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Abstract
It is known that forKn,n equippedwith i.i.d. exp (1) edge costs, theminimum total cost of a perfectmatching
converges to ζ (2)= π 2/6 in probability. Similar convergence has been established for all edge cost distri-
butions of pseudo-dimension q� 1. In this paper we extend those results to all real positive q, confirming
the Mézard–Parisi conjecture in the last remaining applicable case.
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1. Introduction
There has been substantial interest over the past few decades in the minimummatching problem:
given a graph G, and a positive cost (or weight) associated to each edge of G, we want to find a
perfect matching of minimal total cost M(G). Of special interest is minimum matching on the
complete graph Kn on n vertices or the complete bipartite graph Kn,n on n+ n vertices, with ran-
dom edge costs given by independent exp (1) variables. The latter is sometimes referred to as the
random assignment problem. For this graph model, the lower boundM(Kn,n)� 1− o(1) (w.h.p.)
is trivial: the cheapest edge from any given vertex has expected cost n−1, and a perfect matching
uses n edges. Similarly, M(Kn)� 1/2− o(1) w.h.p. The upper bound lim supn M(Kn,n)� 3 was
established by Walkup [12], by finding a perfect matching using only fairly cheap edges. This was
later improved to 2 by Karp [4].

Mézard and Parisi [8] conjectured that M(Kn,n) converges in probability to ζ (2)= π2/6 and
M(Kn) to ζ (2)/2, based on heuristic replica symmetry calculations. Aldous [1] proved that the
limit exists, and later confirmed the conjecture [2]. Both of these papers used what is some-
times called the ‘objective method’ [3], and worked with matchings on an infinite limit object.
Parisi [10] further conjectured the more precise result that E[M(Kn,n)]=∑n

k=1 k−2. This was
later established independently by Nair, Prabhakar and Shaw [9] and Linusson and Wästlund [6],
both using inductive proofs. The proof was later simplified by Wästlund [13]. Salez and Shah [11]
gave yet another proof of the Mézard–Parisi conjecture, using the objective method to analyse the
behaviour of belief propagation on the limit object.

A more comprehensive overview of the existing literature and related problems can be found
in a survey paper by Krokhmal and Pardalos [5].
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A natural question is whether these results extend to other edge cost distributions. It turns out
that only the scaling behaviour of the probability distribution near 0 matter. A random graph
where edge costs are i.i.d. copies of the random variable � is said to be of pseudo-dimension q
if limx→0 P(�� x) · x−q exists and lies in (0,∞). The exponential distribution and the uniform
distribution on [0, 1] are both of pseudo-dimension 1, and the chi distribution with q degrees of
freedom as well as the Weibull distribution with shape parameter q (i.e. the (1/q)th power of an
exponential variable) are of pseudo-dimension q. In the paper by Mézard and Parisi [8], q was a
real positive parameter, but most focus since then has been on the special case q= 1.

The motivation for the term pseudo-dimension is as follows. For q ∈N, a geometric graph
model is given by embedding the vertices as n points chosen uniformly and independently at ran-
dom in a hypercube [0, 1]q, and setting the edge costs to be the corresponding Euclidean distances.
Themean field approximation (i.e. the graphmodel where edge costs follow the same distribution,
but are i.i.d.) of a geometric graph model of dimension q is a graph model of pseudo-dimension q.

For any graph G and probability measure ν on R+, let G[ν] denote G equipped with i.i.d. edge
costs with distribution given by ν. If ν is of pseudo-dimension q, then the cost of the minimum
matching on Kn,n[ν] can be shown to be of order�(n1−1/q), by a minor modification of [12]. This
suggests studying the quantity n−1+1/qM(Kn,n[ν]). Does it converge in probability to a constant?
This question was answered in the affirmative for q� 1 by Wästlund [14] (both for Kn,n and Kn),
but it remained open for 0< q< 1. Our main result is the following theorem, confirming the
Mézard–Parisi conjecture for all q> 0.

Theorem 1.1. For every q ∈ (0, 1), there exists a β = β(q) such that for any probability measure ν
for which c := limx→0 ν({�� x}) · x−q exists and c ∈ (0,∞),

M(Kn,n[ν])
c1/qn1−1/q

→ β(q) and
M(Kn[ν])
c1/qn1−1/q

→ 1
2
β(q)

in probability as n→∞ (through even n in the latter case).

The reason for the factor 1/2 in the graph model Kn is that perfect matchings in Kn,n and Kn
have n and n/2 edges respectively, but it turns out that the average cost of edges participating in
the optimal perfect matching is (asymptotically) the same in both graph models.

We believe the theorem should hold in somewhat greater generality, i.e. for graph sequences
Gn other than Kn,n and Kn. As we will discuss in Section 3.6, the theorem only depends on the
structure of the sparse subgraphs of Gn obtained by removing expensive edges. Roughly speaking,
these subgraphs need to look like Galton–Watson trees locally, and be good global expanders. We
therefore conjecture the following, which is most easily phrased in terms of graphons.a

Conjecture 1.2. LetW : [0, 1]2→ [0, 1] be a connected graphon and letGn be a sequence of dense
graphs with |V(Gn)| = 2n which converges toW.

If there is a δ > 0 such that
∫ 1
0 W(x, y) dx= δ for almost all y ∈ [0, 1], then n−1+1/qM(Gn[ν])

converges in probability to a constant (depending only on δ, q= q(ν), and c= c(ν)).

In other words, if Gn admits a connected graphon limit and has degree δn+ o(n) at every
vertex for a constant δ > 0, then an analogue of Theorem 1.1 should hold for Gn. Special cases of
this conjecture include the Erdős–Rényi graph Gn,δ and complete balanced k-partite graphs.

aA graphon is an analytic limit object for a sequence of dense graphs. For definitions and further details we refer to [7,
Chapter 7].
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2. Notation and definitions
We will assume 0< q< 1 and a large parameter λ> 1 is fixed, and often suppress dependence
on them in our notation. We will restrict our attention to 0< q< 1, since Theorem 1.1 is already
known to be true for q� 1. Although our proof strategy works for q� 1 too, some parts of our
lemmas are trivial in that case, and assuming 0< q< 1 streamlines the proofs.

Unless otherwise stated, all functions f considered will be either f : V(G)→
 for some graph
G or f : 
→R, where
 := [− λ/2, λ/2]. For f and g functions on
, we will use f � g to mean
that f (z)� g(z) for all z ∈
. For x ∈R, we let x+ :=max (x, 0). We write an↗ a if an→ a and an
is a non-decreasing sequence, and an↘ a if−an↗−a.

Anm-rooted graph is a graph wherem of the vertices have been designated as root vertices. For
an edge-weighted m-rooted graph G, the (k, λ)-truncation G(k, λ) is the subgraph of G obtained
as the union of k-neighbourhoods of the roots after all edges of weight more than λ have been
removed. Equivalently, G(k, λ) is the union of all paths from a root of length at most k that only
use edges of weight at most λ. We say that anm-rooted random graph G is the λ-local limit of the
m-rooted random graph sequence Gn if and only if, for every k ∈N, Gn(k, λ) converges to G(k, λ)
in the total variation metric.b We will think of these edge weights as costs, and use the words cost
and weight interchangeably.

Furthermore, we will let |G| denote the number of edges of a graph G, and we will consider the
edges of a rooted tree to be directed away from the root φ. By path we will mean a directed path
away from the root. If u is the parent of v, we write u→ v. Let |u| denote the distance to u from
the root.

3. Proof strategy
In this section we will give an overview of our proof strategy, and how it relates to the proof for q�
1 in [14]. In broad terms, the strategy is to prove that the ‘local’ structure of the optimal matching
is ‘locally’ determined. That is, for each edge uv we can approximate its expected contribution to
the total cost of the optimal matching by only looking at some large but finite neighbourhoods of
u and v.

As a first step, we switch to working with a rescaled model. Multiply all edge costs in Kn[ν] and
Kn,n[ν] by (n/c)1/q. Since minimum perfect matching is a linear programming problem, the only
effect this has on the optimum is to multiply its cost by the same amount. One can think of this as
changing the units of cost in such a way that the expected number of edges of cost at most 1 from
a given vertex is 1+ o(1). Such rescaling allows us to work with λ-local limits more easily.

Let K̃n and K̃n,n be these rescaled models (suppressing dependence on ν), so that the quantities
in Theorem 1.1 can be rewritten as

M(Kn,n[ν])
c1/qn1−1/q

= 1
n
M(K̃n,n) and

M(Kn[ν])
c1/qn1−1/q

= 1
n
M(K̃n).

We also let �= �(u, v) denote the edge cost of the edge uv in the rescaled model, and we say that
it is cheap if �(u, v)� λ.

3.1 Local limit
We will be working with the λ-local limits of K̃n and K̃n,n. By Proposition 2.2 of [14], the λ-local
limit of K̃n rooted inm arbitrary vertices ism disjoint independent copies of a certain random tree

bThe total variation distance between two edge-weighted random graphs is at most ε if they can be coupled in such a way
that they are isomorphic with probability at least 1− ε (where the isomorphism preserves roots and edge weights). For further
details see [14, Sections 2.1–2.2].

https://doi.org/10.1017/S0963548320000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000425


Combinatorics, Probability and Computing 377

Tq
λ which we will define shortly. It follows from the proof of this proposition that this is also the
λ-local limit of K̃n,n rooted inm arbitrary vertices.

The tree Tq
λ is defined as the 1-rooted Galton–Watson tree with offspring distribution Poi (λq)

and edge weights given by i.i.d. copies of the [0, λ]-valued random variable X with CDF P(X �
t)= (t/λ)q. Note that since λ is a large number, this tree is supercritical, and infinite with proba-
bility 1− oλ(1). We will not reproduce the proof of [14, Proposition 2.2] here, but instead sketch
an argument for why disjoint copies of Tq

λ form a plausible λ-local limit of K̃n and K̃n,n.

Edge weight distribution. By the definition of pseudo-dimension and the rescaling of the edge
weights, for any fixed t> 0 (i.e. not depending on n), P(�� t)= (1+ o(1))tq/n. For any t� λ,

P(�� t | �� λ)= P(�� t)
P(�� λ) = (1+ o(1))(t/λ)q,

and hence the edge weights of the λ-local limit should be i.i.d. with CDF (t/λ)q.

Degree distribution. The probability that an edge is cheap is p := P(�� λ), independently of
all other edges. In other words, the subgraph of K̃n consisting of all cheap edges is an Erdős–
Rényi random graph Gn,p, and the analogous subgraph of K̃n,n is a bipartite Erdős–Rényi random
graph Gn,n,p. The degree distributions of Gn,p and Gn,n,p are approximately Poisson with mean
p(n− 1)= (1+ o(1))λq and pn= (1+ o(1))λq respectively. Hence the λ-local limit of these
graphs should have degree distribution Poi (λq).

Disjoint trees. Let Pk be the set of paths of length at most k+ 1 starting from any of the roots
(in Gn,p or Gn,n,p). A first moment calculation shows that the expected number of pairs P, P′ ∈
Pk with P �= P′ and P ∩ P′ �= ∅ is O(p2k+2n2k+1)= o(1). But if no such pair exists, then the k-
neighbourhoods of the roots are disjoint trees. Hence the λ-local limit should consist ofm disjoint
trees.

We will frequently use the following equivalent construction of Tq
λ, where we generate the

offspring of a vertex and the corresponding edge weights concurrently. For every vertex u, run an
inhomogeneous Poisson point process on the time interval [0, λ] with intensity qtq−1 at time t.
Let mq be the corresponding intensity measure, i.e. the measure on [0, λ] such that dmq(t)=
qtq−1 dt. (Note that λ−qmq is then the probability measure corresponding to the CDF (t/λ)q in
our original definition of Tq

λ.) If �1, �2, . . . , �j are the arrival times of the events in this process, we
let v1, v2, . . . , vj be the children of u, and give the edge uvi weight �i.

Finally, while not necessary in order to understand our paper, it is worth mentioning that Tq
λ

can also be constructed from the so-called ‘Poisson-weighted infinite tree’ (PWIT) which is often
encountered in the literature on the objective method (e.g. [2], [3]). Let T be the tree obtained
by raising all edge weights in the PWIT to the (1/q)th power. Then Tq

λ has the same distribution
as T(∞, λ), i.e. the connected component of the root after all edges of weight more than λ are
removed.

3.2 Exploration game
The game Exploration was introduced in [14]. This zero-sum perfect information game is played
in the following way. On an edge-weighted rooted graph G, Alice and Bob take turns picking the
next edge of a self-avoiding walk starting from the root. When it is a player’s turn (Alice’s, say),
and the current vertex is u, she can take one of two actions.

(i) Pick any neighbour v of u that has not already been visited, and pay Bob the cost �(u, v) of
the edge uv. Bob then continues the game from v.

(ii) Quit the game, and pay Bob a penalty of λ/2, for some fixed parameter λ> 0.
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The payoff for Alice, once the game has finished, is the total amount Bob has paid to her minus
the total amount she has paid to Bob. Each player’s aim is to maximize their payoff. Note that it is
always better to quit than to pick an edge with weight � > λ: even if the other player were to quit
immediately after one picks this edge, the payoff for the last moves would be−�+ λ/2<−λ/2.

If the weighted graphG is finite, every game position has a well-defined game value f = f (G, u).c
If Alice starts by moving from u to v, the remainder of the game is equivalent to a game played
on G− u started on v, but with the roles of Alice and Bob reversed. By considering all possible
options a player has from the vertex u, it is easy to see that

f (G, u)=min
(
λ/2, min

v∼u (�(u, v)− f (G− u, v))
)
, (3.1)

where the second minimum is taken over all neighbours v of u. If the graph is a finite rooted
tree T and we start the game at the root, no move can go from a vertex to its parent, so we may
consider edges to be directed away from the root and forbid moves towards the root. But then
f (T, v)= f (T − u, v) if u is the parent of v, so we let f (v) := f (T, v). Thus (3.1) can be slightly
simplified to

f (u)=min
(
λ/2, min

v←u
(�(u, v)− f (v))

)
, (3.2)

where the second minimum is taken over all children v of u. If the tree is infinite, however, it is no
longer clear that the function f is well-defined. Instead, we consider the set of functions f which
satisfy (3.2) for all u ∈V(T), and call these ‘game valuations’.

Wästlund [14] proved that for any q> 0, the limits of n−1M(K̃n) and n−1M(K̃n,n) exist if, for
all large λ, there exists a unique game valuation on (almost all realizations of) Tq

λ. We give an
overview of this proof and why it works for both the complete and the complete bipartite graph
in Section 3.5.

Wästlund proceeded to prove that the valuation was indeed unique for q� 1 ([14,
Proposition 2.8]), but that proof did not extend to 0< q< 1. Therefore, in order to prove
Theorem 1.1 it suffices to show the following.

Proposition 3.1. For any λ> 0 and q ∈ (0, 1), there is almost surely a unique game valuation on
Tq
λ, i.e. a function f : V(Tq

λ)→
 satisfying (3.2) for every u ∈V(Tq
λ).

We will first show that the set of all game valuations on Tq
λ admits a bounded lattice ordering.

The recursion (3.2) has a useful monotonicity property: if f and g are game valuations on a tree T
such that f (v)� g(v) for all children v of u, then f (u)� g(u).

Let f k(u) be a game valuation on V(Tq
λ(k, λ)) (i.e. the tree T

q
λ truncated after k generations)

satisfying (3.2) for all uwith |u|� k. This valuation is almost surely unique, since Tq
λ(k, λ) is almost

surely finite. Note also that f k(u)= λ/2 for all u with |u| = k, since these u have no offspring in
Tq
λ(k, λ).
Let us compare the valuations f k and f j for j> k. For any v with |v| = k, f j(v)� λ/2= f k(v),

so by the monotonicity property, f k(u)� f j(u) for all u with |u| = k− 1. Iterating this, we see that
f k(u)� f j(u) when |u| has the same parity as k, and f k(u)� f j(u) otherwise. This suggests defining
the following partial orders on the set of functions on a rooted tree:

f k g ⇐⇒
{
f (u)� g(u) ∀u : |u| is odd and� k,
f (u)� g(u) ∀u : |u| is even and� k.

(3.3)

cBy the game value of u ∈V(G) we will mean the value of the exploration game on G, starting from u, to the second player.
In other words, the net amount that Alice will pay to Bob, assuming optimal play by both.
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The previous inequalities between f j and f k can now be restated as follows: for any j> k, f k k f j
if k is even and f k �k f j if k is odd.

Lemma 3.2. We say that f  g whenever f k g for all k ∈N. The order is a bounded lattice order,
with unique maximum fA and minimum fB given by the pointwise limits

fA(u) := lim
k→∞

f 2k+1(u) and fB(u) := lim
k→∞

f 2k(u). (3.4)

Proof. The order  is reflexive and transitive. It is also anti-symmetric, i.e. f  g  f ⇒ f = g,
and hence a lattice order. We will prove that fB exists and is the minimum; the argument for fA is
analogous.

Let g be any game valuation on Tq
λ(2k, λ) (i.e. the first 2k levels of T

q
λ). For any v with |v| = 2k,

g(v)� λ/2= f 2k(v), and hence f 2k 2k g. In particular, this holds for g = f 2k+2, i.e. f 2k 2k f 2k+2.
So for any u ∈ Tq

λ, the sequence ( f 2k(u))2k>|u| is monotone (non-decreasing or non-increasing
depending on the parity of |u|) and hence the limit fB(u) exists.

To see that fB is the minimum, let g be any game valuation on Tq
λ (not just on a truncation).

Pick any u ∈ Tq
λ with |u| even, and consider g(u). By the previous argument f 2k 2k g for any k, and

hence f 2k(u)� g(u) for any k> |u|/2. Letting k tend to infinity, we see that fB(u)� g(u). Similarly,
fB(u)� g(u) for all u with |u| odd. Hence (3.3) is satisfied for any k, or in other words fB  g. �

The strategy will be to analyse the game where Alice and Bob play according to fA and fB respec-
tively. One can show that if this game ends after finitely many moves, then fA = fB (see the proof
of either [14, Proposition 2.8] or Proposition 3.1). But by Lemma 3.2, all game valuations are
sandwiched between fA and fB, so if fA = fB there must be a unique game valuation.

3.3 Proof strategy for Proposition 3.1 for q� 1
We give here a short description of Wästlund’s proof of an analogous statement of Proposition 3.1
for q� 1, in order to explain how our proof for q> 0 is similar, and yet differs from it significantly.
One way to explain the proof idea is that there are two main components: (i) show that a game
where both Alice and Bob play according to fA must finish after finitely manymoves, and (ii) show
this game is not ‘too different’ from a game where Alice plays according to fA and Bob according
to fB.

Let u0 := φ, u1, u2, . . . be the (finite or infinite) game path when both Alice and Bob play
according to fA. Let Zi := fA(ui) for i� 0, and note that these random variables are not indepen-
dent. If Zi = λ/2, then the fA-optimal move from ui is to quit and pay the penalty, and the game
path is finite if and only if this happens for some i. It is not too hard to show that P(Zi = λ/2)> 0
uniformly in i, but since the Zi are not independent this is not sufficient. However, conditional
on Zi, (Z0, . . . , Zi−1) and (Zi+1, Zi+2, . . . ) are independent. So in order to prove (i), it therefore
suffices to show that there is an ε > 0 such that P(Zi+1 = λ/2 | Zi = z)> ε for all z ∈
.

A move is said to be δ-reasonable if and only if it is within δ of being fA-optimal,d i.e. the move
u→ v is δ-reasonable if �(u, v)− fA(v)� fA(u)+ δ. It turns out that for any δ > 0, if Bob plays
according to fB his moves will be δ-reasonable eventually – after a vertex w, say (see the proof of
[14, Proposition 2.8]). Using (3.2) and the choice of fA, Wästlund proved (statements equivalent
to) the following more precise versions of (i) and (ii). Pick u ∈V(T) in a way that does not depend
on the subtree rooted in u. Then

dIn [14] reasonable moves were defined in terms of their deviations from fB, but by focusing on fA instead our notation
becomes slightly more convenient later in Section 4.2.

https://doi.org/10.1017/S0963548320000425 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000425


380 J. Larsson

(i) there is an ε > 0 such that if u→ v is the fA-optimal move from u, then

inf−λ/2�z<λ/2
P( fA(v)= λ/2 | fA(u)= z)> ε,

(ii) for any ε > 0, there exists a δ > 0 such that

sup
z∈


E[#(δ-reasonable but not fA-optimal moves from u) | fA(u)= z]< ε/2.

Note that there is a.s. no fA-optimal move u→ v if fA(u)= λ/2, which is why the range of the
infimum in (i) excludes λ/2.

Now assume that Alice and Bob play according to fA and fB respectively. We will give a sketch
of the argument that (i) and (ii) together imply that the game will end after finitely many moves
[14, Proposition 2.5, Lemma 2.7].

Consider a vertex u at even distance from the root (so that it it Alice’s turn at u), chosen in a
way independent from the subtree rooted in u. Condition on fA(u). What is the expected number
of vertices reachable by an fA-optimal move by Alice followed by a δ-reasonable move by Bob?

Conditional on fA(u)= λ/2, there are a.s. no such vertices, because Alice will a.s. quit at u.
Conditional on fA(u)= z for some z<λ/2, there is an fA-optimal move u→ v which Alice will
choose. Then by (i), fA(v)= λ/2 with probability at least ε, so the expected number of fA-optimal
moves from v is at most 1− ε. By (ii), the expected number of δ-reasonable but not fA-optimal
moves from v is at most ε/2. In total, the expected number of δ-reasonable moves is at most
1− ε/2.

If we consider the tree R(u) of game paths from u consisting of fA-optimal play by Alice and
δ-reasonable play by Bob, we see that its expected number of vertices at level k is at most (1−
ε/2)�k/2�. Hence R(u) is almost surely finite. This in fact holds for all vertices simultaneously: since
the tree Tq

λ has countable many vertices, there is almost surely no vertex u′ with R(u′) infinite.
Now, recall that w is a vertex such that Bob plays δ-reasonably after w, whence R(w) is guaran-

teed to contain the game path from w. But R(w) is almost surely finite, and hence the game will
end after finitely many moves.

3.4 Revised proof strategy for 0< q< 1
The main trouble that arises when trying to apply the argument above when q ∈ (0, 1) is that
the proof of statement (i) above fails for q< 1. Indeed, the statement is false for q� 1/2: see
Remark 4.1.

Our aim is still to show that the probability of a player quitting at any given time is uniformly
bounded away from 0 (when both players play according to fA). Whether or not a player will
quit the game at ui is determined by the random variable Zi := fA(ui), but as mentioned earlier
these random variables are not independent. This problem was sidestepped in Wästlund’s proof
by the conditioning in (i) above, but since that fails for small q we will instead need to understand
the dependency between Zi and Zi+1. We do this by constructing a pair of linear operators (one
for each parity of i) that map functions of the form z �→E[• | Zi+1 = z] to z �→E[• | Zi = z]. The
statement that will correspond to (i) will be that the composition of these two operators is a con-
traction (Lemma 4.8). Having changed one major component of the proof, the second one (ii) is
no longer compatible. The linear operators we construct can only provide information about the
conditional expectation of random variables, so we must change our aim from proving that (some
structure containing) the game path is almost surely finite, to proving that it has finite expected
size. However, the expected size of the tree of reasonable moves (as defined in Section 3.3) does
not appear to be finite.

We solve this by using a refined concept of reasonable moves, where we take into account not
only single deviations by Bob from fA, but instead consider the sum of these deviations along
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a game path. This leads to a significantly smaller tree of reasonable moves (guaranteed to contain
the game path) whose expected size we can bound recursively.

3.5 The connection between exploration andmatching
Here we will briefly discuss the connection between the seemingly disparate topics of the explo-
ration game and the minimum perfect matching problem. This is not strictly necessary in order to
understand our proof of Proposition 3.1 (which is the novel result of this paper), but it gives some
insight into how Proposition 3.1 implies Theorem 1.1. For a full proof of this implication, we refer
the interested reader to Section 3 of [14]. Crucially, at no point in the proof of [14, Theorem 3.2]
is the assumption q� 1 used: the proof only depends on there being a unique game valuation
f := fA = fB on Tq

λ.
We begin by defining the λ-relaxed (or λ-diluted) matching problem. A partial matching in a

graph G is a subgraph H ⊆G where no two edges share a vertex. For a partial matching H on an
edge-weighted graph G, we say that the λ-relaxed cost cλ(H) of it is the sum of the costs of all
edges it contains, plus λ/2 for each unmatched vertex. In other words,

cλ(H) :=
∑

uv∈E(H)
�(uv)+

∑
u/∈V(H)

λ/2.

We let Mλ(G) :=minH cλ(H), where the minimum is taken over all partial matchings. We also
let M

λ(G) be the sum of edge costs of the matching H which minimizes cλ(H). Note that for
any graph G, Mλ(G) is an increasing function of λ, and M

λ(G)�Mλ(G)�M(G). There are two
results from [14] that connect λ-relaxed matchings to perfect matchings and to the exploration
game, respectively.

First, [14, Theorem 3.2] shows that the existence of a unique game valuation (Proposition 3.1)
implies that βλ := limn n−1M

λ(K̃n) exists for any λ. A rough outline of the argument is as follows.
Let Cuv be the contribution of uv toM

λ(K̃n), i.e. Cuv is the cost � := �(u, v) of the edge uv if this
edge participates in the minimal-cost λ-relaxedmatching, and Cuv = 0 otherwise. ThenM

λ(K̃n)=∑
u,v Cuv, where the sum ranges over all pairs of vertices. It can be shown that for a finite graph,

an arbitrary edge uv participates in the optimal λ-relaxed matching if and only if the move u→ v
is optimal in the exploration game on K̃n starting from u. Let � := �(u, v), Zu := f (K̃n − uv, u) and
Zv := f (K̃n − uv, v). Then the move u→ v is optimal if and only if Zu � �− Zv, because by (3.1)
the value (to the second player) of the move u→ v is �− Zv, while the value of the best move
other than u→ v is Zu. Noting that {�� Zu + Zv} ⊆ {�� λ}, we can calculate the expected value
of Cuv:

ECuv =E[χ{��Zu+Zv} · �]=E[χ{��Zu+Zv} · � | �� λ] · P(�� λ), (3.5)

where χE denotes the indicator random variable for the event E. Let Xuv be defined as (� | ��
λ), i.e. the random variable given by the CDF P(Xuv � t)= P(�� t | �� λ). The three random
variables Zu, Zv and Xuv depend on n, but we will find their limits in probability as n→∞. Since
(Zu, Zv) is independent from Xuv, we deal with them separately.

Recall that for any t� λ, P(�� t | �� λ)= (1+ o(1))(t/λ)q. Hence Xuv converges in distribu-
tion to a random variable X with CDF P(X� t)= (t/λ)q (i.e. X has probability measure λ−qmq).
The λ-local limit of K̃n − uv rooted at u and v is two disjoint independent copies of Tq

λ, and by
the sandwiching argument in (3.4) together with Proposition 3.1, the pair of random variables
(Zu, Zv) converge in probability to a pair (Z, Z′) of i.i.d. copies of f (Tq

λ, φ). Hence (3.5) equals

(1+ o(1)) ·E[χ{X�Z+Z′} · X] · P(�� λ)= 1+ o(1)
n

· λq ·E[χ{X�Z+Z′} · X]︸ ︷︷ ︸
=:βλ

, (3.6)
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and in particular,ECuv only depends on the distributions of Z, Z′ andX. In other words, it depends
on no structure of K̃n other than its λ-local limit and its edge cost distribution. Summing over all(n
2
)
edges gives

EM
λ(K̃n)=

∑
uv

ECuv = (1+ o(1))
n
2
βλ.

Since rooting K̃n in any four vertices u, v, x, y gives a graph whose λ-local limit is four disjoint
independent copies of Tq

λ, one can show with a similar calculation that
ECuvCxy = (1+ o(1))ECuvECxy, (3.7)

so by the second moment method, the sum M
λ(K̃n)=∑

u,v Cuv is concentrated around its mean
(1+ o(1))(n/2)βλ.

Second, [14, Proposition 3.4] uses a variation on Pósa’s extension–rotation method to show
that if a graph sequence Gn with random edge costs �(u, v) satisfies a certain expansion property,
then a partial matching with few unmatched vertices can be extended to a perfect matching at
a small extra cost. More precisely, if the partial matching has total cost M and leaves δ|V(Gn)|
vertices unmatched for some δ > 0, then there exists a perfect matching with total cost at most
M+ oδ(1) · |V(Gn)|.

In [14, Lemma 3.5] it is shown that Kn satisfies this expansion property, and in [14,
Proposition 3.1] it is shown that the fraction of unmatched vertices in the optimal λ-relaxed
matching is oλ(1). Hence, by the extension–rotation argument, M(K̃n)�M

λ(K̃n)+ oλ(1) · n,
and M

λ(G)�M(G) holds trivially for any weighted graph G. Since this holds for all large λ,
M(K̃n)= (1+ o(1))(n/2)β where β := lim supλ→∞ βλ.

The argument is nearly identical for K̃n,n as for K̃n, except for the minor difference that the
total number of edges is n2 rather than

(n
2
)
, and hence (w.h.p.)

M
λ(K̃n,n) :=

∑
u,v

Cuv = (1+ on(1))nβλ

(where the sum ranges over all u at the ‘left’ side of Kn,n and v at the ‘right’ side). It is also worth
noting that [14, Proposition 3.4] is only done explicitly for Kn, but the proof works without mod-
ification for Kn,n. In fact the crucial expander property in [14, Lemma 3.5] is stated in terms of a
random subgraph of a bipartitione of Kn.

3.6 Generalizing to other graphs
A natural question now is: For what graph sequences Gn other than K̃n and K̃n,n does the above
argument work? For the extension–rotation argument, we need the expander property of [14,
Lemma 3.5]. For the calculations in (3.6) and (3.7) to work, the λ-local limit ofGn when rooting in
four arbitrary vertices must be four disjoint independent copies of Tq

λ (possibly after rescaling the
edge costs of Gn by some factor). But if this holds, the rest of the argument in [14, Theorem 3.2]
also works. In fact, if one can show concentration of M

λ(Gn) in some way other than (3.7), it
suffices to consider rooting in two arbitrary vertices.

A simple example is an Erdős–Rényi random graph Gn,p with constant p> 0. It has the λ-local
limit Tq

λ (if one adjusts the cost scaling factor appropriately), and verifying that it has the expander
property should not be too difficult. This approach might also be feasible for p→ 0 slowly with n,
but clearly not for p< log n/n (since then Gn,p has isolated vertices with positive probability).

A necessary condition for Gn to have the λ-local limit Tq
λ at every vertex is that it is approxi-

mately regular. A graph that also has some ‘self-similarity’, in the sense that the subgraph induced

eThe proof would need some modification for (say) the complete k-partite graph, k� 3.
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by a random subset of vertices ‘looks like’ the whole graph, should have decent expander prop-
erties, and its (k, λ)-truncations should ‘look the same’ rooted in any vertex. Any graphon is
‘self-similar’ in this way, and the graphon in Conjecture 1.2 is approximately regular. It therefore
seems like a good candidate for Gn.

Some other graphs for which this proof method might work are quasi-random graphs and
k-partite complete graphs.

4. Proof of main theorem
4.1 The tree Tqλ conditional on the game valuation fA
In order to be able to construct the linear operators mentioned in Section 3.4, we will change
slightly how we generate the random tree Tq

λ and the game valuation fA. Instead of first generat-
ing Tq

λ and then calculating fA ‘back from infinity’, we will generate the tree and vertex labels fA
concurrently. This will require the following lemma from [14].

Let FA(z) := P( fA(φ)� z). In a slight abuse of notation, we will also use FA to refer to the
probability measure on 
 of the random variable fA(φ). Similarly, FB will refer to both the func-
tion z �→ P( fB(φ)� z) and the corresponding measure. Furthermore, let the �f -square be the set
{(�, f ) : 0� �� λ, |f |� λ/2}, and recall thatmq is the measure on [0, λ] such that dmq = qtq−1 dt.

Lemma 4.1. (Lemma 2.6 of [14]f). Let u ∈V(Tq
λ), let v1, v2, . . . vk be its children, let �i := �(u, vi),

and let fi := fA(vi). Then the points (�i, fi) constitute a two-dimensional inhomogeneous Poisson
point process on the �f -square, with intensity given by measure μA :=mq × FA if |u| is odd and
μB :=mq × FB if |u| is even.

An immediate consequence of the lemma is that the fA-optimal move from a vertex is a.s.
unique: �− f has continuous distribution, because its probability density function is given by the
convolution of the function t �→ qtq−1+ and the measure dFA(− z).

To generate the tree Tq
λ concurrent with fA, start by picking z according to the prob-

ability measure FA, and assigning the root φ the game value fA(φ)= z. Then we generate
the next generation of the tree by the Poisson point process of Lemma 4.1, conditioned on
min (λ/2, mini (�i − fi))= z.

If z= λ/2, this is equivalent to conditioning on there being no point in the region {�− f <λ/2}
of the �f -square. Since the distribution of points in two disjoint regions are independent, the
points in {�− f � λ/2} are generated by an inhomogeneous Poisson point process according to
the measure μB restricted to the region {�− f � λ/2}.

If z<λ/2, this is equivalent to conditioning on there being no point in the region {�− f < z}
and one special point on the line {�− f = z}. The points {�− f � z} can be generated by restricting
the intensity measure to {�− f � z} as in the previous case. The line {�− f = z} has zero μB-
measure, so to pick a random point from it we condition on there being at least one point in the
Poisson point process on the strip {z� �− f � z+ ε}, and then let ε→ 0. Since μB =mq × FB,
and mq is absolutely continuous with respect to the Lebesgue measure, this is well-defined.
In order to express the probability measure obtained in the limit explicitly (which we do in
Lemma 4.4) we must first understand the measures FA and FB in more detail.

The following is proved in [14, page 1077] (as well as occurring in similar forms in e.g. [2], [8]
and [11]), but we include the proof here because it helps in understanding some of our argument
later on, in Lemma 4.8 and Lemma 4.7.

fThe lemma in [14] only states that (�i, fi) constitutes a Poisson point process, not what the intensity measure is. However,
it is implicit in the proof of the lemma that μB is the correct measure when |u| is even, and the other case is analogous.
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Lemma 4.2. Let V be the non-linear operator on functions on
 defined by

V(G)(z) := exp
(
−

∫



q(z+ t)q−1+ G(t) dt
)
.

Then FA =V(FB) and FB =V(FA).

Note that since FB(t)� 1 for all t, the lemma implies that FA(t)� e−λq . Similarly, FB(t)� e−λq .

Proof. Recall that FA(z) := P( fA(φ)� z). Since (by definition) fA(φ)=min (λ/2, mini (�i − fi)),
the event {fA(φ)� z} happens if and only if there is no (�i, fi) with �i − fi < z. By Lemma 4.1,
the (�i, fi) constitutes a Poisson point process, and the probability that no (�i, fi) falls in the set
Dz := {(�, f ) : �− f < z} is exp (−μB(Dz)). To calculate μB(Dz), first fix � and let t be such that
z+ t= �. Then �− f < z if and only if f > t. Integrating over all t gives

μB(Dz)=
∫



q(z+ t)q−1+ P( f > t) dt.

However, P( f > t)= P( f � t) for all but at most countably many t, and FB(t)= P( f � t) by
definition. Hence FA(z)= exp (−μB(Dz))=V(FB)(z). The other case is analogous. �

The operator V is the composition of an integral operator with a continuous kernel and a
smooth function applied pointwise, and we can use this to establish smoothness properties of FA
and FB, as well as bound their derivatives.

Lemma 4.3. Each of the two measures given by FA and FB on 
 is the sum of a point mass at λ/2
and a measure that is absolutely continuous with respect to the Lebesgue measure on (− λ/2, λ/2).
The functions FA and FB are continuously differentiable on (− λ/2, λ/2), with derivative F′A
given by

F′A(z)=−FA(z) ·
(
FB(λ/2) q(z+ λ/2)q−1 −

∫



q(z+ t)q−1+ F′B(t) dt
)
. (4.1)

Furthermore,
∫


q(z+ t)q−1+ F′A(t) dt is a continuous function of z, and for some constant α > 1 and

all |z|<λ/2, we have the bounds
−F′A(z)� α(λ/2− |z|)q−1, (4.2)

−
∫



q(z+ t)q−1+ F′A(t) dt� αmax ((z+ λ/2)2q−1, |z− λ/2|q−1). (4.3)

Equation (4.3) also holds for λ/2< z� 3λ/2, and analogous results hold for F′B.

The proof of this lemma is largely a lengthy calculus exercise, and we postpone it to the end of
the paper. We will often parametrize the diagonal line {(�, f ) : �− f = z} as {(z+ t, t) : t ∈
}. The
measure μB has density

ρzB(t) := q(z+ t)q−1+ · (− F′B(t)) (4.4)

along such a diagonal for t<λ/2, and a point mass q(z+ λ/2)q−1FB(λ/2) at the end point t= λ/2
(and analogously for μA, ρzA).

Lemma 4.4. Let (�, f ) be a point in the inhomogeneous Poisson point process on the �f -square
with intensity measure μA, conditioned to lie on the line �− f = z (for some z<λ/2). Then the
probability distribution of f is given by
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P( f < x)=
∫ x
−λ/2 ρ

z
A(t) dt

JzA
, P( f = λ/2)= q(z+ λ/2)q−1FA(λ/2)

JzA
,

where

JzA := q(z+ λ/2)q−1FA(λ/2)+
∫



ρzA(t) dt.

Proof. Let ηε be defined as ε−1 times the measure μA, restricted to the region
Eε := {(�, f ) : z� �− f � z+ ε, f �−z},

and let η be the measure on E0 which is given by ρzA(t) dt at the point (z, z+ t), and a point mass
of FA(λ/2) at (z, z+ λ/2).

We will show that ηε→ η, as ε→ 0, and that normalizing η gives the probability measure in
the statement of the lemma. For z<λ/2,∫∫

f<x
dηε =

∫ x

−λ/2

∫ f+z+ε

f+z
1
ε
ρ
�−f
A ( f ) d� df =−

∫ x

−λ/2
1
ε

∫ f+z+ε

f+z
q�q−1 d�f ′A( f ) df .

Note that � �→ q�q−1 is decreasing on R+, whence
1
ε

∫ f+z+ε

f+z
q�q−1 d�↗ q(z+ f )q−1.

By the monotone convergence theorem,∫∫
f<x

dηε→
∫ x

−λ/2
ρzA(t) dt.

Similarly, the ηε-measure of the line segment {f = λ/2, z� �− f � z+ ε} approaches
q(z+ λ/2)q−1FA(λ/2) as ε→ 0. So ηε→ η as ε→ 0, and JzA := ‖η‖ ∈ (0,∞). (For a measure
m, ‖m‖ denotes the m-measure of the whole space on which m is defined.) It follows that
ηε/‖ηε‖→ η/‖η‖, and ηε/‖ηε‖ is the probability measure for a random point picked according
to μA in Eε . �

We will also use inequality (4.3) of Lemma 4.3 in another (weaker) form, as a bound on the
normalizing factor JzA:

JzA � αmax ((z+ λ/2)2q−1, |z− λ/2|q−1)+ FA(λ/2)q(z+ λ/2)q−1
<αλq max ((z+ λ/2)q−1, |z− λ/2|q−1). (4.5)

4.2 (u, t)-reasonable moves
We will now introduce our new definition of reasonable moves, and show that the game path is
reasonable according to this definition. For v ∈ Tq

λ − {φ}, let δ(v) be how far from fA-optimal it is
to move to v from its parent u. More precisely, δ(v) := �(u, v)− fA(u)− fA(v). Note that δ(v)� 0,
since it follows from (3.2) that fA(u)� �(u, v)− fA(v) for any v.

Definition 4.1. We say that a (finite or infinite) path P= uu1u2 . . . away from the root is (u, t)-
reasonable if

∑|P|
i=1 δ(ui)� t and δ(ui)= 0 whenever |ui| is odd. In other words, a path is

(u, t)-reasonable if Alice’s moves are fA-optimal and Bob’s deviations from fA sum to at most t.

Lemma 4.5. The game path (when Alice plays according to fA and Bob according to fB) is (φ, 2λ)-
reasonable.
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Proof of Lemma 4.5. Let P be the game path. Pick any length 2 subpath (u→ v→w)⊆ P, such
that u is at even distance from φ.

Since u is at even distance from the root, it will be Alice’s turn to move from u. She will choose
the fA-optimal move, i.e. she will move to a child v of u such that fA(u)= �(u, v)− fA(v). In other
words, δ(v)= 0. This move may or may not be fB-optimal, but fB(u)� �(u, v)− fB(v) regardless.
Thusg

fA(u)− fB(u)� [�(u, v)− fA(v)]− [�(u, v)− fB(v)]= fB(v)− fA(v),

Then it will be Bob’s turn to move from v. He will choose the fB-optimal move, i.e. he will move to
a child w of v such that fB(v)= �(v,w)− fB(v). This move may or may not be fA-optimal, but by
the definition of δ we have that fA(v)= �(v,w)− fA(w)− δ(w). Thus

fB(v)− fA(v)= [�(v,w)− fB(w)]− [�(v,w)− fA(w)− δ(w)]= fA(w)− fB(w)+ δ(w),
and together with the move u→ v and the fact that δ(v)= 0, this gives that

fA(u)− fB(u)� fA(w)− fB(w)+ δ(v)+ δ(w).
Let φ = u0→ u1→ u2→· · · be the game path P. Pick n ∈N such that 2n� |P| (P might be
infinite, in which case we just pick any n ∈N). If we repeat the argument above with (u, v,w) :=
(u2i−2, u2i−1, u2i), for all 1� i� n, we get that

fA(φ)− fB(φ)� fA(u2)− fB(u2)+ δ(u1)+ δ(u2)
� fA(u4)− fB(u4)+ δ(u1)+ δ(u2)+ δ(u3)+ δ(u4)
...

� fA(u2n)− fB(u2n)+
2n∑
i=1

δ(ui).

Since |fA|, |fB|� λ/2, this implies that
2n∑
i=1

δ(ui)� 2λ.

Recall that δ(ui)= 0 for odd i, whence
k∑

i=1
δ(ui)� 2λ for any k� |P|.

Taking the supremum over such k, it follows that
|P|∑
i=1

δ(ui)� 2λ. �

Let �t(u) be the union of all (u, t)-reasonable paths. The crucial property of �t(u) is that the
event {w ∈�t(u)} is determined by the first |w| generations of Tq

λ together with vertex labels given
by fA. In other words, this event is independent from the descendants of w. The event {w ∈ P}, on
the other hand, depends on both fA(v) and fB(v) for v descendants of w, and we do not even know
a priori if fB(v) is determined by any finite subtree of Tq

λ.
But our aim is to bound E|P|, and since P⊆�2λ(φ) it suffices to bound E|�2λ(φ)|. We will

work with k-level truncations �k
t (u) :=�t(u)(k, λ), and recursively bound the expected value of

gA similar argument is used in [14, page 1076] to show that the difference fA(u2k)− fB(u2k) is monotone in k.
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|�k
t (u)|. Conditional on fA(u), the distribution of �k

t (u) is the same for every u at even distance
from the root, so we let

Rkt (z) :=E[|�k
t (φ)| | fA(φ)= z]. (4.6)

We are now ready to state the following proposition, which essentially says that the tree of
reasonable paths is finite almost surely.

Proposition 4.6. There exists a family of continuous functions (ψt)t∈[0,2λ] on 
 such that
R2kt (z)<ψt(z) for all z ∈
, t ∈ [0, 2λ], and k ∈N, and satisfying supz,t ψt(z)<∞. In particular,
E|�2λ(φ)|< supz ψ2λ(z) is finite.

4.3 Linear operators
To prove Proposition 4.6 we will need the following lemmas concerning certain linear opera-
tors. These operators relate functions of the form z �→E[• | fA(u)= z] to z �→E[• | fA(v)= z],
whenever u→ v is an fA-optimal move.

Recall that

JzA := q(z+ λ/2)q−1FA(λ/2)−
∫



q(z+ t)q−1+ · F′A(t) dt
is the measure of the diagonal line {�− f = z} in the �f -square, according to the measure from
Lemma 4.4.

Lemma 4.7. Let the positive linear operator LA on C(
) and the function IA : 
→ [0, 1] be
defined by

LAh(z) :=
∫


h(t)ρzA(t) dt

JzA
, (4.7)

IA(z) :=
∫


ρzA(t) dt
JzA

(4.8)

on (− λ/2, λ/2), and by their continuous extensions at ±λ/2. Let LB and IB be defined similarly.
Let u, v be such that φ→ u→ v are fA-optimal moves. Then the following holds:

(LB ◦ LA)Rkt (z)=E[|�k
t (v)| | fA(φ)= z]. (4.9)

Furthermore, IA satisfies these properties:

(i) IA is continuous,
(ii) IA(z)< 1 for z ∈ [− λ/2, λ/2), and
(iii) IA(± λ/2) are well-defined by continuous extension.

Analogous statements hold for IB.

Lemma 4.8. ‖LB ◦ LA‖< 1, where ‖ · ‖ is the operator norm given by the∞-norm on C(
).

Proof of Lemma 4.7. Assume that the moves φ→ u and u→ v are fA-optimal. Let Zz := ( fA(v) |
fA(u)= z), and consider E[|�k

t (v)| | fA(u)= z]. Since (by definition)

Rkt (z)=E[|�k
t (v)| | fA(v)= z],

we can write
E[|�k

t (v)| | fA(u)= z]=ERkt (Zz).
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First, note that the operator that takes a function g to z �→Eg(Zz) is linear: For any fixed z, the
mapping g �→Eg(Zz) is a linear functional, so the function z �→Eg(Zz) depends linearly on the
function g.

Now let us use the distribution of Zz given by Lemma 4.4 to calculate ERkt (Zz). Integrating over

 gives that

ERkt (Zz)=
q(z+ λ/2)q−1FA(λ/2)Rkt (λ/2)+

∫


Rkt (s)ρzA(s) ds

JzA
.

Note that Rkt (λ/2)= 0, since Alice’s optimal move from a vertex with game value λ/2 will be to
quit immediately. Thus

ERkt (Zz)=
∫



Rkt ( f )ρ
z
A( f ) df /J

z
A,

which equals LARkt (z) by (4.7). Note also that ρzA(t), ρ
z
B(t), J

z
A and JzB are positive for all z, t, so the

operators LA, LB are positive. Applying the same method one more time gives the desired result
for the first part of the lemma. For the second part, we verify that (i)–(ii) hold.

(i) The non-negative term
∫


ρzA(t) dt is continuous in z by Lemma 4.3, and so is the positive term

q(z+ λ/2)q−1FA(λ/2). Hence both the numerator and denominator of (4.8) are continuous, and
the denominator is non-zero, so IA is continuous.

(ii) Both q(z+ λ/2)q−1FA(λ/2) and
∫


ρzA(t) dt are positive and finite for |z|<λ/2, so IA(z)< 1

for such z.

(iii) Using (4.3), we see that for z near−λ/2,

IA(z)= O((z+ λ/2)2q−1)
(z+ λ/2)q−1 +O((z+ λ/2)2q−1) =O((z+ λ)q),

so that limz→−λ/2 IA(z)= 0. Near λ/2,

IA(z)=
∫


ρzA(t) dt

qλq−1FA(λ/2)+ o(1)+ ∫


ρzA(t) dt

= 1−
(
1+

∫


ρzA(t) dt

qλq−1FA(λ/2)+ o(1)

)−1
,

so limz→λ/2 IA(z) will exist if limz→λ/2
∫


ρzA(t) dt exists (even if the latter limit is infinite).

The singularity of ρzA(t) at t=−zmoves as z→ λ/2, so we will instead work with the translate
ρzA(t− z+ λ/2) which has its singularity at−λ/2 for all z. Note also that∫




ρzA(t) dt=
∫



ρzA(t− z+ λ/2) dt,

as the support of ρzA is [− z, λ/2]⊆
, and translating by−z+ λ/2 gives a function with support
[− λ/2, z]⊆
. By (4.2), we have that

ρzA(t− z+ λ/2)= q(t+ λ/2)q−1 · F′A(t− z+ λ/2)�
{
αq(t+ λ/2)2q−2 t� 0,
Kt> 0,

for some constant K and all z sufficiently close to λ/2. Thus we have an upper bound on ρzA(t−
z+ λ/2) which is independent of z. For q> 1/2, this upper bound is integrable, and by dominated
convergence it follows that

lim
z→λ/2

∫



ρzA(t− z+ λ/2) dt=
∫



lim
z→λ/2 ρ

z
A(t− z+ λ/2) dt=

∫



ρ
λ/2
A (t) dt<∞.
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Hence limz→λ/2
∫


ρzA(t) dt exists (and is finite) for q> 1/2. For q� 1/2, we use (4.1) of

Lemma 4.3 to lower-bound−F′A(t),
−F′A(t)� FA(t)FB(λ/2)q(t+ λ/2)q−1 �K ′ · (t+ λ/2)q−1

for some K ′ := qe−2λq > 0, whence∫



ρzA(t) dt=
∫



q(t+ z)q−1 · (− F′A(t)) dt�K ′q
∫



(t+ z)q−1(t+ λ/2)q−1 dt.

The right-hand side goes to∞ as z→ λ/2, since the singularity (t+ λ/2)2q−2 is not integrable.
We conclude that limz→λ/2

∫


ρzA(t) dt exists for all q (finite for q> 1/2, infinite for q� 1/2),

hence IA(λ/2) is well-defined. �

Remark 4.1. It follows from the proof of the previous lemma that IA(λ/2)= 1 for q� 1/2, while
IA(λ/2)< 1 for q> 1/2. This implies that statement (i) in Section 3.3 is true only if q> 1/2.

Proof of Lemma 4.8. LA is a substochastic operator,h and to be able to fully leverage this property
we will factorize it into a stochastic operator that has almost all the structure of LA and a sub-
stochastic operator that is also a diagonal map. Start by defining the kernel κzA(t), as ρ

z
A normalized

for (z, t) ∈ (− λ/2, λ/2)2:

κzA(t) :=
ρzA(t)∫



ρzA(s) ds

. (4.10)

Using this kernel, we write LA(h)(z) as
∫


IA(z)h(t)κzA(t) dt. The factor IA(z) does not depend on

t, so it can be factored out of the integral. We can therefore write LA as the composition of the
operators SA and DA, defined by

SA(h)(z) :=
∫



h(t)κzA(t) dt, (4.11)

DA(h)(z) := IA(z) · h(z). (4.12)

For any function h, supt SA(h)(t)� supt h(t), so ‖SA‖� 1. Similarly, ‖SB‖� 1. In order to show
that ‖LB ◦ LA‖< 1, we factorize LB ◦ LA into DB ◦ SB ◦DA ◦ SA. It then suffices to bound ‖DA‖,
‖DB‖ or ‖DB ◦ SB ◦DA‖ away from 1, since by the definition of the operator norm and using that
‖SA‖, ‖SB‖� 1, we have

‖LB ◦ LA‖� ‖DB ◦ SB ◦DA‖� ‖DA‖ · ‖DB‖.
The proof of the lemma will be divided into two cases, depending on whether or not IA(λ/2)=
IB(λ/2)= 1.

Case 1. IA(λ/2)< 1 or IB(λ/2)< 1. Assume without loss of generality that IA(λ/2)< 1. Then
IA(z)< 1 for all z. By Lemma 4.7, IA is a continuous function on a closed interval, so it attains
its supremum τ , which must be less than 1. Thus ‖DA‖� τ < 1.

Case 2. IA(λ/2)= IB(λ/2)= 1. DB ◦ SB ◦DA is an integral operator with kernel given by
IB(s)IA(t)κ sB(t). In order to show that this integral operator has norm less than 1, we will bound
the integral of its kernel along the line s= z, where z ∈ (− λ/2, λ/2] is arbitrary but fixed. (We do
not need to consider the case z=−λ/2, since IB(− λ/2)< 1.)

hA positive linear operator T given by T(h)(z) := ∫
h(t)κ(t, z) dt is said to be stochastic if

∫
κ(t, z) dt= 1 for every z and

substochastic if
∫
κ(t, z) dt� 1 for every z.
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We have a good upper bound on IA and IB on any closed set not containing z= λ/2; in par-
ticular, on [− λ/2, 0]. We therefore bound the total mass of κzB on [0, λ/2]. Since IB(λ/2)= 1, we
know that

∫


ρzB(t) dt→∞ as z→ λ/2. But∫ λ/2

0
ρzB(t) dt� qλq−1 for any z,

so
∫ λ/2
0 κzB(t) dt must vanish as z→ λ/2. Hence there exists 0< θ < λ/2 such that, for all z> θ ,∫ 0

−z
κzB(t) dt> 1/2. (4.13)

By (ii) of Lemma 4.7, we can find δ > 0, such that when t� θ we have
IA(t)< 1− δ and IB(t)< 1− δ. (4.14)

Then, for−λ/2� z� θ , we apply the bound to IB to get∫



IB(z)IA(t)κzB(t) dt� IB(z) ·
∫



κzB(t) dt
(4.14)
< 1− δ,

while for θ < z� λ/2 we apply it to IA:∫



IB(z)IA(t)κzB(t) dt
(4.14)
<

∫ 0

−z
(1− δ)κzB(t) dt+

∫ λ/2

0
κzB(t) dt

(4.13)
< 1− δ/2.

This means that the weight along each line of DB ◦ SB ◦DA is at most 1− δ when z� θ , and at
most 1− δ/2 otherwise. So in either case, ‖DB ◦ SB ◦DA‖� 1− δ/2.

We conclude that ‖LB ◦ LA‖<max (τ , 1− δ/2)< 1. �

4.4 The game finishes in finite time
Armed with Lemmas 4.3, 4.7 and 4.8, we can proceed with the proof of Proposition 4.6.

Proof of Proposition 4.6. We will use the fact that the positive operator L := LB ◦ LA is a con-
traction (i.e. ‖L‖< 1) to construct suitable ψt . Let 1 : 
→R denote the function with constant
value 1. We define the functions ψt (for any t ∈ [0, 2λ] and some large constants K,m> 0 to be
determined later) by

ψt :=K exp (mt) ·
∞∑
k=0

Lk1. (4.15)

By Lemma 4.8, ‖L‖< 1, so the above series is absolutely convergent, whence for all z ∈

1� ψt(z)

K exp (mt)
� 1

1− ‖L‖ . (4.16)

Because the series is absolutely convergent, we can apply the operator L to ψt by applying it term-
wise to the sum in (4.15):

Lψt(z)=K exp (mt) ·
∞∑
k=1

Lk1(z)=ψt(z)−K exp (mt). (4.17)

Crucially, Lψt is less than ψt , and with a sizeable margin. We will do induction on even k to
establish the main claim, that

Rkt (z) :=E[|�k
t | | fA(φ)= z]�ψt(z).
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For z= λ/2 this is trivial, since there is no fA-optimal move from φ when fA(φ)= λ/2 and hence
R2kt (λ/2)= 0. We therefore fix some −λ/2� z<λ/2 and 0� t� 2λ, and consider the first two
moves of the game conditional on fA(φ)= z.

Let φ→ u be the fA-optimal move, which exists since z<λ/2. Let u→ v0 be the fA-optimal
move from u, if such u0 exists. Otherwise, add a dummy vertex u0 without descendants.

Assume there are N of Bob’s move options from u that are sub-optimal with respect to fA but
within t of being fA-optimal. Let vi, 1� i�N, be the vertices those moves lead to, ti := δ(vi), �i
the cost of the edge (u, vi), and let fi := fA(vi). By assumption, ti � t for all 1� i�N. Note that ti,
vi, fi and N are random functions of z.

For the base case k= 2, the children of the root in �2
t (φ) are the fA-optimal moves (by defi-

nition), and there is almost surely at most one such move (u). Its expected number of children,
conditioned on any value of fA(u), is at most 1+ λq, so R2t � 2+ λq. We let K = 2(2+ λq), so that
R2t � K/2<ψt , establishing the base case.

Next, assume Rks <ψs for some even k> 2 and all 0� s� 2λ. We want to show that Rk+2t <ψt
as well, and to do that we will bound the expected size of �k+2

t . The tree �k+2
t can be written as

an edge-disjoint union of copies of� in the following way:

�k+2
t (φ)=�2

t (φ)∪�k
t (v0)∪

N⋃
i=1
�k

t−ti(vi). (4.18)

Note that the trees �k
t (v0) and �k

t−ti(vi), 1� i�N, are independent conditional on
fA(v0), fA(v1), . . . , fA(vN). We already have a bound for�2

t (φ), and we continue by bounding the
conditional expected sizes of �k

t (v0) and
⋃N

i=1 �k
t−ti(vi). For �

k
t (v0), by the definition of Rkt and

Lemma 4.7,
E[|�k

t (v0)| | fA(φ)= z]= L(Rkt )(z)

< L(ψt)(z), since L is a positive operator
(4.17)= ψt(z)−K exp (mt). (4.19)

Next we bound the expected size of the union of the trees �k
t−ti(vi). To do this we condition first

on the random variables N, fi and ti and then on the event fA(φ)= z, so that the first conditional
expectation is itself a random variable:

E

[∣∣∣∣ N⋃
i=1
�k

t−ti(vi)
∣∣∣∣ | fA(φ)= z

]
=E

[
E

[∣∣∣∣ N⋃
i=1
�k

t−ti(vi)
∣∣∣∣ |N, ti, fi, 1� i�N

]
| fA(φ)= z

]

=E

[ N∑
i=1

Rkt−ti( fi) | fA(φ)= z

]
, (4.20)

since the subtree rooted in vi, conditional on fA(vi), is independent of fA(φ). By the induction
hypothesis with s= t− ti,

N∑
i=1

Rkt−ti( fi)�
N∑
i=1

ψt−ti( fi).

Let σA be the Poisson random measure generated by μA (i.e. the counting measure of the points
of the Poisson point process with intensityμA). It is a sum of Dirac measures, each corresponding
to a point in the �f -square. Among these points, (�i, fi), 1� i�N, are exactly those that lie in the
diagonal strip

D := {(�, f ) : z< �− f � z+ t}.
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Note that for any boundedμA-measurable function h, we have thatE[
∫
h dσA]=

∫
h dμA (which

can be seen by approximating h by simple functions). The expression (4.20) is then at most

E

[ N∑
i=1

ψt−ti( fi) | fA(φ)= z

]
=E

[∫∫
D
ψz+t−l+f ( f ) dσA(�, f )

]

=
∫∫

D
ψz+t−�+f ( f ) dμA(�, f )

(4.16)
�

∫∫
D

K exp (m(z+ t− �+ f ))
1− ‖L‖ dμA(�, f ) (4.21)

The integrand is constant along diagonals �− f = x for fixed x ∈ (z, z+ t]. Recall that the one-
dimensional measure of such a diagonal is JxA. Integrating along these diagonals first, we see that

(4.21)� K
1− ‖L‖ ·

∫ z+t

z
JxA exp (m(z+ t− x)) dx

(4.5)
� K exp (mt)

1− ‖L‖ ·
∫ z+t

z
αλq · [(x+ λ/2)q−1 + |x− λ/2|q−1] exp (m(z− x)) dx

�K exp (mt) · εm (4.22)

for some εm which goes to zero as m→∞, and does not depend on k, t or z. We now have a
bound on the expected size of each term in the right-hand side of (4.18). The bounds from (4.22)
and (4.19) give that

Rk+2t (z)=E

[
|�2

t (φ)| + |�k
t (v)| +

∑
i
|�k

t−ti(vi)| | fA(φ)= z
]

< (K/2)+ (ψt(z)−K exp (mt))+ (K exp (mt)εm). (4.23)

Pick m large enough that εm < 1/2. The expression (4.23) is then at most ψt(z), completing the
inductive step. Hence Rkt �ψt for all even k and all t ∈ [0, 2λ]. �

Proof of Proposition 3.1. By Lemma 4.5, the game path P is (φ, 2λ)-reasonable, and is therefore
contained in the tree�2λ(φ) of all (φ, 2λ)-reasonable paths. By Proposition 4.6,�2λ(φ) is almost
surely finite, and hence the game finishes after finitely many steps. Thus P is the finite path φ =
u0→ u1→· · ·→ uN for some ui. For 1� i�N, let �i = �(vi−1, vi). Let S be the total payoff for
Alice. (The total payoff for Bob is then −S.) Alice pays �1 + �3 + · · · to Bob, and Bob pays �2 +
�4 + · · · to Alice, until one player decides to pay λ/2 and quit the game. Thus

S=−�1 + �2 − �3 · · · ± �N ∓ λ/2,
where the ±-sign depends on whether Alice or Bob is the one to quit, i.e. whether N is even or
odd.

Claim 1. fA(φ)�−S

Proof of claim. Recall that fA(ui−1)� �i − fA(ui), with equality if ui−1→ ui is fA-optimal (which
is always the case if i is odd). Using these inequalities along the game path P gives us

fA(φ)= �1 − fA(u1)� �1 − �2 + fA(u2)= · · ·�
N∑
i=1

(− 1)i+1�i + (− 1)NfA(uN).
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If N is even, then Alice is the one that quits, which she would only have done if fA(uN)= λ/2.
In that case

S=−λ/2+
N∑
i=1

(− 1)i�i =−fA(uN)+
N∑
i=1

(− 1)i�i.

If on the other handN is odd, then Bob is the one that quits, and (as for every vertex) fA(uN)� λ/2.
Hence

S= λ/2+
N∑
i=1

(− 1)i�i � fA(uN)+
N∑
i=1

(− 1)i�i.

In either case

−S�
N∑
i=1

(− 1)i+1�i + (− 1)NfA(uN)� fA(φ).

By symmetry (reversing the roles of Alice and Bob in the proof, and δ instead measuring how
far Alice deviates fromwhat is fB-optimal) we also have that−fB(φ)� S. Thus fA(φ)�−S� fB(φ).
But by the choice of fA and fB, we know that fA(φ)� fB(φ), so we have that fA(φ)= fB(φ). For any
other u ∈V(Tq

λ), the subtree rooted in u has the same distribution as the whole Tq
λ, so a similar

argument gives that fA(u)= fB(u). Hence fA = fB. Since fA and fB are the maximum andminimum,
respectively, in the lattice ordering of all valuations, this implies that the valuation is unique. �

We end the paper by giving the deferred proof of Lemma 4.3.

Proof of Lemma 4.3. Let G be the class consisting of all non-increasing functions G : 
→ (0, 1]
which satisfy G(− λ/2)= 1. Recall that V is the non-linear operator defined by

V(G)(z) := exp
(
−

∫



q(z+ t)q−1+ G(t) dt
)
.

Wewill find the derivative ofV(G) for anyG ∈ G, and then show that FA, FB ∈ G. Since FA =V(FB)
and FB =V(FA) [14, page 1077], this will give us the derivatives F′A and F′B.

Claim 2. V(G)⊆ G.

Proof. For any function G : 
→R, we have that V(G)(− λ/2)= 1, because

V(G)(− λ/2) := exp
(
−

∫



q(− λ/2+ t)q−1+ G(t) dt
)

and (− λ/2+ t)q−1+ vanishes for all t ∈
.
Now pick aG ∈ G. Note first thatV(G) is non-increasing sinceG is non-increasing and positive.

Furthermore, G� 0 implies V(G)(z)� 1, and similarly G� 1 implies

V(G)(z)� exp
(
−

∫



q(z+ t)q−1+ dt)
)
� exp (− λq)> 0.

Thus V(G) ∈ G, and the claim follows. �

Claim 3. FA, FB ∈ G

Proof. First note that FA and FB are non-increasing by definition. Next recall that FA =V(FB),
FB =V(FA) and that V(G)(− λ/2)= 1 for any real-valued function on 
, whence FA(− λ/2)=
FB(− λ/2)= 1. �
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Since any G ∈ G is bounded and monotone, it has bounded variation. We can therefore inte-
grate with respect to the measure dG, in the sense of a Riemann–Stieltjes integral. However,
Riemann–Stieltjes integration is usually defined for non-decreasing functions rather than the
non-increasing function G here, and we must be careful with how Riemann–Stieltjes treats the
endpoints of 
. We therefore let G̃ be defined by G̃ := 1−G on [− λ/2, λ/2) and G̃(λ/2) := 1,
and work with dG̃ rather than dG.

Claim 4. For any G ∈ G, V(G) is differentiable on the interior of
, with derivative given by

d
dz

V(G)(z)=V(G)(z) ·
∫



q(z+ t)q−1+ dG̃(t). (4.24)

Proof. To verify (4.24), start by integrating
∫


q(z+ t)q−1+ dG̃(t) from z=−λ/2 to x (for some x

with |x|<λ/2):∫ x

−λ/2

∫ λ/2

−λ/2
q(z+ t)q−1+ dG̃(t) dz=

∫∫
−λ/2�t�λ/2,
−λ/2�s−t�x

qsq−1+ dG̃(t) ds

=
∫ λ/2−x

0
qsq−1G(x+ s) ds

=− ln (V(G)(x)).

By the fundamental theorem of calculus, ln (V(G)(z)) is differentiable, with derivative given by

d
dz

ln (V(G)(z))=−
∫



q(z+ t)q−1+ dG̃(t).

This implies that V(G) is also differentiable, with derivative given by (4.24), proving the claim. �

Claim 5. Let the function g on
 be defined by

g(z) := (λ/2− |z|)q−1. (4.25)

Then there exists a constant a> 0 such that if G ∈V(G) satisfies−G′ � ag, then−(V(G))′ � ag.

Proof. We need to calculate (and then estimate) d
dzV(G)(z). Since G ∈V(G), G is differentiable,

and therefore dG̃(t)=−G′(t) dt for t in the interior of
. However, G̃ also has a point mass at λ/2,
so for any t ∈
 we have that

dG̃(t)=−G′(t) dt+G(λ/2) dδλ/2(t),

where δx is a Dirac measure at x. Substituting this expression for dG̃ in (4.24),

d
dz

V(G)(z)=−V(G)(z) ·
(
q(λ/2+ z)q−1G(λ/2)−

∫



q(z+ t)q−1+ G′(t) dt
)
. (4.26)

The integrand on the right-hand side of (4.26) has a singularity at t=−z, while the function g has
a singularity at t= λ/2. For some positive parameter r<min (λ/4, 2−4/q), we will deal separately
with two cases: when these singularities are within 2r of each other, and when they are further
apart. We will establish that the following inequality holds in both cases:

− d
dz

V(G)(z)< g(z) · (2q+ 4arq)+ qrq−1 for all z, (4.27)
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from which it follows that

− d
dz

V(G)(z)< a · g(z) for all z

by picking some a>max (8q, λ/r).

Case 1. −λ/2� z�−λ/2+ 2r. We apply the bound −G′(t)� a · g(t), and use the fact that the
resulting integrand is symmetric around t=−z/2+ λ/4:

−
∫



G′(t) · q(z+ t)q−1+ dt� a
∫



q(λ/2− t)q−1(z+ t)q−1+ dt

� 2a(z/2+ λ/4)q−1 ·
∫ z/2+λ/4

0
qsq−1 ds

= 22−2qa(z+ λ/2)2q−1 (4.28)

< 4arqg(z). (4.29)

We will later be using the tighter bound in (4.28), but for now (4.29) suffices. Again using (4.26),
this gives a bound on d

dzV(G)(z):

− d
dz

V(G)(z)�G(z) · (G(λ/2) · q(λ/2+ z)q−1+ + 4arqg(z))� g(z) · (q+ 4arq)

which is less than the bound from (4.27).

Case 2.−λ/2+ 2r� z� λ/2. We use the bound−G′(t)� a · g(t) for−z< t<−z+ r:

−
∫



G′(t) · q(z+ t)q−1+ dt�
∫ −z+r
−z

ag(t) · q(z+ t)q−1 dt −
∫ λ/2

−z+r
G′(t) · q(z+ t)q−1 dt. (4.30)

If g(t) is larger than g(− z), for−z� t�−z+ r, it can be at most twice as large, since g is increas-
ing fastest at λ/2− 2r and g(λ/2− r)� 2g(λ/2− 2r). Hence the first integral on the right-hand
side of (4.30) is at most ∫ −z+r

−z
2g(− z) · q(z+ t)q−1 dt� 2g(z) · rq, (4.31)

while the second integral on the right-hand side of (4.30) is at most

−
∫ λ/2

−z+r
G′(t) · qrq−1 dt� qrq−1, (4.32)

since q(z+ t)q−1 is a decreasing function in t. Putting (4.31) and (4.32) together with (4.26), this
gives us that− d

dzV(G)(z) is at most

V(G)(z) · (G(λ/2)q(λ/2+ z)q−1 + 2a · g(z)rq + qrq−1)� 2g(z) · (q+ arq)+ qrq−1,
which is also less than the bound from (4.27). �

Claim 6. −F′A,−F′B � ag (inequality (4.2) in the statement of the lemma).

Proof. Note first that FA, FB ∈V(G), whence they are differentiable by a previous claim. Let
G1(z) := 1 for all z ∈
, and Gk+1 :=V(Gk). Then G1 ∈ G, and by induction Gk ∈ G for all k� 1.
We know by [14, page 1077] that for any z ∈
, G2k(z)↗ FA(z), and similarly G2k+1(z)↘ FB(z).
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 is compact and FA is continuous, so by Dini’s theorem G2k→ FA uniformly. But since FA is
differentiable, uniform convergence of G2k implies G′2k→ F′A. Similarly, G′2k+1→ F′B as k→∞.

Noting that −G′1(z)= 0< ag, and −G′k(z)< ag⇒−G′k+1(z)< ag, by induction −G′k(z)< ag
for all k. Since G′2k→ F′A, we have that−F′A � ag, and similarly−F′B � ag. �

The next step is to show that
∫


ρzA(t) dt is continuous in z on (− λ/2, λ/2). (Recall that

ρzA(t) :=−q(t+ z)q−1+ F′A(t).) It suffices to show that it is continuous on any closed sub-interval
I ⊂ (− λ/2, λ/2). Since |F′A| is bounded by KI := supt∈I ag(t)<∞ on I, for any x, y ∈ I we have

|FA(x)− FA(y)|<KI · |x− y|. (4.33)
We will let ε :=√|x− y|→ 0. Suppose (without loss of generality) that x< y and
[x− ε, y+ ε]⊆ I. We estimate the difference∣∣∣∣

∫ λ/2

−x
q(x+ t)q−1F′A(t) dt−

∫ λ/2

−y
q(y+ t)q−1F′A(t) dt

∣∣∣∣
(4.33)
� 2

∣∣∣∣
∫ −x+ε
−x

KI · q(x+ t)q−1 dt
∣∣∣∣+ q

∣∣∣∣
∫ λ/2

−y+ε
((x+ t)q−1 − (y+ t)q−1)F′A(t) dt

∣∣∣∣
� 2KIε

q + 2 |x− y|︸ ︷︷ ︸
�ε2

·q(1− q) ·
∣∣∣∣
∫ λ/2

−y+ε
(y+ t)q−2︸ ︷︷ ︸

�εq−2
F′A(t) dt

∣∣∣∣
=O(εq).

Hence
∫


ρzA(t) dt is continuous in z, and so is F′B.

To establish the bound (4.3) for
∫


ρzA(t) dt, we use−F′A � ag. Then FA satisfies the conditions

necessary for (4.28) to hold for z near −λ/2 with G= FA. For other z, note that the integrand is
at most −F′B(z), for which the weaker bound ag suffices. In other words, for some constant b and
any−λ/2< z<λ/2, we have that∫




ρzA(t) dt� bmax ((λ/2− z)q−1, (z+ λ/2)2q−1).
Finally, for z>λ/2, note that (z+ t)q−1 � (z− λ/2)q−1, whence

∫


ρzA(t) dt is at most

q(z− λ/2)q−1. Setting α =max (a, b, q) gives the desired result. �
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