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Abstract. In this paper, we use the theory of critical points of distance functions to study the
rigidityand topologyofRiemannian manifoldswith sectional curvatureboundedbelow.Weprove
that an n-dimensional complete connected Riemannian manifold M with sectional curvature
KM X 1 is isometric to an n-dimensional Euclidean unit sphere ifM has conjugate radius bigger
than p=2 and contains a geodesic loop of length 2p. We also prove that if M is an
nðX 3Þ-dimensional complete connected Riemannian manifold with KM X 1 and radius bigger
than p=2, then any closed connected totally geodesic submanifold of dimension not less than
two of M is homeomorphic to a sphere.
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1. Introduction

Let M be a complete Riemannian manifold. For a point p 2 M, we denote the dis-
tance from p to x by dðp; xÞ and set dpðxÞ ¼ dðp; xÞ. Notice that the distance function
dp is not a smooth function (on the cut locus of p). Hence, the critical points of dp are
not de¢ned in a usual sense. The notion of critical points of dp was introduced by
Grove and Shiohama in [GS].
A point qð6¼ pÞ 2 M is called a critical point of dp if there is, for any non-zero vector

v 2 TqM, a minimal geodesic g from q to p making an angle ffðv; g0ð0ÞÞW p=2 with v.
We simply say that q is a critical point of p.
Grove and Shiohama established the theory of critical points to prove their diam-

eter sphere theorem which states that an n-dimensional complete connected
Riemannian manifold M with KM X 1 and diameter bigger than p=2 is home-
omorphic to an n-sphere.
Critical points of distance function is an important tool in global Riemannian

geometry. Many interesting results have been proven by using this tool. One can
¢nd some of them, e.g., in [A], [AG], [CX], [G], [GP1], [GP2], [P1], [Pe1], [Pe2], [SS],
[S1], [S2], [X].

*This work is supported by FEMAT and CNPq.

Compositio Mathematica 132: 49^55, 2002. 49
# 2002 Kluwer Academic Publishers. Printed in the Netherlands.

https://doi.org/10.1023/A:1016053731232 Published online by Cambridge University Press

https://doi.org/10.1023/A:1016053731232


The purpose of this paper is to study some metric and topological rigidities of
Riemannian manifolds with sectional curvature bounded below by using the theory
of critical points.
A well-known theorem of Toponogov [T] states that a two-dimensional complete,

connected Riemannian manifold with sectional curvature KM X 1 is isometric to a
unit 2-sphere if it has a closed geodesic without self-intersections of length 2p.
Our ¢rst application of the critical point theory is to prove a similar result for
the higher-dimensional case. Before mentioning the result, we ¢x the following de¢-
nition for the conjugate radius.

DEFINITION 1.1. Let M be a Riemannian manifold and p be a ¢xed point of M.
Denote by CðpÞ the conjugate locus of p, that is, the set of the ¢rst conjugate points
to p, for all the geodesics that start at p. We de¢ne the conjugate radius of M
at p to be

rðpÞ ¼
þ1; if CðpÞ ¼ ;;
distðp;CðpÞÞ; if CðpÞ 6¼ ;:

�

The conjugate radius of M is given by rðMÞ ¼ infp2M rðpÞ.

Now we can state our ¢rst theorem as follows:

THEOREM 1.2. Let M be an n-dimensional complete connected Riemannian
manifold with sectional curvature KM X 1 and conjugate radius rðMÞ > p=2. If M
contains a geodesic loop of length 2p, then M is isometeric to an n-dimensional unit
sphere Snð1Þ.

DEFINITION 1.3. Let ðX ; dÞ be a compact metric space and x 2 X . The radius of X
at x is de¢ned as rad x ¼ maxy2X dðx; yÞ. The radius of X is given by rad X ¼

minx2X rad x.

The concept of radius was invented in [SY]. As a second application of the critical
points theory, we have the following sphere theorem for totally geodesic
submanifolds in a manifold of positive sectional curvature.

THEOREM 1.4. Let M be an nðX 3Þ-dimensional complete Riemannian manifold
with sectional curvature KM X 1 and radius rad M > p=2. Suppose that N is a
kðX 2Þ-dimensional closed connected totally geodesic submanifold. Then N is home-
omorphic to a k-dimensional Euclidean sphere Sk.

One can take the real projective space and consider the totally geodesic
submanifolds of it to understand that our condition ‘rad M > p=2’ in
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Theorem 1.4 is essential. We don’t know if it can be weakened so that ‘the diameter of
M is bigger than p=2’.

2. Proof of the Results

Throughout this paper, all geodesics are assumed to have unit speed.

Proof of Theorem 1.2. SinceKM X 1,M is compact by the Bonnet-Myers Theorem
[CE]. We denote by iðMÞ the injectivity radius ofM and for any x 2 M, let CmðxÞ be
the cut locus of x. It is well known that the function f :M ! Rþ de¢ned by
f ðxÞ ¼ dðx;CmðxÞÞ is continuous and that iðMÞ ¼ infx2M f ðxÞ, where d denotes
the distance function on M. Thus there exists a point p 2 M such that
iðMÞ ¼ dðp;CmðpÞÞ. Since CmðpÞ is closed and so is compact, there exists
q 2 CmðpÞ such that q assumes the distance from p to CmðpÞ. By Proposition 2.12
in [C, p.274], we conclude

(a) either that there exists a minimizing geodesic s from p to q along which q is
conjugate to p.

(b) or that there exists exactly two minimizing geodesics s1 and s2 from p to q with
s01ðlÞ ¼ �s02ðlÞ; l ¼ dðp; qÞ.

If (a) holds, then the assumption on the conjugate radius implies that
iðMÞ ¼ dðp; qÞ > p=2. Now we assume that (b) holds. Since q 2 CmðpÞ, we have that
p 2 CmðqÞ and, by its very de¢nition, p realizes the distance from q toCmðqÞ. It follows
that s01ð0Þ ¼ �s02ð0Þ. Since KM X 1, the Rauch comparison theorem implies that
CðxÞ 6¼ ;; 8x 2 M and, consequently, for any x 2 M, we have

rad x ¼ max
y2M

dðx; yÞX max
y2CðxÞ

dðx; yÞX rðxÞX rðMÞ >
p
2
: ð2:1Þ

For any x 2 M, let y 2 M with dðx; yÞ ¼ rad x; then, by using the Toponogov
comparison theorem, one can prove that x has only y as a critical point (cf. [GS],
[P1]). Since any local maximal point of dx is a critical point of x according to Berger’s
lemma (Cf. [CE]), one concludes therefore that for any x 2 M, there exists a unique
point AðxÞ which is at maximal distance from x. We claim that the map
A:M ! M is continuous. In fact, let fxng � M; xn ! x0; be a convergent sequence
in M, then dðxn;AðxnÞÞ ! dðx0;Ax0Þ, since the map x ! maxy2M dðx; yÞ ¼
dðx;AðxÞÞ is obviously continuous. For any convergent subsequence fAxnkg �
fAxng with Axnk ! x00, we conclude from

jdðxnk ;Axnk Þ � dðx0; x00ÞjW dðxnk ; x0Þ þ dðAxnk ; x
0
0Þ

that dðxnk ;AxnkÞ ! dðx0; x00Þ. Thus we have dðx0; x
0
0Þ ¼ dðx0;Ax0Þ and so x00 ¼ Ax0

becauseAx0 is the unique point which is at maximal distance from x0. The continuity
of A follows. Since M is homeomorphic to Sn and Ax 6¼ x, for any x 2 M, the
Brouwer ¢xed point theorem implies that A:M ! M is surjective. Assume now that
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p ¼ AðrÞ is the unique point which is at maximal distance from some r 2 M; then
dðp; rÞ > p=2. If r ¼ q, then dðp; qÞ > p=2. Consider now the case that r 6¼ q and take
a minimal geodesic s3 from q to r; then either

ffðs03ð0Þ;�s01ðlÞÞW
p
2
; or ffðs03ð0Þ;�s02ðlÞÞW

p
2
:

We assume without loss of generality that ffðs03ð0Þ;�s01ðlÞÞW p=2.
Applying the Toponogov comparison theorem to the hinge ðs1; s3Þ, we obtain

cos dðp; rÞX cos dðp; qÞ cos dðq; rÞ þ

þ sin dðp; qÞ sin dðq; rÞ cos ffðs03ð0Þ;�s01ðlÞÞ

X cos dðp; qÞ cos dðq; rÞ:

ð2:2Þ

Using dðp; rÞ > dðq; rÞ and dðp; rÞ > p=2, we deduce from (2.2) that

dðp; qÞ >
p
2
: ð2:3Þ

Summarizing the above discussions, we know that the injectivity radius of ourM
satis¢es iðMÞ > p=2 and so we can ¢nd a suf¢ciently small d > 0 such that
iðMÞ > p=2þ d.
Let g: ½0; 2p� ! M be a geodesic loop of length 2pwith base point x ¼ gð0Þ ¼ gð2pÞ:

Since iðMÞ > p=2þ d, g has no self-intersections. Let

y ¼ g
p
2
þ d

� �
; m ¼ gðpÞ and z ¼ g

3p
2

� d
� �

and set

g1 ¼ gj½0;p2þd�; g2 ¼ gj½p2þd;p�; g3 ¼ gj½p;3p2�d� and g4 ¼ gj½3p2�d;2p�;

then giði ¼ 1; . . . ; 4Þ are minimal geodesics. Take a minimal geodesic t from m to x.
We claim that the length of t satis¢es LðtÞ ¼ p and therefore, M is isometric to
Snð1Þ by Cheng’s maximal diameter theorem [Ch]. Assume, on the contrary, that
LðtÞ < p and set

a ¼ ffðt0ð0Þ;�g0ðpÞÞ and b ¼ ffðt0ð0Þ; g0ðpÞÞ:

Applying the Toponogov comparison theorem to the geodesic triangles ðg1; g2; tÞ and
ðg3; g4; tÞ, respectively, we can construct two geodesic triangles ðg1; g2; tÞ and
ðg3; g4; tÞ in S2ð1Þ with vertices x; y;m and x; z;m, respectively, and satisfying

LðgiÞ ¼ LðgiÞ; i ¼ 1; 2; 3; 4; LðtÞ ¼ LðtÞ; ð2:4Þ

and

aW a; bW b; ð2:5Þ

where a and b are the inner angles of ðg1; g2; tÞ and ðg3; g4; tÞ at m, respectively.
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Let x0 be the antipodal point of x in S2ð1Þ and let t1 be the minimal geodesic fromm
to x0. Denote by a0 and b

0
the inner angles of the triangles Dy;m;x0 and Dz;m;x0 at m,

respectively. Let d be the distance function on S2ð1Þ. From

dðx0; yÞ ¼ p� dðx; yÞ ¼ p� dðx; yÞ ¼
p
2
� dð2:14Þ ¼ dðm; yÞ; ð2:6Þ

one obtains by using the cosine law to the triangle Dy;m;x0 that

sin
p
2
� d

� �
sin dðm; x0Þ cos a0

¼ cos
p
2
� d

� �
� cos

p
2
� d

� �
cos dðm; x0Þ

¼ sin d ð1� cos dðm; x0ÞÞ

> 0;

and so

a0 <
p
2
: ð2:7Þ

Similarly, one deduces that

b
0
<

p
2
: ð2:8Þ

Combining (2.5), (2.7) and (2.8), we ¢nd

a0 þ b
0
þ aþ b < pþ aþ bW pþ aþ b ¼ 2p; ð2:9Þ

which is a contradiction. Thus dðx;mÞ ¼ p and so M is isometric to Snð1Þ. &

Proof of Theorem 1.2.We denote by d and dN the distance functions onM and N,
respectively. Let p1 and p2 be in N to realize the diameter of N, say
s:¼ dN ðp1; p2Þ ¼ diam N. From Berger’s Lemma ([CE]), we know that p and q
are mutually critical points in N. That is, if we denote by Gp1p2 (resp., Gp2p1 ) the
set of unit vectors in Tp1N (resp., Tp2N) corresponding to the set of normal minimal
geodesics of N from p1 to p2 (resp., p2 to p1), then Gp1p2 (resp., Gp2p1 ) is p=2-dense
in Sp1N (resp., Sp2N), here SxN denotes the unit tangent sphere of N at x. Since
a p=2-dense subset of a great sphere Sl in a unit sphere Sm; l < m, is also p=2-dense
in Sm, we know that Gp1p2 is p=2-dense in Sp1M. Similarly, Gp2p1 is p=2-dense in Sp2M.
Since N is totally geodesic, it has sectional curvature KN X 1. Thus, in order to

prove that N is homeomorphic to Sk, it suf¢ces to show that s > p=2 by the Grove
and Shiohama diameter sphere theorem [GS]. We assume, on the contrary, that
sW p=2. Take a point q 2 M such that l:¼ dðp1; qÞ ¼ maxx2M dðp1; xÞ; then
lX rad M > p=2. Let g: ½0; l� ! M be a minimal geodesic from p1 to q. Since
Gp1p2 is p=2-dense in Tp1M, there is a v 2 Gp1p2 such that ffðv; g

0
1ð0ÞÞW p=2. By the

de¢nition of Gp1p2 , we can ¢nd a minimal geodesic g1 of N from p1 to p2 such that
g01ð0Þ ¼ v. Note that g1 is also a geodesic of M since N is totally geodesic. Set
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t ¼ dðp2; qÞ. Applying the Toponogov comparison theorem to the hinge ðg; g1Þ, we get

cos tX cos s cos l þ sin s sin l cos ffðg0ð0Þ; g01ð0ÞÞX cos s cos l: ð2:10Þ

Similarly, let s: ½0; t� ! M be a minimal geodesic from p2 to q and since Gp2p1 is
p=2-dense in Tp2M, we can take a geodesic s1 of length s of M from p2 to p1 such
that ffðs0ð0Þ; s01ð0ÞÞW p=2. Then one can apply the Toponogov inequality to the hinge
ðs; s1Þ, and obtain

cos lX cos s cos tþ sin s sin t cos ffðs0ð0Þ; s01ð0ÞÞX cos s cos t: ð2:11Þ

Since sW p=2, we ¢nd from (2.10) and (2.11) that

cos l sin2 sX 0; ð2:12Þ

which contradicts to the fact that l > p=2. Thus s > p=2. This completes the proof of
Theorem 1.4. &
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