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HAUSDORFF DISTANCE AND A COMPACTNESS CRITERION 
FOR CONTINUOUS FUNCTIONS 

BY 

GERALD BEER 

ABSTRACT. Let {X, dx) and (Y, dY) be metric spaces and let hp denote 
Hausdorff distance in X x Y induced by the metric p on X x Y given by 
p[(-*i,yi), (x2,yi)] = max {dx(xux2),dY(y\,y2)}- Using the fact that hp 
when restricted to the uniformly continuous functions from X to Y induces 
the topology of uniform convergence, we exhibit a natural compactness 
criterion for C(X, Y) when X is compact and Y is complete. 

1. Introduction. Let X be a compact metric space and let C(X,R) denote the 
continuous real functions on X, made a metric space in the usual way by defining the 
distance d\ between continuous functions / and g to be 

</,(/,*) = sup{\f(x)-g(x)\:xEX} 

No student of mathematics can avoid exposure to the following compactness criterion 
for subspaces Cl of C(X,R). 

THE ARZELA-ASCOLI THEOREM. LetX be a compact metric space and let ft be a closed 
subset ofC(X,R). Then Î1 is compact if and only if(i) Ci is equicontinuous (ii) For each 
x in X, £lx — {f(x): f E fl} is bounded. 

More generally, we can replace R by any complete metric space F, provided that we 
insist that each set £lx has compact closure [10], i.e., that (lx be totally bounded. It is 
the purpose of this note to set forth a new compactness criterion for subsets of C(X, Y) 
with X compact and Y complete. To do this, we view elements of C(X, Y) as subsets 
of X x Y, not as transformations. Our characterization will also involve two conditions, 
one weaker than equicontinuity, the other stronger than pointwise total boundedness. 
Our approach will be to remetrize the topology of uniform convergence on C(X, Y) 
induced by the metric d](f,g) = sup {dY(f(x),g(x))\ x G X). Using this different 
metric, conditions equivalent to total boundedness and completeness (which together 
characterize compactness in arbitrary metric spaces) will become apparent. But first, 
we need to recall some basic metric space topology. 
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DEFINITION. A subset K of a pseudometric space is totally bounded if for each 
e > 0, K is contained in a finite union ofe-balls. 

In a complete metric space, a set has compact closure if and only if it is totally 
bounded because (1) closed subsets of a complete metric space are complete; (2) the 
closure of a totally bounded subset of any metric space is totally bounded; (3) the 
compact subsets of a metric space are precisely those subsets that are complete and 
totally bounded; (4) subsets of totally bounded sets are totally bounded. Now let (W, d) 
be a metric space. If K is a subset of W and e is positve, let Se[K] denote the union of 
all open e-balls whose centers run over K. If Â  and K2 are nonempty subsets of W and 
for some e > 0 both Se[AT,] Z) K2 and Se[K2] D K\, we define the Hausdorjf distance 
hd between them to be 

hd(KuK2) = inf {e : Se[K{] D K2 and S,[K2] D AT,}. 

Otherwise, we write hd(KuK2) = o°. It is easy to check that hd defines an infinite 
valued pseudometric on the nonempty subsets of W, and that hd(Ku K2) — 0 if and only 
if AT, and K2 have the same closure. Thus, if we restrict hd to the closed (resp. compact) 
subsets of W, then hd defines an infinite (resp. finite) valued metric on such sets. Most 
importantly, if {Kn} is a sequence of nonempty subsets of W /jj-convergent to a 
nonempty set K, then {K„} also converges to K, and K = Li K„ = Ls Kn, where Li Kn 

(resp. Ls Kn) is the set of all points w each neighborhood of which meets all but finitely 
many (resp. infinitely many) sets Kn [6]. 

In the sequel, we shall denote the closed (resp. compact) nonempty subsets of a 
metric space W by CL(W) (resp. K(W)). We need two results proved in Chapter II of 
[5] that we state in a single lemma. 

LEMMA 1. Let hd be H ausdorff distance for a complete metric space (W,d). Then: 
(1) (CL(W),hd) is complete (2) (K(W),hd) is a closed subspace of (CL(W),hd). 

Now consider the product of a compact metric space (X, dx) with an arbitrary metric 
space (Y, dY), metrized in the following way: 

p[U, , j , ) , (x2,y2)] = max {dx(xux2),dY(yuy2)} 

If we identify members of C(X, Y) with their graphs, then hp defines a metric on 
C(X, Y), which we denote by d2. It is easy to see that d2(f g) < d\(f, g). In fact, by 
Theorem 4.7 of [7], the metrics dx and d2 are equivalent, and as a result, Hausdorff 
metric convergence of graphs has drawn some attention from researchers in construc
tive approximation theory (see, e.g., [8] and [9]). We note that the class of spaces X 
for which dx and d2 are equivalent on C{X, Y) for each target space Y turns out to 
properly include the compact spaces [4]. This class, first thoroughly studied by Atsuji 
[1], can be characterized in any of the following ways: (1) each pair of disjoint closed 
sets in X lie a positive distance apart; (2) the set of limit points X' of X is compact, and 
for each positive e, the set (Se[X'])c is uniformly discrete; (3) each open cover of X has 
a Lebesgue number; (4) each continuous function with domain X is uniformly 
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continuous. The relationship between dx-convergence, d2-convergence, the relation Li 

fn = Ls fn — f, and uniform convergence on compacta has also been studied by this 

author in [2] and [3]. One can show that for compact X any two metrics on X x Y that 

generate the product topology will yield the same Hausdorff metric topology for 

C(X, Y) because the elements of C(X, Y) are all compact sets. For noncompact X this 

is not in general true. 

2. Results. If X is compact and Y is complete, then (C(X, Y), dx) is of course 

complete. However, (C(X, Y),d2) need not be. 

EXAMPLE 1. For each n E Z^ let/,, E C([0, \],R) be the function whose graph 

consists of the line segment joining (0, \)to(\/n, 0) plus the one joining (\/n, 0) to 

(1,0). Clearly, {/,} /zp-converges to the set consisting of the line segment from (1,0) 

to (0,0) plus the one from (0,0) to (0, 1). Since this is not the graph of a continuous 

function, {/"„} is d2-Cauchy but is not d2-convergent. 

THEOREM 1. Let (X, dx) be a compact metric space and let (Y, dY) be a complete 

metric space. Suppose H E C(X, Y) is d2-closed. The following are equivalent: (1) fl 

is d2-complete (2) Each d2-Cauchy sequence in II is drCauchy (3) Whenever {/„} is 

a sequence in fl h ^convergent to a closed set E, then E is the graph of a function from 

X to Y. 

PROOF. (1) —> (2) Suppose 1Î is d2-complete. Let {/„} be a d2-Cauchy sequence in 

O. Then {/„} is d2-convergent, and since dx and d2 induce the same topology, {/„} is 

dr convergent. Thus {/„} is d rCauchy. (2) —» (3) Suppose {/„} in fl converges in the 

Hausdorff metric to a closed set E E X x Y. Then {/„} is d2-Cauchy and is therefore 

by assumption d rCauchy. Since (C(X,Y),d\) is complete, {/„} d\-converges to a 

continuous function/ Since it now follows that l i m , , ^ hp (/,,./) = 0 and the graph of 

/ i s a closed set, we conclude that E = f (3) —> (1) Let {/„} be a d2-Cauchy sequence 

in fl. Since (X x Y, p) is a complete metric space, Lemma 1 implies that 

(K(X x Y),h9) is a complete metric space. Now e a c h / , , viewed as a subset of 

X x Y, is compact; so, {/„} /zp-converges to a compact set E. By assumption E is the 

graph of a function/ and the compactness of its graph implies/ E C(X, Y). Since ft 

is closed, fl is thus complete. 

It is important to note that without completeness of Y, a function with closed graph 

that is the /zp-limit of a sequence in C(X, Y) need not be continuous. 

EXAMPLE 2. Let X = {\/n : n E Z"*} U {0} and let Y = [0, 1), both viewed as 

subspaces of the line. Define for each n £ Z + a function/, E C{X, Y) by 

( 1 — - if x = - for some k < n 
k k 

0 otherwise 
Then {/„} converges in the Hausdorff metric to the following discontinuous function: 
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1 — - if x = - for some k 

To characterize the d2-totally bounded subsets of C(X, Y) we prove a more general 

lemma that extends results in [5] and [6]. 

LEMMA 2. Let (W, d) be a metric space and let Ci be a collection of totally bounded 

subsets ofW. The following are equivalent: (1) U il is a totally bounded subset ofW 

(2) il is hd-totally bounded. 

PROOF. Suppose U il is totally bounded. Let e > 0. We can find a finite subset F 

of U fî such that U fi C 5 e [F] . Let 2 denote the set of finite subsets of F. We claim 

that if C G il there exists K G 2 for which hd(K, C) < e. To see this since C C Se[F], 

there exists a minimal subset K of F (with respect to inclusion) such that C C Se[K]. 

The minimality of AT implies that K C S e[C] whence hd{C,K) < e. Since 2 is finite 

it is clear that there is now a corresponding finite subset 2 * off! such that each member 

of il has Hausdorff distance at most 2e from some member of 2* . We conclude that 

il is /i,rtotally bounded. Conversely, suppose H is /i,rtotally bounded. Let e > 0 and 

choose a finite subset 2 of fl such that for each C in fl there exists AT in 2 such that 

/z,/(C, K) < e /2 . For each AT in 2 choose a finite subset Ak for which À' C 5e/2[>4k]. 

Clearly U H C Se[U{AK : AT G 2}] , and we conclude that U ft is a totally bounded 

subset of W. 

As an immediate corollary of Lemma 2 we have 

THEOREM 2. L^r (X, dx) ^ # compact metric space and let (Y, dY) be an arbitrary 

metric space. Then H C C(X, Y) is d2-totally bounded if and only if'{(x, f(x)) : x G 

X andf G ft} is a totally bounded subset of X x K. 

Theorems 1 and 2 together yield our variant of the Arzela-Ascoli Theorem. 

THEOREM 3. Let (X, dx) be a compact metric space and let (Y, dY) be a complete 

metric space. Let il be a subset ofC(X, Y). Then il is dr compact if and only if (\) il 

is d\-closed and whenever {/„} is a sequence in il convergent in the Hausdorff metric 

to a closed subset E ofX X Y, then E is the graph of a function (2) {(x, f(x)): i 6 X 

andf G il} is a ^-totally bounded subset of X x Y. 

PROOF. The collection il is d\-compact if and only if il is d 2 - c o m pac t , and il is 

^2-compact if and only if il is J2-complete and J2-totally bounded. 

It is illuminating to derive the sufficiency of equicontinuity and pointwise total 

boundedness for the compactness of closed subsets of C(X, Y) from Theorem 3. 

Equicontinuity alone implies that the identity map from (il, d2) to (il, dx ) is uniformly 
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continuous, a stronger property than condition (2) of Theorem 1, equivalent to condi
tion (1) of Theorem 3. To see this let e > 0 and choose 8 E (0,e/2] such that for 
each/E il whenever dx(x, w) < 8 then dY{f(x), f{w)) < e/2. Suppose now that {/, g} 
C H and d2(f, g) < 8, i.e., both g C Sh[f] and/C Sh[g]. Fix x in X. Since (x, g(x)) 
E S§[f] there exists z E X for which p[(x, g(x)), (z,/(z))] < 8. Since dxO, z) < 8, 
we have dY(f(x),f(z)) < e/2 and it follows that dY(f(x), g(x)) < e. Thus in il d2(f, g) 
< 8 implies d\(f, g) < e. To show that the union of the graphs of the functions in i l 
is p-totally bounded requires both conditions. We shall apply Lemma 2 in an un
expected way. For each x in X let i l r = {f(x) : / E il}. Since each set ilv is totally 
bounded, so is Bx = {x} x ilv as a subset of X x Y; indeed (Çlx,dY) and (#v, p) are 
isometric. Thus if we can show that {Bx : x E X} is /ip-totally bounded, then by Lemma 
2 U {£r : i £ X } = {(*,/(*)) : x E X and /E O} will be totally bounded. To this end 
let e > 0 and choose 8 < e such that for each / in fl whenever dx(x, w) 
< 8 then dY(f(x),f(w)) < e. Since X is compact there is a finite subset F of X such 
that X C 5s[F]. We claim that for each x in X there exists w in F for which hp(Bx,Bw) 
< e: simply choose w such that dx(x, w) < 8. If (x, y) E ^x there exists/ E 12 such 
that y = /(JC); evidently (w,/(w)) E £H, and p[(jc, ^),(w, /(w))] < e. Thus 
5.r C 5e[5vv], and in the same way Bw C 5€[5.r]. 

Pointwise total boundedness of a class of continuous functions O is a weaker 
condition than total boundedness of ft relative to the Hausdorff metric, whereas the 
^-completeness of i l is a weaker condition than equicontinuity. The two weaker 
conditions combined do not ensure compactness of il . 

EXAMPLE 3. For each n E Z+ let/,, E C([0, \],R) be the function whose graph 
consists of the line segment joining (0,0) to (1/2AÎ, M), the one joining (\/2n, n)to(\/n, 
0), and the one joining (1/n, 0) to (1,0). Then il = \fn : « G Z + }is pointwise totally 
bounded and is d2-complete (since it admits no Cauchy sequences other than the 
eventually constant ones), but il is noncompact. 
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