
Higher ultra-processed food intake is associated with higher DNA damage
in healthy adolescents

Sareh Edalati1, Farzaneh Bagherzadeh2, Mohammad Asghari Jafarabadi3 and
Mehrangiz Ebrahimi-Mamaghani4*
1Student Research Committee, Department of Community Nutrition, Faculty of Nutrition Sciences and Food Technology,
Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
2Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Sciences, Tabriz University
of Medical Sciences, Tabriz 5165665931, Iran
3Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
4Social Determinant of Health Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences,
Tabriz 5165665931, Iran

(Submitted 29 December 2019 – Final revision received 26 May 2020 – Accepted 1 June 2020 – First published online 9 June 2020)

Abstract
Ultra-processed food is one of the main contributors to energy supply and consumption in food systems worldwide, and evidence of their
detrimental health outcomes in humans is emerging. This study aimed to assess ultra-processed food intake and its association with urinary
levels of 8-hydroxy-2 0-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative damage, in 139 healthy adolescents in Karaj City in Iran.
Usual dietary intake was measured using a 168-item validated FFQ. The daily intake of ultra-processed food consumption was determined
through the classification of NOVA, and general linearmodelswere used to compare the urinary levels of 8-OHdG/creatinine (ng/mg creatinine)
within tertiles of ultra-processed food intake. Adolescents in the higher tertile of ultra-processed food consumption had a significantly higher
mean level of urinary 8-OHdG/creatinine in comparison with the lower tertiles in the crude model (Pfor trend: 0·003) and after adjustment for
confounding variables, including total energy intake, sex, age, BMI for age Z-score, obesity and physical activity (Pfor trend: 0·004). This asso-
ciation was still significant after adjusting for dietary intake of whole grains, nuts, legumes, the ratio of MUFA:SFA (g/d) and Mediterranean
dietary score (Pfor trend: 0·002). More studies are needed to explore the determinants of ultra-processed food supply, demand, consumption
and health effects; such studies should be applied to develop evidence-informed policies and regulatory mechanisms to improve children’s
and adolescents’ food environment policymaking and legislation with special attention to ultra-processed food.
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Non-communicable diseases are the leading cause of
death worldwide. They impose a remarkable economic burden,
estimated at 7 trillion dollars during 2011–2025 in low- and
middle-income countries(1). Oxidative stress, an imbalance
between the production of reactive oxygen species and
antioxidant defence, can occur at an early age and lead to the
development of several non-communicable diseases including
cancer(2,3).

Children and adolescents seem to be more susceptible to
exposure to accumulated reactive oxygen species and
carcinogenic factors during development stages(4–7). Moreover,
unhealthy risk factors in children and adolescents could

contribute to the long-term influence on non-communicable
diseases in adult life based on the developmental origins
of health and disease hypothesis(8). Therefore, knowing
dietary modifiable factors affecting oxidative damage is of great
importance(9–12).

8-Hydroxy-2 0-deoxyguanosine (8-OHdG), a biomarker of
oxidative-generated DNA damage, has been widely used as a
sensitive indicator of oxidative stress and carcinogenesis(13).
Several studies have reported higher levels of 8-OHdG in several
non-communicable diseases including cancer(14–18). Urinary
8-OHdG is a stable biomarker of oxidative stress, and the
production of artifacts during its sampling is rare(19–21).

Abbreviations: 8-OHdG, 8-hydroxy-2 0-deoxyguanosine; MDS, Mediterranean dietary score; MET, metabolic equivalent.
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Furthermore, its measurement is non-invasive, which makes
it a suitable biomarker for assessing overall DNA oxidative
damage(22), especially in the population of vulnerable children.

Ultra-processed food has become one of the main sources
of food consumed in modern food systems in different
countries(23–26). Recently, several studies have revealed that
consumption of ultra-processed food is associated with adverse
health outcomes, including cancer, CVD and obesity(27–34). Fiolet
et al. assessed dietary intake of 104 980 adults enrolled in the
prospective French NutriNet-Santé cohort study and found that
a 10 % increase in dietary intake of ultra-processed food
was associated with a significant 12 % increase in overall
cancer risk(29,35). Another report from the recent study by
Srour et al.(36) showed that there was a higher risk of CVD
associated with the consumption of ultra-processed food.
Using secondary data analyses of the Seguimiento University
of Navarra prospective cohort study in Spain, Rico-Campà
et al.(27) reported that each additional serving of ultra-processed
food increased all-cause mortality by 18 %.

To our knowledge, the association between oxidative
stress and dietary ultra-processed food has not been investi-
gated; however, a limited number of studies have reported
that advanced glycation end products in ultra-processed food
could adversely affect oxidative stress in animal or in vitro cell
studies(37,38). Heterocyclic amine intakes were also associated
with high levels of DNA damage levels in adults(39).

Until now, studies linking 8-OHdG and dietary factors mostly
focused on antioxidant nutrients and the Mediterranean diet
and its food components, in which some studies showed
protective effects of antioxidant components(9,39,40) while others
did not(41,42). For example, Aline de Carvalho et al. found that a
lower intake of fruit was associated with higher DNA damage
levels in 146 Brazilian adults(39). Kim et al.(42), however, did
not find any association between Mediterranean diet and 8-
OHdG in 976 Korean adults.

Examining the association between DNA oxidative damage
and ultra-processed food intake gained from a regular diet in
different populations can unravel the mechanisms underlying
the detrimental effects of ultra-processed food intakes on health
outcomes. The present study, for the first time, aimed to assess
the association between ultra-processed food intake and DNA
oxidative damage in healthy adolescents in Iran.

Methods

Study population

Totally, 139 students aged 13–19 years were recruited through a
multi-stage random cluster sampling process from ten public
high schools in five different districts in Karaj City. For detection
of the weakest correlation (r 0·3) between ultra-processed food
intake and urinary considerations of 8-OHdG,with α error= 0·05
and β error= 0·1, the total sample size required was 114.
However, for improving the precision of the study, the sample
size was increased(43).

The involvement of oxidative stress in chronic disease is well
documented in several studies and having a chronic disease may
affect dietary modifications(2). As this factor may confound the

association between ultra-processed food intake and oxidative
DNA damage, we controlled for these confounding variables
as exclusion criteria and excluded children with known meta-
bolic diseases. The exclusion criteria were as follows: history
of any chronic diseases which may induce oxidative stress affect
and alter dietary intakes or including diabetesmellitus, hyperten-
sion, hypo-and hyperthyroidism, kidney disease, hepatic disor-
ders and being on a restrictive diet. All eligible participants
signed written informed consent at the baseline.

Dietary intake assessment

Usual adolescent dietary intake over the past year was evaluated
using a 168-item validated FFQ specifically tailored to the Iranian
population(44). Study participants were asked to report how
often, on average, she or he had consumed every food item
on a daily, weekly, monthly or yearly basis over the previous
year, followed by a question about the amount of food con-
sumed each time in standard or household units. Portion sizes
of consumed food were converted to grams by using household
measures(45). Then, the consumed amount for every food item
was calculated by multiplying the frequency/d and grams of
consumption. We estimated the daily dietary intake of ultra-
processed food based on NOVA food group classification(46)

by summing the daily intake of thirty-seven food and beverage
items included in FFQ that classified as ultra-processed food and
categorised as seven food groups and expressed as intake in g/d
(online Supplementary file 1). To understand the contribution of
each food group to total ultra-processed food intake, the mean
daily intake from each seven subgroups of ultra-processed food
divided by the daily intake of total ultra-processed food multi-
plied by 100. The energy intake was analysed using the US
Department of Agriculture’s food composition tables(47). To
define over and under-reporting, we used the method suggested
by Banna et al.(48). Therefore, boys with energy intake out of
3347 kJ/d (800 kcal/d) or 16 736 kJ/d (4000 kcal/d) and
girls with energy intake out of 2092 kJ/d (500 kcal/d) or
14 664 kJ/d (3500 kcal/d) were excluded (six people).

The method described by Trichopoulou et al.(49) has been
used to measure adherence to the Mediterranean dietary score
(MDS). In this method, food is divided into nine food groups
including fruits, fish, vegetables, whole grains, legumes, nuts,
the ratio of grams of MUFA:SFA, meats (red meat, poultry and
processed meat) and dairy products. MDS is represented by a
scalewhere a value of 1was assigned to the consumption of food
groups considered beneficial to health at or above the median
(vegetables, legumes, fruits and nuts, cereals, fish and ratio of
MUFA:SFA) and below the median for food groups presumed
to be detrimental to health (meats and dairy products). The
MDS was calculated for each participant by summing of scores
from the nine components for a total MDS within a range of zero
(minimal adherence) to nine (maximal adherence)(49,50). A higher
score represented more adherence to the Mediterranean diet.

Measurement of 8-hydroxy-2 0-deoxyguanosine

Spot morning urine samples were taken and centrifuged at
1000 g for 10 min. The clear supernatant was used for measuring
8-OHdG concentration. The concentration of 8-OHdG was
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measured using ELISA using a commercially available standard
kit and based on the manufacturer’s instructions (Cusabio;
Catalog no. CSB-E10140h). 8-OHdG (ng/ml) levels were then
adjusted for urinary creatinine (mg/ml) levels, measured by
a kinetic colorimetric method, and expressed as 8-OHdG/
creatinine (ng/mg creatinine) before statistical analysis.

Demographic, anthropometric and physical activity
assessment

Demographic variables including information on age, sex,
exposure to smoking and medical history were obtained from
a self-administrated questionnaire. Height was measured using
a stadiometer (Seca, model 206) fixed to the wall, without
shoes and headdress using the Frankfort technique. Weight
was measured using a digital scale to the nearest 0·1 kg
(Seca 707), while the person was in light clothing and barefoot.
BMI was calculated by dividing weight by height squared
(kg/m2). BMI for age Z-score was calculated according to the
2007 WHO standard using Anthro Plus software version 1.0.4
by the WHO-2007 growth reference standard. BMI for age
(Z-score>þ1) described being obese or overweight(51).

Physical activity was measured using a self-reported
questionnaire expressed as an equivalent metabolic h/d
(MET-h/d)(52). The physical activity questionnaire based on met-
abolic equivalent (MET) data, including nine levels of activity
from sleep and rest (MET 0·9) to vigorous activity (more than
six MET), was used to evaluate the students’ level of physical
activity. The validity and reliability of the questionnaire have
been previously confirmed in Iran(52,53).

Statistical analysis

Statistical analysis was conducted using the SPSS version
16 software (SPSS Inc.). The distribution of variables in all and
across the tertiles of ultra-processed food was assessed using
a Kolmogorov–Smirnov test. Demographic characteristics and
dietary intakes in all participants and within different tertiles of
ultra-processed foodwere reported asmean values and standard
deviations for normally distributed variables and geometric
means and 95 % CI for ones with skewed distribution.
Categorical variables were presented as numbers and percent-
ages. To compare baseline characteristics and dietary intake
within tertiles of ultra-processed food, we used χ2 tests for
categorical variables (sex, obesity or overweight, exposure to
smoking) and general linear models after adjustment for total
energy intake.

General linear models were also used to compare the geo-
metric mean concentration of urinary 8-OHdG/creatinine within
tertiles ultra-processed food intake in the uni- and multivariate
models. The inclusion of variables as confounding factors
was based on previous literature and known or suspected
variables that affect 8-OHdG, such as the MDS and its food
components(40). Model 1 was adjusted for total energy intake
(kcal/d), sex (female, male), age (years), BMI for age Z-score,
obesity and physical activity (MET). In model 2, additional

adjustments for whole grains (g/d), nuts (g/d), legumes and
the ratio of MUFA:SFA (g/d) were carried out. Model 3 adjusted
for the same covariates in model 2 plus MDS. The Pfor trend was
calculated from generalised linear models in different models.
All tests were two-sided, andP< 0·05was considered statistically
significant.

Results

The characteristics and dietary intakes of the study participants in
all and across tertiles categories of ultra-processed food intake
are presented in Table 1. Boys significantly showed a higher
intake of dietary ultra-processed food intake than girls. No sig-
nificant difference was observed in the percentage of students
who exposed to secondary smoke within tertiles of ultra-
processed food intake. Individuals in the highest tertile of
ultra-processed food consumption had significantly lower daily
intakes of whole grains (P< 0·05), higher daily intakes of nuts
(P< 0·05), total energy intake and ratio of MUFA:SFA
(P< 0·001). Total MDS and daily intake of vegetables, fruits, fish,
legumes, dairy products, poultry, meat and Na did not signifi-
cantly differ across the tertiles of ultra-processed food intake.
The prevalence of overweight/obesity was greater in the highest
tertile compared with the lowest one, although the difference
was not statistically significant.

The main two food group contributors to ultra-processed
food intake are shown in Table 2, which were non-dairy
beverages (coffee, cola and lemon juice), following cookies
and cakes group (cookies, biscuits, pastries (creamy and
non-creamy), cake, pancake, doughnut, industrial bread,
toasted bread, noodles and pasta). The relation between ultra-
processed food intake and geometric mean urinary 8-OHdG
damage is shown in Table 3. As dietary ultra-processed food
intake rose from the lowest to the highest tertile, the geometric
mean concentration of urinary 8-OHdG creatinine concentra-
tions significantly increased from 2·6 to 4·4 in the crude model
(Pfor trend: 0·003). The positive association between dietary
ultra-processed food intake and 8-OHdG concentration was sig-
nificant in model 1 (adjusted for total energy intake (kcal/d), sex
(female, male), age (years), BMI for age Z-score, obesity and
physical activity (MET)) (Pfor trend: 0·004). This relationship
was stronger and still significant in model 2 (additionally
adjusted for dietary intake of whole grains, nuts, legumes and
ratio of MUFA:SFA (g/d)) and model 3 (additionally adjusted
for MDS) (Pfor trend: 0·002).

Discussion

The present study is the first one which showed that higher
ultra-processed food intake is associated with a higher urinary
biomarker of DNA oxidative damage in healthy adolescents.
This association was still significant after taking into considera-
tion factors like sex, obesity, BMI for age Z-scores, physical
activity, MDS and food components that are known or suspected
to affect 8-OHdG(40).
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Studies investigating the association between DNA damage
and ultra-processed food intake are not common. However, a
study by de Carvalho et al.(39) has shown that dietary intake of
heterocyclic amine, a contaminant, seems to be high in ultra-
processed food(29); this has been associated with increased
DNA damage in adults. There has been also some evidence
showing that advanced glycation end products have detrimental
effects on oxidative stress in animal or in vitro studies(37,38).

Themechanisms behind the effect of ultra-processed food on
oxidative damage are not clear. Several studies have shown that

different ultra-processed food in the foodmarket, such as cereals
including cookies and cakes(54,55), biscuits(56,57), industrial
bread(58–60), potato chips(57,61,62) and coffee(63), contain a high
concentration of acrylamide(64). Based on laboratory data,
this chemical has been shown to have a carcinogenic
effect(63,65–69), although the epidemiological evidence has not
been consistent in this regard(70). Acrylamide has been declared
a human health concern by the European Food Safety Authority
Panel on contaminants in the food chain as well as join the
FAO/WHO expert committee on food additives(71).

Table 1. Participant characteristics and dietary intakes in total population and according to tertiles (T) of ultra-processed food intake in adolescents in the
present study
(Mean values and standard deviations; geometric mean values and 95% confidence intervals; numbers and percentages)

Variables

Tertiles of ultra-processed food intake

Total (n 139) T1 (n 46) T2 (n 47) T3 (n 46)

P *Mean SD Mean SD Mean SD Mean SD

Age (years) 15·7 1·7 15·6 1·8 15·7 1·6 15·8 1·7 0·720
MET (h/d) 43·4 24·9 42·8 26·4 42·0 24·8 45·4 24·0 0·628
Sex 0·017
Female

n 62 28 15 19
% 44·6 60·9 31·9 41·3

Male
n 77 18 32 27
% 55·4 39·1 68·1 58·7

Exposure to smoking 0·954
Yes

n 55 18 18 19
% 39·6 39·1 38·3 41·3

No
n 84 28 29 27
% 60·4 60·9 61·7 58·7

Being obese or overweight 0·438
n 29 7 10 12
% 20·9 15·2 21·3 26·1

UPF (% of total energy intake) 24·8 9·2 17·9 6·2 25·8 6·8 34·3 7·4 <0·001
Total energy intake (kcal)† 2571·5 700·2 2034·0 418·7 2538·5 567·2 3142·8 607·6 <0·001
UPF (g/d)‡
Geometric mean 264·2 141·8 279·7 464·9 <0·001
95% CI 237·4, 294·1 128·1, 156·9 256·7, 305·2 419·4, 515·4

MDS 4·4 1·4 4·0 1·2 4·2 1·5 5·0 1·1 0·070
Vegetables (g/d)‡
Geometric mean 200·2 184·7 190·7 228·1 0·232
95% CI 177·5, 225·9 149·1, 228·8 158·8, 229·0 183·6, 283·7

Fruits (g/d)‡
Geometric mean 112·2 112·2 116·9 109·0 0·859
95% CI 101·7, 124·9 93·2, 135·2 99·7, 137·1 90·2, 131·7

Nuts (g/d)‡
Geometric mean 4·8 3·1 4·5 7·7 0·023
95% CI 3·7, 6·3 1·9, 5·1 3·0, 6·9 4·7, 12·6

Fish (g/d)‡
Geometric mean 9·2 7·4 10·4 10·0 0·231
95% CI 7·8, 10·9 5·4, 10·2 8·0, 13·5 7·3, 13·8

Whole grains (g/d)‡
Geometric mean 82·3 105·5 79·5 68·5 0·044
95% CI 71·3, 95·0 80·9, 137·4 63·4, 99·7 52·4, 89·7

Legumes (g/d)‡
Geometric mean 20·4 24·0 22·08 16·4 0·062
95% CI 17·9, 23·3 24·0, 30·7 17·8, 27·3 12·8, 21·1

Dairy products (g/d) 561·5 252·9 460·4 224·4 589·8 260·4 633·8 244·6 0·706
Poultry (g/d)‡
Geometric mean 22·1 18·8 22·7 24·8 0·320
95% CI 18·4, 26·4 13·2, 26·7 17·0, 30·3 17·6, 34·9

Meat (g/d)‡
Geometric mean 27·0 26·7 28·1 26·1 0·909
95% CI 23·5, 31·0 21·3, 33·6 23·1, 34·1 20·7, 32·9

MUFA:SFA ratio 0·78 0·1 0·70 0·1 0·78 0·1 0·87 0·1 <0·001
Na (g/d) 7528·2 3493·1 7095·1 3442·0 7326·9 3038·9 8166·9 3934·3 0·142

MET, metabolic equivalents; UPF, ultra-processed food; MDS, Mediterranean dietary score.
* P values based on χ2 tests for categorical variables (sex, obesity or overweight, exposure to smoking), and Pfor trend-for trend for age, MET and dietary intakes using general linear
model adjusted for total energy intake.

† To convert energy values from kcal to kJ, multiply by 4·184.
‡ Geometric mean and 95 % CI were calculated since data were not normally distributed.
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Moreover, ultra-processed foods may contain substantial
acellular nutrients, emulsifiers and non-energetic artificial
sweeteners that could adversely affect the gut microbiota and
induce oxidative stress and inflammation based on laboratory
evidence(72–74). Dietary advanced glycation end products pro-
duced during the heating and processing of food products might
contribute to risk factors associated with chronic diseases, such
as inflammation and oxidative stress too(75,76). Some ultra-
processed foods are high in fructose, and the detrimental effects
of fructose-rich diet have been noticed on mitochondrial DNA
damage in the liver and in the case of metabolic diseases as
shown in animal studies(77). A study by Jones et al.(78) showed
that the high dietary fructose intake was associated with a lower
abundance of the beneficial microbe Eubacterium and
Streptococcus in healthy adolescents.

Food processing led to the production of Maillard reaction
products, which have been associated with DNA oxidative
damage(79) and unhealthy gut microflora(80) in cell and
animal studies. The high glycaemic index of ultra-processed
foods(81,82) may also affect oxidative stress, as the positive rela-
tionship between high dietary glycaemic index and oxidative
stress has been reported. The oxidative potential of high
dietary glycaemic index, simple carbohydrates and sugar to
DNA oxidative damage sugar has been documented(41).

In the present study, participants in the higher tertiles of
ultra-processed food consumption have been seen to be more
obese or overweight; however, this difference is NS. Our results
are in line with the study of Enes et al. who found no
association between ultra-processed food intake and obesity
of 200 adolescents aged 10–18 years in Brazil(83). However, a
recent systematic review reported a direct association between
some ultra-processed food groups and body fat in children and
adolescents(31). In the present study, this null association
might be because the participants in the higher tertiles of
ultra-processed food intake were those who had higher
intakes of vegetables, nuts and total MDS, too. The
Mediterranean diet is high in phytochemicals with anti-obesity
effects(84,85). It may attenuate the obesity potential effects of
ultra-processed food intake with high energetic intake and
may affect the null relationship between ultra-processed food
intake and obesity. The low sample size might be a factor for this
null association too.

Previous studies have shown detrimental effects of ultra-
processed food consumption on human health and the environ-
ment(30), highlighting the need for future research and policy
efforts to attenuate it. The positive relationship between high
intake of ultra-processed food and DNA oxidative damage in
adolescents in the present study adds to earlier research. The
detrimental effects of ultra-processed food for health and envi-
ronment should provide a wakeup call for legislators, food
and nutrition policymakers, food scientists, academics, civil
society and food activists to improve and to reform food environ-
ment policy-making and ultra-processed food regulations.

As dietary exposure to ultra-processed food and beverages is
high in children and adolescents, they might be more prone to
the detrimental effects of acrylamide and other processing
ingredients(66,86–88). Therefore, the development of a food safety
monitoring and guidance system to define the content of acryl-
amide and other processing ingredients of industrial foodmainly
consumed by children and adolescents and to investigate the
technological methods to reduce them while maintaining sen-
sory quality in the industry(89) is highly recommended in Iran
as well as other countries.

Table 2. Main contribution of ultra-processed food intake in adolescents in
the present study
(Percentages)

Food items

Contribution of each food subgroup
intake to total ultra-processed

food intake (%)

Non-dairy beverages 31·5
Cookies and cakes 23·6
Dairy beverages 13·9
Potato chips and salty snacks 13·7
Processed meat and fast food 7·8
Oil and sauces 5·3
Sweets 3·9

Table 3. Urinary concentration of 8-hydroxy-2 0-deoxyguanosine (8-OHdG8)/creatinine according to tertiles of ultra-processed food group consumption in
adolescents in the present study
(Geometric mean (GM) values and 95% confidence intervals)

Ultra-processed food intake (g/d)

Urinary 8-OHdG/creatinine (ng/mg creatinine)*

Crude model Model 1† Model 2‡ Model 3§

GM 95%CI GM 95%CI GM 95%CI GM 95%CI

Tertile 1 2·6 2·0, 3·3 2·4 1·8, 3·2 2·2 1·6, 3·0 2·2 1·6, 3·1
Tertile 2 3·3 2·6, 4·2 3·2 2·5, 4·0 3·2 2·5, 4·1 3·2 2·5, 4·1
Tertile 3 4·4 3·4, 5·6 4·8 3·6, 6·4 5·1 3·7, 7·0 5·1 3·7, 7·0
Pfor trend‖ 0·003 0·004 0·002 0·002

* GM and 95% CI were calculated on the basis of log (ln)-transformed of urinary 8-OHdG/creatinine (ng/mg creatinine).
†Model 1 adjusted for total energy intake (kcal/d), sex (female, male), age (years), BMI for age Z-score, obesity and physical activity (MET).
‡Model 2 adjusted for variables in model 1 plus whole grains (g/d), nuts (g/d), legumes (g/d) and the ratio of MUFA:SFA (g/d).
§ Model 3 adjusted for variables in model 2 plus Mediterranean dietary score.
‖ P value for linear trend over tertiles of ultra-processed food intake.
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More research is needed to develop ground-breaking
innovative methods and patents to reformulate and substitute
ultra-processed food with healthier and safer ingredients(90).
Restricting ultra-processed food advertising and marketing to
children and adolescents is of great importance(91,92). As a result
of the lack of legislation or weak implementation of policies
regarding the healthy food supply in school cafeterias, higher
consumption of ultra-processed food in adolescents in different
countries has been reported(93). Although all strategies and
policies supposed to decrease ultra-processed food consump-
tion might not be achieved without improving the good gover-
nance components of health policies(94,95) regarding the food
environment.

The low energy cost of ultra-processed foods has been
shown to be one of its determinants in its consumption(96).
Keeping in mind the social determinants of health, developing
agent-based policies and educational approaches to decrease
ultra-processed food consumption might be important, but
surely not enough(97,98). Therefore, future research using
mixed-method and whole-food system approaches(99) should
be seriously recommended in order to know the broad behav-
ioural, social and political-economic factors associated with
the high intake of ultra-processed food that should be applied
to develop policies and regulatory mechanisms to decrease
ultra-processed food consumption, especially in children and
adolescents.

The present study is an attempt to control other covariates
that seem to affect 8-OHdG, such as physical activity. In a recent
meta-analysis study done by Tryfidou et al.(100), it was found
that there was a substantial increase in DNA damage immedi-
ately following acute aerobic exercise, which remained between
2 h and 1 d, but not within 5–28 d post-exercise phase. In the
present study, the participants were not athletes, and they did
not do acute aerobic exercise before sampling.

Several limitations need to be considered when interpreting
the results of the present study. First, we measured urinary
8-OHdG with the ELISA method. The ELISA technique has been
widely used to measure urinary 8-OHdG in several previous
studies and has shown to be correlated with measurements
based on the HPLC method(101,102). However, there are some
concerns that ELISA frequently overestimates the urinary con-
centrations of 8-OHdG in comparison with chromatography-
based methods(103–105). Therefore, further studies are needed
to assess the link between ultra-processed food and DNA oxida-
tive damage using HPLC.

Another limitation was the relatively small sample size as the
consumption has been classified into three categories, which can
reduce the power of analysis. Moreover, this study
was cross-sectional and no conclusion about causality can be
drawn. DNA damagemay also be affected by other environmen-
tal factors such as outdoor or indoor air pollution and therefore
needs to be addressed in future studies(106,107). Furthermore,
although the FFQ used in the present study was developed
and validated for the Iranian population, developing specified
FFQ for assessing ultra-processed food consumption(108) may
be needed for more accurate measurement in future studies in
adolescents.

In conclusion, the present study showed that higher ultra-
processed food intakewas associatedwith higherDNAoxidative
damage in healthy adolescents. Future research is needed to
confirm these results.
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