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Introduction. A divisible abelian group D can be
characterized by the following property: Every homomorphism
from an abelian group A to D can be extended to every
abelian group B containing A. This together with the result
that every abelian group can be embedded in a divisible group
is a crucial point in many investigations on abelian groups. It
was Baer, [1], who extended this result to modules over an
arbitrary ring, replacing divisible groups by injective modules,
that is, modules with the property mentioned above. Another
proof was found later by Eckmann and Schopf, [3]. This proof
assumes the proposition to hold for abelian groups and transfers
it in a very simple and elegant manner to modules. In the sequel,
we shall refer to this proof as to the Eckmann-Schopf proof.

One may ask whether the above result is valid in other
categories than the category of modules ower a ring, since the
concept of an injective module obviously can be formulated
categorically, that means, one can define injective objects in
an arbitrary category (cf. [2], appendix). It should be mentioned
that this question is of considerable importance from the view-
point of certain constructions in homological algebra. Besides,
a category where the above result holds is called a category
with enough injectives. Of particular interest are the categories
of sheaves on a topological space. A proof that there are enough
injectives in these categories was given by Godement, [4];
another one is due to Grothendieck, [6].

The purpose of this note is to discuss how the Eckmann-
Schopf proof for the existence of enough injective modules can
be formulated in such a way that it allows an extension to sheaves,
more explicitly, provides a new proof for the existence of enough
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injective modules over a sheaf of rings on a topological space.

In order to do that we shall use the notion of an injective structure
and a general transfer theorem for such structures, both due to
Maranda, [9]. In the first section, we recall the definition of an
injective structure and formulate a special case (suitable for our
purpose) of Maranda's transfer theorem. In section 2, we dis-
cuss the Eckmann-Schopf proof from the view-point of the transfer
of injective structures, and apply it to the categories of abelian
sheaves and of modules over a sheaf of rings.

1. Preliminaries. For the definition of the notion
category, functor, functor equivalence, etc., as well as for the
notation used here, see [6]. A functor F defined on a category
€ will often be denoted by F&€ . Similarly, if F and G are
functors defined on €, then a functor morphism (natural trans-
formation) s from F to G will be denoted by s€ : FC - G&.

Let C be a category, and let P be a class of its mor-
phisms. An object C of € is called .'P-injective if, for every
morphism u: A - B which belongs to ¥ , the induced mapping

(1. 1) u* : Hom (B, C) - Hom (A&, C)

is surjective (onto). The class of all P -injectives is denoted

by ¢ 3.

Let ¥ be a class of objects of €. A morphism
u: A - B is called Y -proper if, for every object C which
belongs to Y, the induced mapping (1.1) is surjective. The
class of all Y -proper morphisms is denoted by ¢ Y.

Definition (Maranda [9]). A couple (P, Y ) consisting
of a class J° of morphisms and of a class Y of objects of C
is called an injective structure in C if (i) Y =6 2,
(i) P =¢ Y, (iii) for every object A of C , there exists a
uwA—-QeP where Qe Y.

We give only two obvious examples. For more examples
and for elementary properties of injective structures see [9].

(a) In every category, the class Po of all retractions

and the class "jo of all objects form an injective structure
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(in the terminology of [9], the finest injective structure).

(b) If £ is an exact (abelian) category with enough
injectives, the class Pe of all monomorphisms and the class
Yy . of all injectives define an injective structure (?e, ﬂje),

called the exact structure in C .

An object A is a retract of an object B if there exist
morphisms u: A -B and v: B - A suchthat vu= 1A. Iy

is a class of objects, the class of all retracts of objects in Y
is denoted by P Y. If the couple (£, PY¥) is an injective
structure of €, in [9], the class Y 1is called a base of the
injectives of (P, Py ).

Let C and €' be two categories, T a covariant
functor from (¢ to (' and S a covariant functor in the
opposite direction, from @' to &. Furthermore, let
(P, PY) be an injective structure in €. By means of S
and T, we construct a couple (P!, 3 ') as follows:

P =S.1.?> is the class of morphisms u': A' = B' of C'
such that Su': SA' - SB' belongsto P ; Y' =TY is the
class of all objects C' of the form C' =TC for some C which
belongs to Y . (It should be noted that we- may restrict our-
selves to object functions T.) We ask the question: What con-
ditions are required for S and T such that (P', PY') is an
injective structure in (€'? The subsequent theorem contains
a sufficient condition: S is the left adjoint of T in the sense
of Kan, [8], or equivalently, there exists a functor morphism

k from the identity functor I of € to the composite functor
TS such that (S, k) is a regular left adjoint system in the
sense of Maranda, [9]. The couple (P', PY¥') is then called
the transferred injective structurein &£ °'.

THEOREM (transfer theorem). Let S be a covariant
functor from €' to G, T an object function from & to
@', and (P, PY) an injective structure in &. 1If, for
every Q of Y , there exists a functor equivalence

sC': Hom (SC', Q) = Hom (', TQ),

417

https://doi.org/10.4153/CMB-1964-040-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1964-040-4

-1
then the couple (P!, PY'), where ' =S P and
Y' =TY, isan injective structure in €.

This Theorem is due to Maranda and is contained in [9].
Although it is not explicitly stated as a proposition, it follows
from the arguments on page 108. Besides, a direct proof can
be found without much difficulty.

The following example of functor equivalences leads to a
useful corollary of the transfer theorem. Let & be a category
with direct products for families of objects indexed by some
index set I. As usual, we denote the category of families
A=(a,),  of objects A of C by €L The function I,

which assigns to each A of é‘I the direct product I A, ,
ie I
has, by definition even (cf. [6], p.123), the property: For every

object Q of 5’1, there exists a functor equivalence

(1. 3) s€: Hom (EEC, Q) - Hom (G, IQ)

where E is the embedding functor from € to BI which
assigns, to every object C of €, the family EC = (C,),e I
i'i

where Ci =C for every i€l, and to every morphism

wB-C of C , the "mapping" Eu: EB - EC whose
"ecomponents' u =u for every ie L.
i

COROLLARY. Let (‘Pi. P ¥); ; be 2 family of

I
injective structures in €. If ( possesses direct products
for all families (Ai)ie I of objects A, of &, then

i

P =0 pi and the class Y ' of all direct products I Q_,
i€l jep !
where Qi € Hi for every ie€ I, define another injective

structure (L', PY') in C.

This follows immediately from the transfer theorem and
the observation that the couple (P, PY) =(( pi)ie r Py i)

I ie I)
is an injective structure in C".
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2. The Eckmann-Schopf proof. Let R be a ring with
identity. Denote by J{ the category of unitary right modules
over R, briefly, R-modules, and by A the category of
abelian groups or Z-modules (Z denotes the ring of integers).
The well-known associativity formula (cf. [2], p.28)

(2. 1) Homz (A ®RB, C) ~ HomR (A, HomZ (B, C))

implies that, for every Q of S, there exists a functor
equivalence

(2.2) s H: Hom,, (ﬂ.®R R, Q) - HomR (A, Hom,, (R, Q)

where the ring R is considered as left R-module. The set
TQ =Homz(R, Q) with the usual (right) R-module structure

is known as the contravariant g-extension of Q (¢ being the
natural embedding of Z in R). The covariant functor
SM=H ®R R 1is the functor which assigns to each R-module

its additive group, and to each R-homomorphism the,corres-
ponding group homomorphism.

Let ('fje, oe) be the exact structure in _AC (cf. example

(b), section 1). It should be noted that we assume here that A
has enough injectives. By the transfer theorem, the functor
equivalences (2.2) imply that the couple (P', PY') given by

-1
Pr =5 Pe and Y' =T 'E{e is an injective structure in /(.

Clearly, an R-homomorphism u: A - B is an R-monomorphism
if and only if it is a monomorphism of the additive groups of A
and B. In other words, u is a monomorphism of _A( if and
only if Su belongs to fPe. Thus, J° ' is the class of all

R-monomorphisms. This, together with the result that
(P', PY') is an injective structure in /A, implies that the
category M has enough injectives.

The above proof for the existence of enough injective
R-modules is just a reformulation of the Eckmann-Schopf
proof (cf. [3]; see also [9], p.108). However, this reformulation
is done in such a way that it can be applied immediately to more
general situations such as the one where _{ is replaced by the
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category of abelian sheaves on a topological space.

For the definition of the notion of a sheaf, presheaf,
sheaf homomorphism, etc., see [4], chapter II. An abelian
(pre)sheaf is a (pre)sheaf with values in the category F of
abelian groups (Z-modules). The category of abelian sheaves
on a topological space X 1is denoted by S (X, Z). 1tis not
difficult to see that P(X, Z) is a category with arbitrary
direct products.

For each point x¢€¢ X, define an object function E from
x
R to ,9(X, Z) as follows: For every A of *, put
A if xeU 1 if xeU

EXA U = e A ‘[,T A
0 otherwise x 0 otherwise

"

where U and V are open sets of X subject to the condition
v
UC V. Clearly, the system ExA = {EXAU s exAU} defines

an abelian presheaf on X; it is easy to verify that it is even a
sheaf. Furthermore, let Sx be the covariant functor from

Vv
F(X, 2) to A which assigns to each sheaf F ={ FU , fU}
A"
(fU denotes the restriction from FV to FU) its stalk SxF

at x, thatis, the abelian group

. . Vv
SxF =dir. lim. {FU, fU} ,

U2ax
and to each sheaf homomorphism in an obvious way a group
homomorphism. It follows from the definition of a direct limit
(cf. [8], p.-309) that, for every abelian group Q, there exists

a functor equivalence

(2. 3) sxf(x, Z): Hom (sxf(x, Z), Q) - Hom (S(X, Z), EXQ).

PROPOSITION 1. The category S (X, Z) of abelian
sheaves on X has enough injectives.

Proof. (Compare with the above arguments in the
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category J1{). Let (He, ?e) be the exact structure in JT.

By the transfer theorem, the functor equivalences (2. 3) imply
that, for every xe X, the couple (.’Px, Pyx) given by

P =S-1P and Y =E Y is an injective structure in
x x e x x e

$(X, Z). Since 8 (X, Z) is a category with arbitrary direct
products, by the corollary of the transfer theorem, the couple
(P'.PY') given by 1= N P_ andtheclass Y' of all
xe X *
direct products II Q where Qxi ‘Hx defines another
xe X

injective structure in ¥ (X, Z). A sheaf homomorphism

u: F - G is a monomorphism of 5(X, Z) if and only if the
homorphisms qu: SxF - SxG are monomorphisms of Ft for

every x€ X. In other words, u is a monomorphism of
f£(X, Z) if and only if que 'Pe for every xe¢ X. Thus,

?' is the class of all monomorphisms of 8(X, Z). This,
together with the result that (P', P Y') is an injective
structure in §(X, Z), implies that the category § (X, Z)
has enough injectives.

Let R be a sheaf of rings on a topological space X.
Denote by § (X, R) the category of all R-modules on X,
that is, of all abelian sheaves F on X where, for every
open set U of X, the groups FU have a natural RU-module
structure (for details, see [4], p.127). Clearly, for the
simple sheaf Z given by the ring of integers, S(X, 2) is
the category of abelian sheaves on X.

The associativity formula (2.1) for modules over an
ordinary ring is easily seen to be valid when R is a sheaf of
rings, Z the simple sheaf given by the ring of integers, and
A, B and C appropriate modules over R and Z (with fixed
base space X). Hence, for every abelian sheaf Q on X,
there exists a functor equivalence

(2.4) s $(X, R): Hom( (X, R) ®R R, Q) - Hom( £(X, R), Hom (R, Q

where the sheaf R is considered as left R-module over X, and
Hom (R, Q) is in the usual way considered as an R-module on X
(cf. [4], p.128). The covariant functor S (X, R) = $(X; R) ®R R
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is the functor which assigns to each R-module on X its under-
lying abelian sheaf, and to each R-homomorphism the corres-
ponding sheaf homomorphism.

PROPOSITION 2. The category $(X, R) of R-modules
on X has enough injectives.

Proof. Let (', PY¥') be the exact structure in
£(X, Z) (which exists by proposition 1). By the transfer
theorem, the natural equivalences (2.4) imply that the couple

(P", PY") givenby P =S-1P ' and Y " =Hom(R, ¥') is
an injective structure in £(X, R). By the same arguments

as in the case of modules over an ordinary ring, P tis seen

to be the class of all monomorphisms of § (X, R). From this,
the assertion follows.

" Finally, a remark concerning the category of sheaves
with values in an abelian category. Under additional conditions
for the value-category, such as requiring it to be a right perfect
category (Grothendieck category) with enough small objects
(cf. [5]), or with a Noetherian projective generator (cf. [7]),
the Eckmann-Schopf proof, as formulated for proposition 1,
works equally well. ¥ The crucial point, where the additional
conditions are exploited, consists in proving that J>' is the
class of all monomorphisms. It should be mentioned, however,
that even without all these conditions, the morphisms of .P !
are apt to replace monomorphisms from the viewpoint of most
homological constructions.

* These results have been established by Y.-C. Wu and are
contained in his Master's thesis '"'Injective sheaves with
values in a category" (University of Ottawa).
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