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Introduction. A divisible abelian group D can be 
character ized by the following property: Every homomorphism 
from an abelian group A to D can be extended to every 
abelian group B containing A. This together with the result 
that every abelian group can be embedded in a divisible group 
is a crucial point in many investigations on abelian groups. It 
was Baer , [1], who extended this result to modules over an 
a rb i t ra ry ring, replacing divisible groups by injective modules, 
that i s , modules with the property mentioned above. Another 
proof was found later by Eckmann and Schopf, [3]. This proof 
assumes the proposition to hold for abelian groups and t ransfers 
it in a very simple and elegant manner to modules. In the sequel, 
we shall refer to this proof as to the Eckmann-Schopf proof. 

One may ask whether the above result is valid in other 
categories than the category of modules over a ring, since the 
concept of an injective module obviously can be formulated 
categorically, that means, one can define injective objects in 
an arb i t ra ry category (cf. [2], appendix). It should be mentioned 
that this question is of considerable importance from the view­
point of certain constructions in homological algebra. Besides, 
a category where the above result holds is called a category 
with enough injective s. Of part icular interest are the categories 
of sheaves on a topological space. A proof that there are enough 
injectives in these categories was given by Godement, [4]; 
another one is due to Grothendieck, [6]. 

The purpose of this note is to discuss how the Eckmann-
Schopf proof for the existence of enough injective modules can 
be formulated in such a way that it allows an extension to sheaves, 
more explicitly, provides a new proof for the existence of enough 
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injective modules over a sheaf of rings on a topological space. 
In order to do that we shall use the notion of an injective s t ructure 
and a general t ransfer theorem for such s t ruc tures , both due to 
Maranda, [9]» In the first section, we recal l the definition of an 
injective s tructure and formulate a special case (suitable for our 
purpose) of Maranda1 s t ransfer theorem. In section 2, we dis­
cuss the Eckmann-Schopf proof from the view-point of the t ransfer 
of injective s t ruc tures , and apply it to the categories of abelian 
sheaves and of modules over a sheaf of r ings . 

1. P re l imina r i e s . For the definition of the notion 
category, functor, functor equivalence, etc. , as well as for the 
notation used here , see [6]. A functor F defined on a category 
Q will often be denoted by FC . Similarly, if F and G are 
functors defined on G , then a functor morphism (natural t r a n s ­
formation) s from F to G will be denoted by s G : F G. -* G<2.. 

Let G be a category, and let IP be a class of its mor -
phisms. An object C of Q is called IP-injective if, for every 
morphism u: A -*• B which belongs to îP , the induced mapping 

(1. 1) u* : Horn (B, C) -> Horn (A, C) 

is surjective (onto). The c lass of all P -infectives is denoted 
by * P . 

Let 2f be a c lass of objects of G . A morphism 
u: A -*• B is called V -proper if, for every object C which 
belongs to ^ , the induced mapping (1.1) is surjective. The 
c lass of all ^ - p r o p e r morphisms is denoted by ij* 27 • 

Definition (Maranda [9]). A couple {? , U ) consisting 
of a c lass !P of morphisms and of a c lass ^ of objects of G 
is called an injective s t ructure in G if (i) ^j = 4> ^P , 
(ii) P =4>l/> (iii) for every object A of G , there exists a 
u: A - Q c P where Q c y . 

We give only two obvious examples. For more examples 
and for elementary proper t ies of injective s t ruc tures see [9]. 

(a) In every category, the c lass !P of all re t rac t ions 
o 

and the c lass ^j of all objects form an injective s t ructure 
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(in the terminology of [9], the finest injective structure). 

(b) If G is an exact (abelian) category with enough 
injectives, the class P of all monomorphisms and the class 

e 
V of all injectives define an injective structure ( P̂ , j ), J e e e 
called the exact structure in G . 

An object A is a retract of an object B if there exist 
morphisms u: A -* B and v: B -* A such that vu = 1 . If ^ 

is a class of objects, the class of all retracts of objects in y 
is denoted by P J . If the couple ( P, P }f ) is an injective 
structure of G , in [9], the class y is called a base of the 
injectives of {<P, PJ ). 

Let G and <2f be two categories, T a covariant 
functor from G to G* and S a covariant functor in the 
opposite direction, from Gx to G* Furthermore, let 
(P» P H ) be an injective structure in C . By means of S 
and T, we construct a couple (P* , y* ) as follows: 

-1 
p* =S P is the class of morphisms uf : A1 -> Bf of <2 ' 
such that Suf : SAf -* SB1 belongs to P ; }jx = T y is the 
class of all objects C! of the form C! = TC for some C which 
belongs to y . (It should be noted that we*may restrict our­
selves to object functions T. ) We ask the question: What con­
ditions are required for S and T such that (îPf , JP If ) is an 
injective structure in Q f ? The subsequent theorem contains 
a sufficient condition: S is the left adjoint of T in the sense 
of Kan, [8], or equivaiently, there exists a functor morphism 
k from the identity functor I of G to the composite functor 
TS such that (S, k) is a regular left adjoint system in the 
sense of Maranda, [9]. The couple (̂ P ! , PJ ! ) is then called 
the transferred injective structure in G f • 

THEOREM (transfer theorem). Let S be a covariant 
functor from G1 to G, T an object function from 3> to 
Qx , and ( P , P!/ ) an injective structure in G . If, for 
every Q of 5 , there exists a functor equivalence 

sG': Horn ( S e ! , Q) -Horn ( e f , TQ) , 
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then the couple ( P S P ^ 1 ) , where <P» =S~lP and 
y » = TV , is an injective structure in G f . 

This Theorem is due to Maranda and is contained in [9]. 
Although it is not explicitly stated as a proposition, it follows 
from the arguments on page 108. Besides, a direct proof can 
be found without much difficulty. 

The following example of functor equivalences leads to a 
useful corollary of the transfer theorem, Let G be a category 
with direct products for families of objects indexed by some 
index set I. As usual, we denote the category of families 
A = ( A . ) . , of objects A. of C by Gl. The function II, 

1 l € I " 1 
which assigns to each A of G the direct product n A. , 

i€ I 
has, by definition even (cf. [6], p. 123), the property: For every 

object Q of G , there exists a functor equivalence 

(1.3) sG: Horn ( E £ , Q) -Horn {C H Q) 

where E is the embedding functor from G to G which 
ass igns , to every object C of G » the family EC = (C.). 

where C. = C for every i € I, and to every morphism 

u: B — C of G , the "mapping" Eu: EB -* EC whose 
"components11 u. = u for every i c i . 

COROLLARY. Let (9., Pit.). T be a family of 

injective structures in G. If Q possesses direct products 
for all families (A.) of objects A of Q, then 

l i c I i 
P 1 = 0 P. and the class ^« of all direct products H Q., 

i c i 1 ic I X 

where Q. c y m for every i c i , define another injective 

structure ( P f , P ^ f ) in Q. 

This follows immediately from the transfer theorem and 
the observation that the couple ( P , P ^ ) =(( <P.h€l> PC5 . ) - € l ) 

is an injective structure in G • 
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2. The Eckmann-Schopf proof» Let R be a ring with 
identity. Denote by -^C the category of unitary right modules 
over R, briefly, R-modules, and by Jt the category of 
abelian groups or Z-moduIes (Z denotes the ring of integers) . 
The well-known associativity formula (cf. [2], p. 28) 

(2.1) Horn (A ® B, C) & Horn (A, Horn (B, Q ) 
Z R £\. -C» 

implies that, for every Q of Jt, there exists a functor 
equivalence 

(2.2) s X : Horn ( ^ ® _ R, Q) - Horn ( X , Horn (R, Q) 
Z R R Z 

where the ring R is considered as left R-module. The set 
TQ = Horn (R, Q) with the usual (right) R-module s tructure 

is known as the contravariant <p-extension of Q {<p being the 
natural embedding of Z in R). The covariant functor 
SSL=Ji.(^ R is the functor which assigns to each R-module 

R 
its additive group, and to each R-homomorphism the c o r r e s ­
ponding group homomorphism. 

Let ( H , *P ) be the exact structure in J~L (cf. example 
e e 

(b), section 1). It should be noted that we assume here that Jt 
has enough infectives. By the transfer theorem, the functor 
equivalences (2.2) imply that the couple ( P ! , P ^ / ? ) given by 

-1 
P ! = S" P and V f = T *H is an injective s t ructure in J~t. 

e e 
Clearly, an R-homomorphism u: A -* B is an R-monomorphism 
if and only if it is a monomorphism of the additive groups of A 
and B. In other words, u is a monomorphism of J^L if and 
only if Su belongs to JP . Thus, ^P f is the c lass of all 

e 
R-monomorphisms. This, together with the resul t that 
(1P! » Py%) is an injective structure in Ji., implies that the 
category Jx has enough injective s. 

The above proof for the existence of enough injective 
R-modules is just a reformulation of the Eckmann-Schopf 
proof (cf. [3]; see also [9], p. 108). However, this reformulation 
is done in such a way that it can be applied immediately to more 
general situations such as the one where Jt is replaced by the 
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category of abelian sheaves on a topological space. 

For the definition of the notion of a sheaf, pre sheaf, 
sheaf hornomorphism, etc, , see [4], chapter II. An abelian 
(pre)sheaf is a (pre)sheaf with values in the category Jz of 
abelian groups (Z-modules) . The category of abelian sheaves 
on a topological space X is denoted by J 7 (X, Z). It is not 
difficult to see that ^ ( X , Z) is a category with a rb i t r a ry 
direct products . 

For each point x € X, define an object function E from 
x 

Jt to ^ ( X , Z) a s follows: For every A of j b , put 

6 x A U . . . . 
otherwise 

where U and V are open sets of X subject to the condition 

U C V - Clear ly, the system E A = { E AU , e A \ defines 
x x x U 

an abelian presheaf on X; it is easy to verify that it is even a 
sheaf. F u r t h e r m o r e , let S be the covariant functor from 

x 
^ ( X , Z) to Jt.which assigns to each sheaf F = { FU , f } 

V 
(f denotes the res t r ic t ion from FV to FU) i ts stalk S F 

U x 
at x, that i s , the abelian group 

S F = d i r . l im. {FU , fj} , 
X U 3 x U 

and to each sheaf homomorphism in an obvious way a group 
horn omor phi sm. It follows from the definition of a direct l imit 
(cf. [8], p. 309) that, for every abelian group Q, there exists 
a functor equivalence 

(2.3) s S(X, Z): Horn (S j>(X, Z), Q) - Horn ( 5>(X, Z), E Q) 

PROPOSITION!. The category $ {X9 Z) of abelian 
sheaves on X has enough injectives. 

Proof. (Compare with the above arguments in the 
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category J~L). Let ( **j , P ) be the exact structure in Jt. 

By the t ransfer theorem, the functor equivalences (2. 3) imply 
that, for every x € X, the couple ( P , TV ) given by 

P = S P and 'H = E *H is an injective structure in 
x x e x x e 

^ ( X , Z). Since ^ (X, Z) is a category with a rb i t ra ry direct 
products, by the corollary of the transfer theorem, the couple 
(P'.Py) given by 9 ? = O £> and the class ^ » of all 

x€ X 
direct products II Q where Q * "M defines another 

v X X " x 
X€ X 

injective s t ructure in j (X, Z). A sheaf hornomorphism 
u: F -*• G is a monomorphism of ^ ( X , Z) if and only if the 
homorphisms S u: S F -» S G are monomorphism s of -?fc for 

X X X 
every x € X. In other words, u is a monomorphism of 
J*(X, Z) if and only if S u € P for every x e X. Thus, 

x e 
P* is the c lass of all monomorphisms of ^?(X, Z). This, 
together with the resul t that (P* , P ^ ' ) is an injective 
structure in J*(X, Z), implies that the category S (X, Z) 
has enough injectives. 

Let R be a sheaf of rings on a topological space X-
Denote by S (X, R) the category of all R-module s on X, 
that i s , of all abelian sheaves F on X where, for every 
open set U of X, the groups FU have a natural RU-module 
structure (for detai ls , see [4], p. 127). Clearly, for the 
simple sheaf Z given by the ring of in tegers , j * (X, Z) is 
the category of abelian sheaves on X. 

The associativity formula (2.1) for modules over an 
ordinary ring is easily seen to be valid when R is a sheaf of 
r ings, Z the simple sheaf given by the ring of in tegers , and 
A, B and C appropriate modules over R and Z (with fixed 
base space X). Hence, for every abelian sheaf Q on X, 
there exists a functor equivalence 

(2.4) sS(X, R):Hom(5>(X, R) 0 R, Q ) - H o m ( j > ( X , R), Hom(R, Q 
R 

where the sheaf R is considered as left R-module over X, and 
Horn (R, "Q) is in the usual way considered as an R-module on X 
(cf. [4], p. 128). The c ova riant functor Sj>(X, R) = J"(X, R) <2> R 

R 
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is the functor which assigns to each R-module on X its under­
lying abelian sheaf, and to each R-homomorphism the corres­
ponding sheaf homomorphism. 

PROPOSITION 2. The category f(X9 R) of R-module s 
on X has enough infectives. 

Proof. Î et ((pf , P y ) be the exact structure in 
^ ( X , Z) (which exists by proposition 1). By the transfer 
theorem, the natural equivalences (2.4) imply that the couple 

(9 u
r P 3 ") given by P " = s" *P ' and ï n = Hom(R, y f ) is 

an injective structure in J*(X, R). By the same arguments 
as in the case of modules over an ordinary ring, P tx is seen 
to be the class of all monomorphisms of S (X, R). From this, 
the assertion follows. 

Finally, a remark concerning the category of sheaves 
with values in an abelian category. Under additional conditions 
for the value-category, such as requiring it to be a right perfect 
category (Grothendieck category) with enough small objects 
(cf. [5]), or with a Noetherian projective generator (cf. [7]), 
the Eckmann-Schopf proof, as formulated for proposition 1, 
works equally well. * The crucial point, where the additional 
conditions are exploited, consists in proving that jP ! is the 
c lass of all monomorphisms. It should be mentioned, however, 
that even without all these conditions, the morphisms of JP ' 
are apt to replace monomorphisms from the viewpoint of most 
homological constructions. 

* These results have been established by Y. - C . Wu and are 
contained in his Master1 s thesis "Injective sheaves with 
values in a category11 (University of Ottawa). 
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