the Earth radius, Re,
and the Earth rotation, !E. If Earth rotation is ignored,
the Earth assumed spherical, and the orbit circular, the
track angle, Ás, can be calculated from

sin Ás ˆ § cos i ‡ sin ¿ sin y0

cos ¿ cos y0 ; …A1a†

where `̀ ‡’’applies to ascending and `̀ ¡’’ to descending orbit
arcs. Note, Á is in the interval ^90³ to +90³, so it will change
sign at the northern- and southernmost points of the orbit.
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The Earth rotation contributes an additional latitude-
dependent term, with a numerical value of approximately
3.5³ at the Equator, decreasing gradually to zero at the
northern-/southernmost points of the orbit. The resulting
track angle, Á, can be approximated by

tan Á ˆ vS sin Ás ¨ vE cos ¿

vS cos Ás
; …A1b†

where vE ˆ !ERE denotes the Earth rotation velocity at the
Equator, vS is the satellite ground velocity, and `̀ ^’’ and `̀ +’’
apply to ascending and descending orbit arcs, respectively.
The accuracy of Equation (A1) is sufficient for error analysis,
but not for actual three-dimensional velocity decomposition,
which should be based on the actual state vectors.

APPENDIX B

In this appendix an expression for the error in the vertical
velocity caused by uncertainties in Fh in the FD term of
Equation (1c) is derived.

Because of the correlation of some of the error sources, it
is convenient first to consider the variance of the sum of E
values along lines parallel to the filter boundaries. Accord-
ing to the discussion of the Fh errors in section 5, we may
write the sum of Em;j, given by Equation (22), along one of
the filter boundary lines as

Xjˆm

jˆ¡m

Ep;j ˆ
Xjˆm

jˆ¡m

£
Fp;jhp;j 1 ¡ cd cos…!j¢n ‡ ’p†

£ ¤

‡ Fp;j…"hp;j
‡  hp

† ‡ hp;j F

¤
vep;j

;

…B1†

where the relevant values for p are {^ (m + 1), ^m; m; m + 1}.
The bottom undulation term is described by the constants c,
d, ! ˆ 2º=L, and ¢n and an unknown phase, ’p, assumed
equal for adjacent p values and uncorrelated from one side of
the filter to the other.The ice-thickness noise, "hp;j, is assumed
independent from gridpoint to gridpoint. The ice-thickness
bias,  hp

, is assumed equal for adjacent filter boundary lines
but uncorrelated from one side to the other. The F bias,  F,
is assumed constant over the entire filter.

First the cosine error term is considered. Replacing Fp;j,
hp;j and vep;j

with their mean values along the boundary line
Fp;0, hp;0 and vep;0, approximating the summation with an
integral, and introducing the filter length relative to the
wavelength of the basal undulation, L0 ˆ 2m¢n=L, yields

Xjˆm

jˆ¡m

Fp;0hp;0vep;0 cd cos…!j¢n ‡ ’p†

º 2mFp;0hp;0vep;0 cd
sin ºL0

ºL0 cos ’p

º 2mFp;0hp;0vep;0 cd cos ’p ;

…B2†

where the worst-case value of 1 for sin…x†=x is assumed.
With an unknown phase of the basal undulation the vari-
ance of the term is 2…Fp;0hp;0vep;0 mcd†2.

For the remaining error terms it is also acceptable to
replace Fp;j, hp;j and vep;j

with their mean values. Taking

the correlation into account, the total variance, ¼2
§Ep;j

of a
§Ep;j term becomes

¼2
§Ep;j

ˆ …Fphpvep
†2 2…mcd†2

‡ …Fpvep
†2 …2m ‡ 1†¼2

"h
‡ …2m ‡ 1†2¼2

 h

h i

‡ …hpvep
†2 …2m ‡ 1†2¼2

 F
;

…B3†

where ¼"h and ¼ h are the rms of the noise and bias for an
individual gridpoint, respectively, and ¼ F the rms of the F
bias. In order to simplify the notation in Equation (B3), we
have omitted the subscript 0 in all quantities.

Analogous expressions can be derived for the variance of
the other §Ep;j terms in Equation (18). The contribution to
the variance, ¼2

E, of the smoothed FD terms from all four
§Ep;j terms is found by combining the variances with due
consideration of the degree of correlation between the differ-
ent sub-contributions. For calculation of the variance contri-
bution from the bias term,  F, which has a correlation
coefficient of 1within the entire filter, we use the approxima-
tion F‡ ˆ Fm ˆ Fm‡1 and F¡ ˆ F¡m ˆ F¡m¡1, and similar
approximations for hp and vep. For the ice-thickness bias,  h,
and the ice-thickness noise, which are uncorrelated from one
side of the filter to the other, we further approximate Fp, hp

and vep by the central values F0, h0 and ve0.We find

¼2
E ˆ F0h0ve0

¢e…2m ‡ 1†

³ ´2

¢ 1

2m ‡ 1

¼"h

h0

³ ´2

‡ 2
¼ h

h0

³ ´2

‡ 2mcd

2m ‡ 1

³ ´2
" #

‡
¼2

 F
…ve‡ h‡ ¡ ve¡ h¡†2

¢2
e…2m ‡ 1†2

:

…B4†

The variance of the sumof the four N terms of Equation (18) is
found similarly. With ¢x ˆ ¢e ˆ ¢n and v2

H ˆ v2
e0

‡ v2
n0

, the
total Fh contribution to the variance becomes

¼2
V ˆ F0h0vH

¢x…2m ‡ 1†

³ ´2

¢ 1

2m ‡ 1

¼"h

h0

³ ´2

‡ 2
¼ h

h0

³ ´2

‡ 2mcd

2m ‡ 1

³ ´2
" #

…B5†

‡
¼2

 F
…ve‡ h‡ ¡ ve¡ h¡†2

¢2
x…2m ‡ 1†2

‡
¼2

 F
…vn‡ h‡ ¡ vn¡ h¡†2

¢2
x…2m ‡ 1†2

:

In our case, where we assume a constant F within the entire
area, the last two terms canbe modified by multiplying with
F 2

0 in both the numerator and the denominator. Using the
constant F0 approximation, the east term becomes

¼2
 F

F 2
0 …ve‡ h‡ ¡ ve¡ h¡†2

F 2
0 ¢2

x…2m ‡ 1†2
º ¼ F

F0

³ ´2

@
F0hve

@x

³ ´2

; …B6†

where V e ˆ @F0hve=@x is the flux divergence (i.e. the sub-
mergence/emergence velocity) averaged from one end of
the filter to the other. Likewise for the north term.
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