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Abstract

The higher order chain rule for Frechet and Hadamard differentiable mappings on
topological linear spaces is proved and various formulae for (g°/)'n)(x) are given. Leibniz'
theorem (in a very general form) is also proved.
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1. Discussion and preliminaries

Let / : (7—> V and g : V —> W be n -times Frechet differentiable, where
U, V and W are open subsets of normed linear spaces E, F and G. Then it is
well known that g °f is n-times Frechet differentiable. The proof depends on
the formula (g°f)'(x)= g'(f(x))°f'(x) and the fact that the composition
mapping comp: 5£{E, F) x SE{F, G)-*££{E, G) defined by comp(«, v) = v°u
is continuous bilinear and thus infinitely Frechet differentiable.

If E, F and G are only supposed to be topological linear spaces, then
comp may only be (once) Frechet differentiable and this proof breaks down.
Consequently, we are forced to use the formula for (g °/)("'(x) and this leads
to a rather more complicated induction argument. This paper contains the
details of this proof as well as a similar proof of Leibniz' theorem (in a very
general form) and various formulae for (g °fYn)(x).

This paper arose from an attempt to reconcile three versions of the
formula for (g°/)("'(v). One appears (without proof) in Averbuh and Smol-
janov (1967), p. 234, fhe second is due to Penot (1973), p. 8 (proof outline for
locally convex spaces) and the third is given by Abraham and Robbin (1967),
p. 3 for normed linear spaces. We show that Abraham and Robbin's formula
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[2] Derivatives in linear spaces 349

is incorrect. Penot's formula has an omission in the coefficients. The formula
of Averbuh and Smoljanov is correct and the most general. We derive several
simpler formulae which arise in special cases.

The higher order chain rule is used constantly in the theory of smooth-
ness properties of topological linear spaces (Lloyd (1972, 1973,1974, 1975)).

TLS denotes the class of all (Hausdorff) topological linear spaces over the
real field R. Throughout E, F, G, Eu • • •, En, Fu F2 E TLS. TLS* denotes those
topological linear spaces over R, which are separated by their dual. 0(E)
denotes the class of all open subsets of E.

Certain classes of multilinear mappings arise naturally in the calculus
in topological linear spaces and one must be careful to distinguish between
them.

Z£H(Ei, • • - ,£„; F) denotes the linear space of hypocontinuous n-linear
maps from £ , x • • • x £„ into F. That is, n-linear u G £H(EU • • - ,£„ ; F) if,
given a O-neighbourhood V in F, given k G {1, 2, • • •, n}, given bounded B, in
£ , ( / / k), there exists a O-neighbourhood Uk in Ek such that

M ( B , X ••• x B t - i X Uk x B k + 1 x ••• x Bn)CV.

£(E,, 2(E2,- • -,£(En,F)- • •) is defined by induction. <£{EUF) is the
linear space of continuous linear maps from E, into F, given the topology of
uniform convergence on bounded subsets of Et. Then, having defined
2(E2, • • ; 2(Em F) • • •), we define # ( £ „ <g(E2, • • •, 2(£„, F) • • •) to be the
linear space of continuous linear maps from £! into £(E2, • • -,Z£{En, F)- • •),
given the topology of uniform convergence on bounded subsets of Et.

We identify i?(£, , i?(£2 , - • •,if (£„,£)•••) (as a linear space) with the
linear space i£(Eu • • - , £ n ;F ) consisting of those n-linear maps u from
£, x ••• x £„ into F, which satisfy the following "continuity" condition:

Given k G {1,2, • • -,n}, given (xi,'",xk-i)G EiX ••• x Ek-U given
bounded Bk+t in £k+i, • • •, bounded Bn in £„, given a O-neighbourhood V in F,
there exists a O-neighbourhood Uk in Ek such that u({xt} x • • • x {jck_,} x Uk x
B t + ,x ••• xBn)C V.

Using this identification, we can transfer the topology on «$?(£,,-••,
5£(En, F)---) over to i?(£i ,- • - , £ n ;F ) . A basic O-neighbourhood in this
topology on i?(£, , •••,£„ ;F) is then a set of the form (B,,- • -,Bn, W) =
{u : u (B ,x ••• x Bn)CW}, where the B, are bounded subsets of the £, and W
is a O-neighbourhood in F. Note that 38 Ci?(£, , - • - , £ n ;F ) is bounded in this
topology if and only if U u e a M ( B , X ••• x Bn) is bounded in F, for each
bounded B< in £f (i = 1, 2, • • •, n).

•••, En; F) denotes the linear space of all separately continuous
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n-linear maps from E, x • • • x £„ into F, which also map bounded subsets of
Ei x • • • x £„ into bounded subsets of F.

Clearly

%H(EU • • - ,£„ ; F)CS?(E,, • • - ,£„ ; F) CifB(E,, • ••, En; F ) .

Note that if p is a permutation of {1,2, • • •, n}, then jf/f (£,, • • - ,£„; F)
can be naturally identified with S£H(Ep{i), • • •, EHn); F). The same is true for
$B(EU • • • , £ B ; F ) , but it is not true for if(E,, • • - ,£„ ;£) . (See example 1.2
below.)

The composition mapping comp: if (E ,F )x if(F, G)—»if(£, G) is de-
fined by comp(u,v)= v°u. A special case is the evaluation mapping ev :E x
E' -* R defined by ev(x,x') = (x,x').

E X A M P L E 1 . 1 . < £ H ( E U • • - , £ „ ; F ) ^ i f ( E , , •••, E n ; F ) .

Consider ev: I2 x a(l2,12) -+ R, where a(l2,12) means I2 with the cr(/2, / >
topology. Then ev £ ££(l2,a(l2,12);R), using the facts that e v : / 2 x / 2 - » R is
continuous and I2 and a(l2,l2) have the same bounded sets. However,
ev £££H{l2,a{l2, /2);R). For let B be the unit ball in I1 and
W = {£ G R: | £ | S 1}. Suppose there exists a O-neighbourhood U in o-(/2, /2)
such that ev(B xU)CW. Then U CB°= B, which is a contradiction.

EXAMPLE 1.2. i?(£,, •••,£„; F)$£B(£,,-•-,£„; F).
Clearly comp has the property that given a bounded set 38 in J£(E,F)

and a O-neighbourhood Wjn ££(E,G), there exists a O-neighbourhood V in
i?(F, G) such that comp (38 xT)CW. This implies that comp maps bounded
sets into bounded sets. Also comp is clearly separately continuous, and so,

comp G £B(&(E,F), £(F,G); &(E,G))
and

compG 2(2(F,G), %{E,F)- 2{E,G)).

Now consider ev.E x£"—»R, where £ is a non-quasi-barrelled locally
convex space and E' is the strong dual of E. We show that ev£ ££{E,£';R).
In fact, suppose the contrary. Let B be a bounded set in E'. Then, for each
e >0, there exists a O-neighbourhood U in E such that \(x, y)| g e, whenever
x G U and y G B. That is, B is equicontinuous, and so E is quasi-barrelled.

We emphasize that while comp G <£(J£(F, G), <£(E, F); if(£, G)), gener-
ally comp £ if (if (E, F), if (F, G); if (E, G)).

In case Ei = E2 = • • • = £ „ = E, we write Z£Hn(E,F) instead of
ifH(E, • • - ,£ ;£ ) , ifn(E, F) instead of if(E,- • - ,£;F) and £Bn{E,F) instead
of ifB(E, • • - ,£ ;£ ) .

Let o- denote a collection of bounded subsets of £, which includes all
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single point subsets of E. Let / : U-* V, where U £ €(E) and V £ C(F).
Then we say / is cr-differentiable at x £ t/ if there exists u £ ?£{E,F) such that
rn->O(f,,^O) and {hn}CB£cr imply r̂ 1 •[/(* + tnhn)-f{x)]- u -hn^>0.

The mapping u is then uniquely determined and is denoted by /'(*)• We
say f'(x) is the a-derivative of fat x. If/'(x) exists for each x & U, then we can
define a map / ' : [ / - » ££{E,F) by x -*f'{x). We say / ' is the cr-derivative of /
and / is cr-differentiable.

By induction, we define an n-times cr-differentiable map / : I/—» V as an
(n - l)-times cr-differentiable map, whose (n — l)th cr-derivative is cr-
differentiable. The nth cr-derivative is denoted by /<n) and is a map from U
into <£n{E,F).

f:U—>V is n-times cr-differentiable at x £ U, if / is (n - l)-times
cr-differentiable and /<""": [/->i?n t(E,F) is cr-differentiable at x.

When cr is the class of all bounded (resp. sequentially compact) subsets of
E, the cr-derivative is called the Frechet (resp. Hadamard) derivative.

PROPOSITION 1.3. (Symmetry of the higher derivative). Let f:U—*V,
where V £ 6(F) and F £ TLS*. Suppose f is n-times Hadamard differentiable
at xGU. Then f("\x) is symmetric. Consequently, /("'(x)G S£Hm(E,F).

PROOF. Lloyd (1973), p. 16, Penot (1973), p. 7.
It would be interesting to know if it is possible to prove that /<")(^)£

i£Hn(E,F) without the assumption that F be separated by its dual. This is of
some interest since there is one step in the proof of the higher order chain rule
in which hypocontinuity seems to be essential.

2. Leibniz' theorem

LEMMA 2.1. Let f: [/-> V be a-differentiable at x £ U. If tn^>0 and
{hn}CB £ cr, then {C -[/(x + tnhn)-f{x))} is bounded in F.

PROOF. We know t~l -[f(x + tnhn)-f(x)]-f (x)-/in-»0. Since {hn} is
bounded, {f'(x)-hn} is bounded and the result follows.

LEMMA 2.2. Let U <= G(E) and u £ %B(FhF2;G). Let f,:U-*F, be
a-differentiable at x £ U (i = 1,2). Then f.U^G defined by /(y) =
«(/i(y), fi{y)) is cr-differentiable at x and

f'(x)-h=u(fl(x),f'2(x)-h)+u(f[(x)'h,f2(x)).

PROOF. Certainly, since u is separately continuous, f'(x) is a continuous
linear map from E into G. Let !„—»0 and {hn}CB EL cr. Then

https://doi.org/10.1017/S1446788700021091 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021091


352 J. W. Lloyd [5]

using the separate continuity of u, 2.1 and the fact that u maps bounded sets
to bounded sets.

LEMMA 2.3. Let v be a partition of {1,2, • • - ,«} into an ordered pair of

disjoint subsets {/,, • • •, ik} and {/i, • • •,/,} such that k + I = n, k s 0, / g 0, n S

1,i, < ( 2 < • • • < 4 and ji<j2< ••• <//• Let u G £H(FUF2;G). Define

u»:5£k(E,F^x %(E,F2)^X*(E,G)

by

wherea G £gk (E, F,), /3 E £,(E, F2)and hu-•-,hn E E. Then ujs well-defined

and

«„ G %H{5£k(E, F,), i^(H, F2); .£,(£, G)).

PROOF. TO show «„ is well-defined, we have to show that, in fact, uv(a, /3)
does belong to %n{E,G). Let (x,,- • -,xp-,)G E"~\ Bp^t,--,Bn be bounded
subsets of E and V be a 0-neighbourhood in G. Suppose p = i,. (The proof is
similar if p is one of the/ 's.) Then B = /3({x,,} x •• • x {JC,,}X B,,., x •• • x B,,)is
a bounded subset of F2. Since u is hypocontinuous, there exists a 0-
neighbourhood W in F, such that u(WxB)CV. Since a e f t ( £ , F , ) , there
exists a 0-neighbourhood 1/ in E such that

«({**,} x • • • x {*,,_,} x U x B,.^, x • • • x B,k) C W.

Then

M,(a,j8)({x,}x ••• x{xp-,}x [ J x B p t l x ••• x B n )

= u(a({xh} x • • • x {x,-,,,} x [/ x B,_, x • • • x B,k),

/3({x,,}x ••• x{xh}xBiltlx ••• xB,,))

C M ( W X B ) C V.

That is, Uv(a,f3)E.£n(E,G), as required.
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Clearly uv is bilinear. So we have only to show it is hypocontinuous. First
let 38 be a bounded subset of i?k(£,Ft) and °U be a O-neighbourhood in
i?n(£,G). We have to show there exists a O-neighbourhood T in S£i{E,F2)
such that u,(58 xT)Cil.

Suppose °il = (Bu • • -,Bn, U) where the B, are bounded subsets of E and
U is a O-neighbourhood in G. Put B = L)aem a(B,, x • • • x ftj. Then B is a
bounded subset of F,. Since u is hypocontinuous, there exists a 0-
neighbourhood V in F2 such that u(B x V)CU. Put T = (Bh,- • -,Bh, V).
Then V is a O-neighbourhood in J£i(E,F2). Also a £ 38 and fi E.V implies
up(a,p)(hu••-,hn)=u(o(fc,,,• • •,M.0(*i.»• • •.**))e C/, whenever fcf £ Bt

(i = 1, ••-,«). That is, u,(a, j8)£ %.

Similarly, if 38 is a bounded subset of i?,(£,F2) and *% is a 0-
neighbourhood in i?n(£ ,G), we can find a O-neighbourhood "W in ££n(E,Fi)
such that u^C^x 39)C°U. Thus û  is hypocontinuous.

THEOREM 2.4. (Leibniz' theorem, compare with Averbuh and Smoljanov
(1967), p. 233). Let u £ S£H(FUF2; G) and U £ C(E). Letft: U^>Ft be n-times
(T-difierentiable at x £ U (i = 1,2). Then f:U-^G defined by / (y) =
u{fi(y),f2(y)) is n-times cr-differentiate at x and

where the sum is over all partitions v of {1,2, • • •, n} into ordered pairs of disjoint
subsets {iu • • •, ik} and {ji, • • •,/ ,} such that k + I = n, k g 0, / g 0 , i'i < i2 < • • • <

i'k and j,< j2< ••• < j , .

In other words

t\x){hu---,hn) = 2 u(f\k\x)(hh,-- ;hj,f2'\x)(hh,--;K)).

PROOF. The proof is by induction. The case n = 1 is covered by Lemma
2.2. So suppose the theorem is true for some n. Let the f, be (n + l)-times
or-differentiable at JC. By the induction hypothesis, / is n-times a-
differentiable at each y £ U and

By 2.3, uv is hypocontinuous. Hence, by 2.2, /<n) is o--differentiable at x and

Thus
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r+1\xXh0,hu • • ; hn) = 2 [u(/(,k + 1>(x)(^0, K, • • ; hik), fV{x){hh, • • •, *„))
V

+ u(f\k\x)(hh,--;hik),fr
i\x)(h0,hh,---,h,l))].

Hence

where the sum is over all partitions fi of {0,1, •••,«} into ordered pairs of
disjoint subsets {iu- • -,im) and {j,,- • -,jp} such that m + p = n + \,m g 0,p g

0, i, < i2 < • • • < L and / , < j2 < • • • < jP.

This completes the proof of Leibniz' theorem.
If it is known that the derivatives f[k\x) and fi\x) are all symmetric,

then we can write the formula more concisely (as J. P. Penot has pointed out
to me):

where Sn is the group of permutations on {1,2, •• - ,«}.
In particular, if h(n) denotes the n-tuple (h, •••, h), then

Next we give a counterexample to Abraham and Robbin's version of
Leibniz' theorem. Let £ be a normed space. Put Z£{E)= if(£,E). Supose
there exist huh2E^(E) such that h2°hi / hi°h2. Consider / : £ ( £ )^ i ? (E)
defined by f(x) = x°x, where x G ${E). Now f(x)= M(/,(X),/2(X)), where
f\ = U = identity map on if(E) and u is the composition map from i?(E) x
Se(E) into %{E) defined by u(x,y)=y°x. Let xG^(E). According
to Abraham and Robbin's formula (Abraham and Robbin (1967), p. 3),
/(2 )(X)(/J,,/I2) = 2/I2°/I1. Hence by our choice of /i, and h2, f2\x){huh2)^
f{2\x)(h2,h1). That is, fm{x) is not symmetric! The correct formula is
/(2)(x)(/i,,/.2)= h^h2+ h2°h,.

Note that Leibniz' theorem is no longer true (for n = 2) if we
replace "M £ gH(FuF2;G)" by "u G if(F,,F2;G)". In fact, suppose wG
i?(Fi,F2;G). Then according to 3.1 below, u is Frechet differentiable and
u'(x)-y = u(xt,y2)+u(yux2). The map u':F,x F2^> &(F,x F2,G) is linear.

Consequently, if u is twice cr-differentiable, u' must be continuous. Let B be
a bounded subset of Fi and W be a 0-neighbourhood in G. Then there exists a
0-neighbourhood [ / x V i n F , x F 2 such that u'(UxV)C(Bx {0}, VV). Thus
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by the formula for u',u(B xV)CW. Hence u £ Z£H(FUF2;G). But in
Example 1.1, we showed i?H(F,,F2; G)^(Fl,F2; G).

3. Higher order chain rule

LEMMA 3.1. Let u £ ££B(EU • • - , £ „ ; F ) . Then u is Frechet differentiable

and

u'CO'y = 2 u(x,,---,xi-l,yi,xi+1,---,xn).
i - l

PROOF. Since u is separately continuous, u'(x) is certainly a continuous
linear map from E, x • • • x En into F. Let B = B, x • • • x Bn be a bounded
subset of Ei x • • • x En and V be a O-neighbourhood in F. Choose a balanced
O-neighbourhood W in F such that

2"-(n + l)

2 we v.
/ - I

Put Bt = {*} U B, and B = B, x • • • x Bn. Since u maps bounded sets into
bounded sets, «(B) is a bounded subset of F. Hence there exists 5 6 (0,1]
such that \t | g 8 implies (•u(B)CW.

Then \t\^S and fc £ B implies

U(X + t h ) ~ l t ( x ) - ^ M ( X i , - - - , X j - i , f / l i , X i + i , " - , X n )

f 2
1 = 1

Thus M is Frechet differentiable.

L E M M A 3 . 2 . L e / v be a p a r t i t i o n of { 1 , 2 , • • - , « } i n t o /c disjoint n o n - e m p t y
sets { i \ , - - - , i ' , } r - - , { i k i , - - - , i i l } with / , + • • • + lk = n , I, > 0 , i { < i ' 2 < • • • < i ' , ;

(/' = 1,2, • • •, k ) and j}, < i/2 < • • • < ifk. Consider the map

wv:2tl(E,F)x ••• x 2,k(E,F)x 2Hk(F,G) ^> %H(E,G)

defined by
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= U(MI( /J , I , • • •, h^), • • •, uk{h<i, • • •, hi\k)).

Then wv is well-defined and

wv G i?B (.#,(£, F), • • •, <elk(E, F), <eHk(F, G); 2n{E, G)).

PROOF. T O show wv is well defined, we have to show that w,,(«,, • • •, uk, v)
does indeed belong to Z£n{E,G). To this end, let p G {1,2,- • - ,n} , x,,- • -,xp-i £
E and Bp + 1 , • • •,Bn be bounded subsets of E. Put D , = {*,}, • • •,Dp_, = {xp_,},
D p + 1 = Bp+i, ••,Dn= Bv. Suppose p = is

m. Put B> = ut(D,/^< • • • x Dt\)
(j G {1,2, • •-,/c},;V m). Then each B, is a bounded subset of F. Let W be a
O-neighbourhood in G. Choose a O-neighbourhood V in F such that

v(B,x ••• x B B _ , x V x f i m + 1 x ••• x Bk)CW.

Then choose a O-neighbourhood U in E such that

M { * ? } x • • • x {*•".} x t / x B,™, x • • • x jB,-~) c V.

Hence

W,,(M,, • • •, uk, v)({x,} x • • • x {*„_,} x [ / x B p + , x - x f i . )

C D ( B , X ••• x B m _ , x V x f i m + 1 x ••• x Bk)

CW.

This shows wv is well-defined. Clearly w,, is multilinear and maps
bounded sets into bounded sets. So it remains to show that w,, is separately
continuous.

Case (i). u,, •••,uk a r e fixed a n d va —>0. Le t (Blt •••, Bn, W) b e a
O - n e i g h b o u r h o o d in £n(E,G). P u t B, = uy(Bi- ,x ••• x B , ; ) ( y - = l , - - - , f c ) . E a c h
B, is a b o u n d e d subse t of F . N o w u " E(B,,- • -,Bk,W) e v e n t u a l l y . H e n c e
Wr(uu---,uk,v

a)E(Bu---,BmW) eventually.
Case (ii). v, u,, • • •, um _i, wm+i, • • •, uk are fixed and M£—»0. Put

B, = HjfB^x ••• xBj',.) ( / • G { l , 2 , - - ' , f c } , / / m ) . Since vE%H(F,G), there
exists a O-neighbourhood U in F such that u (B , x • • • x B m - , x [ / x Bm + 1 x
• • • x f t j C l V . Now u ° G ( B , 7 , • • • , B , - , f/) eventually. Hence
tvv(ui, •• -,Mm-,,w°, u m + 1 , - - - ,u k , u ) G ( B i , •• - ,B n , W) eventually.

This completes the proof of 3.2. Note that !£Hk(F,G) was needed, rather
than just S£k(F,G).

THEOREM 3.3. (Higher Order Chain Rule, compare with Averbuh
and Smoljanov (1967), p. 234). Let f:U-^V be n-times Frechet (resp.
Hadamard) differentiable at x G U and g : V -» W be n-times Frechet (resp.
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Hadamard) differentiable at f(x), where UGC(E), VEC(F), WeC(G)
and G G TLS*. Then g °f is n-times Frechet (resp. Hadamard) differentiable
at x and

where the sum is over all partitions v of {1,2, • • -,n\ into k disjoint non-empty

sets {i\, • • •, i!,}, • • • ,{ik, • • •, iJJ with /, + ••• + lk = n, I, > 0 , i', < i'2< • • < i>h

(J = 1,2, • • •, k), i), < i%< • • • < ikik and with k varying from 1 to n. In other

words,

(g °fr\x)(hu • • ; K) = 2 g(k)(f(x))(f("Kx)(hiU • • ; /i,,,),

In particular,

where the s u m is over all (ordered) k - t u p l e s fi = (I,, • • - , l k ) of p o s i t i v e integers
s u c h t h a t / , + • • • + lk = n a n d with k varying from 1 to n .

PROOF. The proof is by induction, the case n = 1 being well known with

(g «/)'(* )=g'tt(* ))»/'(*)•
So suppose the theorem is true for some n. Let / be (n + l)-times

differentiable (Frechet or Hadamard) at x and g be (n + l)-times differenti-
able at f(x). Hence by the induction hypothesis, (g°f)("\y) exists for each
y G U and

(g°/)<n)(y)= E M/< v(y), ••;foo(y),g(k)(f(y)))-

Now wv is Frechet differentiable by 3.1 and 3.2. Consequently, (g °ff") is
differentiable at x and
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Thus

+ g<k}(f(xWO'>(x)(h,\, • • ; hi),), • • ; f^'XxXho, hi;, • • -, hi%))

where the sum is over all partit ions /u, of {0,1, • • -, n} into p non-empty

disjoint sets {;!, • • • , / ! , } , • • •,{/f, • • - , / y with st +• • • +sp = n + 1, s,>0, j[ <

ji < • • • < ; i , (i = 1, • • - , p ) , jll<j)2< • • • <jsp and p varies from 1 to n + 1.

Now, suppose h, = h2= •••hn = h. Then many of the terms in

(g° / ) ( n ) (x ) (h i , - • -,/in) will be equal and can be collected together. Let

(/i, • • •, k) be an (ordered) k-tuple of positive integers such that / , + ••• + lk =

n. How many terms of the form g< l l )(/(x))(/ ( ' l ) (*)-/»"lV • •,f<'k)(x)-h°"}) will

there be? This is the same as asking: how many ways can we partition

{1,2,••• ,n} into (ordered) fc-tuples ({«!,• ••,/!,},•••,{«?,•• - , ' / J ) with / , + ••• +

/k = n, I, > 0 , / { < • • • < i',, (/ = l , 2 , - - , f c ) and i!,< i12< ••• < i^?

Consider the last set {if,• • -,j|k} in the k- tuple . Because of the ordering

restrictions, i*k is fixed. It must be n. With this fixed, the other lk — 1 elements

can be chosen arbitrarily and there are I . I ways of doing this.
V'k ~ 1/

Now look at the second last set {if"1, • • •, it'-]}. This time ij,"! is fixed by

the ordering restrictions. It must be the largest integer in {1,2, • • •, n}, which is

not in {ik,,- • -,ik,k}. The other lk-\— 1 elements can be chosen arbitrarily and

there are ( . * I ways of doing this. This process leads to the coefficient
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/ n - l \ (n-h - 1
U-lM t-,-1

This completes the proof of 3.3.
When the o--derivative is either the Hadamard or Frechet derivative, one

can deduce Leibniz' theorem (2.4) from the higher order chain rule.
If it is known that all derivatives g(k>(f(x)) and /("(x) are symmetric, then

where the first sum is over all (ordered) k-tuples /x = (l,,---,lk) of positive
integers such that / , + • • • + lk = n and with k varying from 1 to n.

In particular,

( g / r ( x ) h s nk,g(f

•••J^(x)-h^).

This formula was given in Penot (1973), p. 8. Still under the hypothesis of
symmetry, this last formula can also be written:

where the sum is over all (ordered) k-tuples (lu---,lk) of positive integers
such that l i g l 2 s • • • g | l and / , + • • • + lk = n, with k varying from 1 to n.
mi 0' = !> ' ' •>") ' s t n e number of numbers /,,• • -,lk equal to j .

This last formula is given in Averbuh and Smoljanov (1967), p. 234 and
Schwartz (1967), p. 262.

Under mild restrictions, there is a rather simpler proof of the higher
order chain rule. This depends on the following lemma.

LEMMA 3.4. (Lloyd (1973), p. 16). Let u £ f f l ( £ , , £ 2 ; F ) . Then u is
infinitely Frechet differentiable.

Now suppose, with the same notation as Theorem 3.3, comp G
<£H{S£{E,F), Z£{F,G); <e(E,G)). Then comp is infinitely Frechet differenti-
able. A sufficient condition for comp to have this property is for F and G to
be locally convex with F quasi-barrelled. Alternatively, it suffices that F be a
Baire space.
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Then a simple proof that the composite of n -times (Frechet or
Hadamard) differentiable maps is n-times differentiable can be obtained by
slightly modifying the standard argument in Dieudonne (1969), Theorem
8.12.10. One can then obtain the formula for (g°ff"\x) by using the
Leibniz formula to differentiate n-times the formula (g°f)'(x) =
comp(/'0c),g'(/(*))).

Finally, we give a counterexample to Abraham and Robbin's version of
the formula for (g°f)(n)(x) (Abraham and Robin (1967), p. 3). Let £ be a
normed space. Put £f?(E) = Z£(E,E). Suppose there exist x,h,,h2 G ££{E) such
that

x°hi°h2+ h2°hl°x/ x°h2°hi + hx°h2°x.

Consider the map / : S£(E) -* j?(E) defined by f{x) = x °x. Put g = /. Then
g°f:£(E)->£(E) is given by (g °/)(JC) = x °x °x °x.

According to Abraham and Robbin's (1967), p. 3,

+ 2gt2>(f(x))(f'(x)-hl,p
2>(x)(h2,hJ)

+ gm(f(x)W(x)-hl,f'(x)-h2,f(x)-h3).

We show this formula for (g °/)<3)(x) is not symmetric. Let h, = identity on E.
Then we show

(g off \x)(hu h2,h3) yi (g O/HJK)(h2,huh3).

For this, we need to show that

Now

= 2x°hl°h2 + 2h]°x°h2 + 2h2°hl°x + 2h2°x °h,

and

gl2\f(x))(J'(x)-h2,r\x)(hl,h3))

= 2x °h2°hi + 2h2°x ohi + 2h,°h2°x + 2h,°x °h2.

By our choice of x, ht and h2, these two expressions differ.
However, the coefficients crk in Abraham and Robbin's formula turn out
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to be exactly the same as the coefficients ( , I ( , k ) ' ' " ( / ) in

Theorem 3.3, and so their formula is correct if hi = h2 = • • • = hn = h.
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