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Summary

In porcine in vitro production (IVP) systems, the use of oocytes derived from prepubertal gilts,
whilst being commercially attractive, remains challenging due to their poor developmental
competence following in vitro maturation (IVM). Follicular fluid contains important growth
factors and plays a key role during oocyte maturation; therefore, it is a common supplementa-
tion for porcine IVM medium. However, follicular fluid contains many poorly characterized
components, is batch variable, and its use raises biosecurity concerns. In an effort to design
a defined IVM system, growth factors such as cytokines have been previously tested. These
include leukaemia inhibitory factor (LIF), fibroblast growth factor 2 (FGF2), and insulin-like
growth factor 1 (IGF1), the combination of which is termed ‘FLI’. Here, using abattoir-derived
oocytes in a well established porcine IVP system, we compared follicular fluid and FLI supple-
mentation during both IVM and embryo culture to test the hypothesis that FLI can substitute
for follicular fluid without compromising oocyte nuclear and cytoplasmic maturation.
We demonstrate that in oocytes derived from prepubertal gilts, FLI supplementation enhances
oocyte meiotic maturation and has a positive effect on the quality and developmental compe-
tence of embryos. Moreover, for the first time, we studied the effects of follicular fluid and FLI
combined showing no synergistic effects.

Introduction

The developmental potential of porcine oocytes and embryos is affected by several intrinsic and
extrinsic factors that can compromise the efficiency of in vitro production (IVP) systems
(Hunter, 2000; Weaver et al., 2013; Teplitz et al., 2020). One such factor is the oocyte source;
oocytes can be collected from adult donors or prepubertal gilts (Marchal et al., 2001). From a
commercial standpoint, the use of ovaries from prepubertal gilts is highly attractive as it gives the
opportunity to shorten generation times, thereby facilitating the introduction of new genetics
more quickly (Sherrer et al., 2004). This approach nonetheless presents many challenges and
limitations that are mainly related to the ability of the oocytes to undergo nuclear and cyto-
plasmic maturation during in vitro maturation (IVM) (Marchal et al., 2001; Pawlak et al.,
2012). Indeed, in recent years, research has focussed on the improvement of culture conditions
for prepubertal porcine oocytes with the aim of assisting them in completing nuclear and cyto-
plasmic maturation more efficiently (Uhm et al., 2010; Appeltant et al., 2016; Yuan, et al., 2017;
Teplitz et al., 2020). Observing the position of the cortical granules (CGs) allows for the deter-
mination of cytoplasmic maturation. CGs are specialized secretory vesicles, present only in
female germ cells that are randomly distributed throughout the cytoplasm of immature oocytes
and migrate towards the cortical cytoplasm during meiotic maturation. Upon fertilization, CGs
undergo exocytosis to release their contents with the aim to harden the zona pellucida (Burkart
et al., 2012). Furthermore, some recent studies have reported that CGs function beyond fertili-
zation, having an effect on the regulation of embryonic cleavage and preimplantation develop-
ment (Liu, 2011; Kulus et al., 2020).

Follicular fluid plays a key role during oocyte maturation in sows (Tatemoto et al., 2004),
and, as such, sow follicular fluid (sFF) is a common supplement used in pig IVM medium
(Pawlak et al., 2018). It is known to support in vitro oocyte development by providing the culture
environment with a variety of important growth factors (Lédée et al., 2008). The growth factors
found in sFF are naturally produced by ovarian somatic cells during final follicle development,
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acting as both autocrine and paracrine mediators of ovarian
function and regulating oocyte maturation and oocyte develop-
mental competence (Song et al., 2011). However, the complete
constitution of sFF is unknown and its use results in a non-defined
culture system and raises potential biosecurity concerns. Batch
variation has also been demonstrated in sFF and its composition
is known to change with the donor’s age and stage of the follicles
from which it is recovered (Sun et al., 2011). Furthermore, varia-
tion in the concentrations of any of the components of sFF can
affect IVM outcomes and therefore oocyte developmental compe-
tence (De Oliveira et al., 2006; Pawlak et al., 2018).

In an effort to design efficient, but defined IVM culture
medium, growth factors such as certain cytokines have been tested,
alone or in combination, for the culture of porcine oocytes. In
particular, leukaemia inhibitory factor (LIF) and fibroblast growth
factor 2 (FGF2) have been shown to facilitate meiotic progress
during maturation, promoting oocyte quality and its subsequent
ability to achieve fertilization. It has been shown that LIF phospho-
rylates MAPK3/1 and STAT3 in the oocytes, which are important
pathways during in vitro maturation (Dang-Nguyen et al., 2014;
Mo et al., 2014). FGF2 acts as a cofactor, promoting cumulus cell
survival and extracellular matrix quality during IVM (Barros et al.,
2019; Du et al., 2021). Insulin-like growth factor 1 (IGF1) also has
been found to improve IVM outcomes and increase cell survival in
response to stress (Oberlender et al., 2013). IGF1 enables the
expansion of porcine cumulus cells in response to FSH, promoting
the synthesis and retention of hyaluronic acid in porcine COCs,
also activated by the MAPK3/1 pathway (Singh and Armstrong,
1997; Němcová et al., 2007).

Interestingly, the use of these three cytokines during IVM,
known together as FLI (Yuan, et al., 2017), positively affects
outcomes by improving oocyte quality, embryonic development,
embryo transfer outcomes and, in cattle, embryo cryosurvival
(Yuan et al., 2017; Stoecklein et al., 2021).

Here, we performed a direct comparison between sFF and FLI
supplementation of IVM medium using oocytes from prepubertal
gilts and semen stored in extender. We tested the hypothesis that
FLI can efficiently substitute for sFF during IVM without compro-
mising oocyte nuclear and/or cytoplasmic maturation. Moreover,
for the first time we studied the effects of combining sFF and FLI in
IVM of oocytes to test the hypothesis that there is a synergistic
effect between these components that would suggest a role for
additional growth factors that may be present in sFF but absent
in FLI.

Materials and methods

All chemicals and reagents used were purchased from Sigma-
Aldrich (Gillingham, UK) except when specified otherwise.

Oocyte collection and IVM

Prepubertal gilt ovaries were collected and transported to the lab-
oratory within 5 h in a sealed bag floated in water at 30–35°C. The
animals had an approximate weight of 160 kg at slaughter, and
their prepubertal status was confirmed by the absence of developed
ovarian corpora lutea. Prior to aspiration, the ovaries were washed
two or three times in 1× phosphate-buffered saline (PBS) and kept
in a water bath at 28°C. The cumulus–oocyte complexes (COCs)
were collected by manual aspiration from non-atretic follicles
(3–6 mm) using a non-pyrogenic/non-toxic syringe (Henke-Sass
Wolf GmbH, Tuttlingen, Germany) fitted with an 18-gauge needle.

The follicular contents were washed three times in a modified
HEPES-buffered Porcine X Medium [PXM; Yoshioka et al.,
2008; 108 mM NaCl, 10 mM KCl, 0.35 mM KH2PO4, 0.40 mM
MgSO4, 5.0 mM NaHCO3, 25 mM HEPES, 0.2 mM sodium
pyruvate, 2.0 mM calcium lactate, 4 mg/ml bovine serum albumin
(BSA)]; warmed at 38°C.

Selected COCs were washed three times in porcine oocyte
medium [POM; Yoshioka et al., 2008; 108 mM NaCl, 10 mM
KCl, 0.3 5 mM KH2PO4, 0.4 mM MgSO4, 25 mM NaHCO3,
5.0 mM glucose, 0.2 mM sodium pyruvate, 2.0 mM calcium lactate,
2.0 mM glutamine, 5.0 mM hypotaurine, 0.1 mM cysteine, 20 μl/ml
Basal Medium Eagle (BME) amino acids 50×, 10 μl/ml minimum
essential medium (MEM) non-essential amino acids 100×, 10 ng/ml
EGF, 50 μM β-mercaptoethanol, 10 μg/ml gentamycin, 4 mg/ml
BSA] previously equilibrated overnight at 38.5°C in a saturated
humidity atmosphere of 5.5% CO2 in air. COCs were randomly
assigned to groups of 50 for treatment with different supplements:
FLI, sFF, both FLI and sFF, or left unsupplemented (please refer to
‘Experimental design’ for details). COCs were cultured for 20 h in
POM supplemented with FSH (0.5 IU/ml), LH (0.5 IU/ml) and
dbc-AMP (0.1mM). Subsequently, COCs were cultured in the same
medium but without hormones and dbc-AMP for a further 24 h at
38.5°C and 5.5% CO2 in humidified air.

In vitro fertilization (IVF) and culture

Extended boar semen [for commercial artificial insemination (AI)]
was supplied by JSR Genetics Ltd (Southburn, UK). Sperm prepa-
ration was performed using a 35%/70% BoviPure discontinuous
density gradient system (Nidacon, Göthenborg, Sweden) following
the manufacturer’s instructions.

Matured oocytes were washed twice in porcine gamete medium
(PGM; Yoshioka et al., 2008; 108 mMNaCl, 10 mMKCl, 0.35 mM
KH2PO4, 0.4 mM MgSO4, 25 mM NaHCO3, 5.0 mM glucose,
0.2 mM sodium pyruvate, 2.0 mM calcium lactate, 2.5 mM
theophylline, 1 μM adenosine, 0.25 μM L-cysteine, 10 μg/ml genta-
mycin, 4 mg/ml BSA) and were incubated with sperm for 2 h.
Following this co-incubation, oocytes were moved to a clean well
in PGM for another 2 h to minimize the risk of polyspermy.

After IVF, presumptive zygotes were denuded and washed
twice in porcine zygote medium 5 (PZM5; Yoshioka et al., 2008;
108 mM NaCl, 1 mM KCl, 0.35 mM KH2PO4, 0.4 mM MgSO4,
25 mM NaHCO3, 0.2 mM sodium pyruvate, 2.0 mM calcium
lactate, 2.0 mM glutamine, 5.0 mM hypotaurine, 20 μl/ml BME
amino acids 50×, 10 μl/ml MEM non-essential amino acids
100×, 10 μg/ml gentamycin, 4 mg/ml BSA) before being trans-
ferred to a final 500 μl well of PZM5 supplemented with FLI.
Individual wells were overlaid with mineral oil and plates were
incubated for 6 days at 38.5°C, in 5.5% CO2 and 6% O2 in humidi-
fied air.

Evaluation of nuclear stage and cortical granule distribution

Oocytes were fixed with 4% paraformaldehyde (PFA) in PBS for 30
min at 4°C, and then washed three times in PBS containing 0.3%
BSA and 100 mM glycine for 5 min. After a 5-min treatment with
0.1% Triton X-100 in PBS, oocytes were washed two additional
times in PBS (5 min each). To stain the CG, oocytes were cultured
in 100mg/ml fluorescein isothiocyanate-labelled peanut agglutinin
(FITC-PNA; Invitrogen™, Inchinnan, UK) in PBS for 30 min
in a dark box. After staining, oocytes were washed three times
in PBS with 0.3% BSA and 0.01% Triton X-100 in PBS. The oocytes
were then stained with 10mg/ml Hoechst H3570 (Invitrogen™) for
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10 min, mounted on non-fluorescent glass slides and visualized
using an Olympus BX61 epifluorescence microscope equipped
with a cooled charge-coupled device (CCD) camera. Images were
taken using 4 0,6-diamidino-2-phenylindole (DAPI) and FITC
filters at ×200 total magnification using SmartCapture3 software
(Digital Scientific UK, Cambridge, UK). COCs were classified as
mature when they displayed a dye-stained metaphase plate and
a polar body; otherwise, they were classified as immature. The
distribution of CGs was categorized in three ways as: central,
peripheral or complete (Figure 1), where: central distribution
indicated a homogenous distribution of CGs throughout the cyto-
plasm; peripheral distribution, indicated that CGs had begun to
localize subjacent to the oolemma, or complete distribution; and
where CGs were concentrated subjacent to the oolemma and
around the polar body (an indicator of complete cytoplasmic
maturation).

Evaluation of blastocysts

Blastocyst morphological appearance was assessed and scored
using three grades: (1) excellent: fully expanded blastocyst,
spherical, regular border, symmetrical with uniform size cells,
obvious inner cell mass (ICM) and densely populated trophecto-
derm (TE); (2) good, expanded blastocyst with few small blasto-
meres, fewer cells forming the ICM/TE; (3) poor: expanded or
less developed blastocyst with numerous extruded blastomeres,
loosely populated TE and possible ICM. After grading, blastocysts
from each treatment group were fixed in 4% PFA for 30 min at 4°C
and stained with Hoechst H3570 (Invitrogen™) for cell counts.
Blastocysts were visualized under an Olympus BX61 epifluores-
cence microscope as described in the previous section.

Experimental design

Experiment 1: Oocyte nuclear maturation following
supplementation of IVM medium FLI or sFF
This experiment was designed to study the effect of FLI supple-
mentation during the IVM culture period on the meiotic compe-
tence of COCs. Four groups of ~50 immature COCs were treated
during IVM. The first group was supplemented with a combina-
tion of three cytokines (Novus Biologicals, Oxon, UK), ‘FLI’,
prepared as described by Yuan et al. (2017). The second group
was treated with 10% sFF. The third group was treated with the
combination of FLI and 10% sFF, to study a possible synergistic

effect. The fourth group of COCs was kept unsupplemented and
served as a control. The experiment was repeated four times with
40–50 oocytes per treatment in each replicate (N = 763).

Experiment 2: CG distribution (cytoplasmic maturation)
following supplementation of IVM medium with FLI or sFF
This experiment aimed to assess CG distribution as an indicator for
the level of cytoplasmic maturation of the COCs depending on the
treatment during IVM cultured. Treatment groups were as
described in Experiment 1. This experiment was replicated three
times with 40–50 oocytes per treatment per replicate (N= 465).
In this case, a greater proportion of oocytes with ‘complete’ CGs
(i.e. neither predominantly peripheral nor central) is the most
favourable outcome.

Experiment 3: Post-fertilization outcomes following
supplementation of IVM medium with FLI or sFF
The third experiment was designed to test the effects of different
supplementations during the IVM process on the oocyte’s devel-
opmental competence following IVF. This was evaluated using
blastocyst rates (blastocyst per inseminated oocyte), blastocyst
morphology, and blastocyst cell counts. To estimate the total cell
counts, nuclei were stained usingHoechst H3570. The live image of
embryo was sequentially divided into smaller sections that could be
individually brought into focus to improve the accuracy of the
count. The same four IVM groups described above (FLI, sFF,
FLI þ sFF, and control) were used. The experiment was repeated
seven times with 40–50 presumptive zygotes per group per
replicate (N= 1133). To evaluate the embryo quality of each group,
149 blastocysts were assessed.

Statistical analysis

Data were analyzed using SPSS software (Version 26, IBM). The
statistical analysis of oocyte nuclear maturation and blastulation
rates were completed by fitting a binomial generalized linear model
(GLM) with logit link functions. The numbers of blastomeres per
blastocyst were log transformed and were assessed using analysis of
variance (ANOVA). When analyzing cytoplasmic maturation and
the morphology evaluation of the embryos the data were tested
using Kruskal–Wallis test. When an interaction was detected
amongst the variables, multiple comparisons were completed using
the Bonferroni correction. The data in tables are presented as mean
± standard error of the mean (SEM), whilst in the graphs they

Figure 1. Effect of each treatment on the proportion of
mature oocytes. Mean of the effects of the studied supple-
ments on nuclear maturation of prepubertal gilt oocytes
after 44 h of culture. Error bars show the 95% confidence
interval. Groups did not differ (P > 0.05). FLI, combination
of the cytokines FGF2, LIF, and IGF1; sFF, sow follicular fluid.
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appear as mean with the error bars showing the 95% confidence
interval of each variable. Results were considered to be statistically
significant when P-values were < 0.05.

Results

Effect of FLI and/or sFF supplementation on nuclear
maturation

The assessment of the nuclear stage of 763 oocytes after maturation
(Figure 1) showed the highest proportion of mature oocytes in the
group treated with FLI (70.9%). The use of sFF during IVM gave an
outcome slightly lower than the group with no supplementation

(control), 61.5% and 62.3% respectively. The lowest rate was found
in the combination group (sFFþ FLI) with a 60.3%. However, due
to the intergroup variation, these differences were not statistically
significant (GLM; χ1 = 1.059; P> 0.05).

Effect of FLI and/or sFF supplementation on oocyte CG
distribution (cytoplasmic maturation)

The analysis of the distribution of the CGs after IVM culture
(Table 1, Figure 2) showed a higher incidence of ‘complete’ distri-
bution (Figure 2c) on the groups treated with FLI (48.8%), second
on the combination of FLI and sFF (43.0%), third in the control
group (32.7%) and finally for sFF (28.7%). The incidence of a

Table 1. Distribution of cortical granules (cytoplasmic maturation) in oocytes after 44 h of in vitro maturation

Group N

CG distribution

Central, N (mean % ± SEM) Peripheral, N (mean % ± SEM) Complete, N (mean % ± SEM)

Control 113 37 (32.7 ± 6.7)a 42 (37.2 ± 9.1)a 34 (30.1 ± 3.4)a

FLI 123 22 (17.9 ± 1.4)b 41 (33.3 ± 10.6)b 60 (48.8 ± 11.7)b

sFF 115 23 (28.7 ± 2.0)a 39 (33.9 ± 3.5)a 43 (37.4 ± 4.5)a

sFF þ FLI 114 30 (26.3 ± 2.4)a,b 35 (30.7 ± 3.2)a,b 49 (43.0 ± 3.4)a,b

P-value 0.012*

Data are shown as mean ± standard error of the mean (SEM) (N = 3 replicates for each group).
a,bDifferent superscript letters indicate significant differences amongst the groups.
*Kruskal–Wallis test (H3 = 10.995).

Figure 2. Cortical granule (CG) distribution in
oocytes after IVM. GV: Homogenous distribution
of CGs throughout the cytoplasm in a germinal
vesicle (GV) stage oocyte denoted with the
arrow. MI: Peripheral distribution on metaphase
I (MI) stage oocyte, CGs begin to locate subjacent
to the oolemma. MII: Complete distribution on a
mature oocyte (metaphase II, MII), CGs are
concentrated at the periphery of the cytoplasm
and around the polar body (PB). CGs stained in
green (FITC-PNA), DNA stained in blue (Hoechst),
×200 total magnification. Each column displays
an individual oocyte; the top row displays a
combined image, with the subsequent images
showing individual fluorophores (FITC or
Hoechst).
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peripheral CG distribution (Figure 2b) was similar in the four
groups. Intergroup comparison showed that there were significant
differences between the groups (Kruskal–Wallis; H3 = 10.995;
P = 0.012).

Effect of the use of FLI and/or sFF during IVM on embryo
developmental competence

After fertilization, the highest rate of blastocyst formation per
inseminated oocyte (Figure 3) was found in the group treated with
FLI (15.7%), followed by the sFF treatment group (14.3%).
The proportion of blastocysts from the combination group
(sFF þ FLI) was similar to the control group (12.0% and 10.8%,
respectively). The differences on the proportion of blastocyst
formed between the groups did not show any significant difference
after statistical analysis (GLM; χ1 = 0.044; P >0.05).

The morphological assessment of the blastocyst (Figure 4)
generated by each group revealed that the oocytes treated with
FLI during IVM developed into better quality embryos
(Table 2). The highest proportion of the embryos with excellent
morphology (Figure 4a,d) came from the FLI treatment group
(37.0 ± 12.1%) and this was significantly higher than in the other
groups (Kruskal–Wallis; H3 = 8.162; P = 0.043). This group also
had the lower proportion of poor-quality embryos (19.6 ± 13.4%).
In contrast, the group with a higher percentage of poor-quality
embryos (Fig. 4c,f) was the control group (34.5 ± 13.6%).
Interestingly, the group cultured in a combination of sFF and
FLI had the second highest proportion of excellent quality embryos
(29.4 ± 4.8%), but also the second highest proportion of poor-
quality blastocyst (29.4 ± 6.6%).

To further assess the developmental competence, the number of
cells was counted for each blastocyst. The average number of cells

Figure 3. Proportion of blastocyst formation after the
different treatments on in vitro maturation. Mean of the
effects of the studied supplements on blastulation rates after
matured prepubertal gilt oocytes were fertilized. Error bars
show the 95% confidence interval. Groups did not differ
(P> 0.05). FLI, combination of the cytokines FGF2, LIF, and
IGF1; sFF, sow follicular fluid.

Figure 4. Pig blastocyst morphology. (A–C)
Images taken by the use of epifluorescence
microscopy at ×200 total magnification. Nuclei
in blue (Hoechst staining). (D–F) Phase-contrast
optical microscopy images at ×200 total
magnification. (A, D) Blastocysts of excellent
morphology (grade 1); (B, E) blastocysts of good
morphology (grade 2); (C, F) blastocysts of poor
morphology (grade 3). Arrows denotate the inner
cell mass (ICM) of the blastocysts.
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per blastocyst (Figure 5) was highest in the FLI group (62.1 cells per
blastocyst), followed by the control (57.1 cells per blastocyst) and
the lower number of cells using sFF as treatment (52.7 and 52.2
cells per blastocyst on the sFF and sFFþ FLI groups, respectively).
Comparison of treatment groups indicated that they did not differ
(ANOVA; F3 = 1.039; P> 0.05).

Discussion

Whilst FLI supplementation during IVM always resulted in
improved outcomes compared with control experiments and often
to other treatment groups, not all findings were statistically signifi-
cant. However, the use of FLI consistently yielded better results. By
contrast, the use of sFF alone had very little effect on oocyte matu-
ration, yielding similar results to the control group, and when used
in combination with FLI outcomes were only marginally improved.

The areas in which statistically significant differences were
observed include cytoplasmic maturation (distribution of CGs)
and blastocyst quality, meaning that the positive effect of FLI
supplementation also extended to in vitro culture (IVC).
However, our results showed that FLI supplementation did not
statistically improve nuclear maturation, blastulation rate, or the
number of cells per blastocyst (contrary to a previous study by
Yuan et al., 2017). The lack of significance could be influenced
by statistical power, as the number of blastocysts analyzed differed
from the total number of blastocysts obtained; the difference in this

number is a result of fragile blastocysts being destroyed during the
fixing process.

It is widely accepted that the survival rate of porcine IVP blas-
tocysts is very low because of their poor quality (Zijlstra et al.,
2008). Here we show that the use of FLI during IVM improved
the synchrony between nuclear and cytoplasmic maturation,
improving overall oocyte quality (Marchal et al., 2001; Pawlak
et al., 2012). This synchrony could positively influence the zygote’s
developmental competence and its ability to undertake normal cell
division, resulting in the symmetrical division of the blastomeres
and lower fragmentation rates, which is demonstrated in the
results. FLI supplementation not only improved the quality of
the resulting embryos that developed to blastocyst stage, but has
previously been shown to enhance the efficiency of cattle and sheep
IVP and embryo quality (Stoecklein et al., 2021; Tian et al., 2021).
The viability to implant and birth rates of the embryos have not
been tested in this study. However, other publications have shown
an increase in the postimplantation viability of embryos treated
with growth factors (Zheng et al., 2008; Biswas et al., 2018).

It is common to have supplements in the medium that act addi-
tively to improve in vitro embryo production, with publications
showing an increase in the blastulation rates after treatment with
individual cytokines, separately as well as in combination (Valleh
et al., 2017; Yuan, et al., 2017; Stoecklein et al., 2021). Furthermore,
Liu et al. (2020) demonstrated the positive effect that cytokines had
on promoting porcine oocyte maturation and Redel et al. (2021)

Table 2. Blastocyst quality after the different treatments on in vitro maturation

Group N

Grade

Excellent, N (mean % ± SEM) Good, N (mean % ± SEM) Poor, N (mean % ± SEM)

Control 29 6 (20.7 ± 6.7)a 13 (44.8 ± 9.3)a 10 (34.5 ± 13.6)a

FLI 46 17 (37.0 ± 12.1)b 20 (43.5 ± 10.5)b 9 (19.6 ± 13.4)b

sFF 40 10 (25.0 ± 9.6)a 24 (60.0 ± 13.2)a 6 (15.0 ± 4.6)a

sFF þ FLI 34 10 (29.4 ± 4.8)a,b 14 (41.2 ± 5.8)a,b 10 (29.4 ± 6.6)a,b

P-value 0.043*

Data are shown as mean ± SEM (N = 7 replicates for each group).
a,bDifferent superscript letters indicate significant differences amongst the groups.
*Kruskal–Wallis test (H3 = 8.162).

Figure 5. Average number of cells per blastocyst. Mean of
the effects of the different combinations on the number of
cells per blastocyst after matured prepubertal gilt oocytes
were fertilized. Error bars show the 95% confidence interval
(N= 73). Groups did not differ (P> 0.05). FLI, combination of
the cytokines FGF2, LIF, and IGF1; sFF, sow follicular fluid.
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showed that the combination of FLI with gonadotropins enhanced
oocyte development and improved cumulus cell expansion.
Procházka et al. (2021) demonstrated a similar activation pattern
of MAPK3/1 between medium supplemented with or without FLI,
showing only an increase inMAPK3/1 phosphorylation during the
first hour of culture in the FLI medium. This suggests that COCs
cultured with FLI experience enhanced MAPK3/1 stimulation that
resulted in the development of highly competent oocytes. Our data
demonstrate that combining FLI and sFF did not have a synergistic
effect on IVP outcomes, which could be attributed to factors such
as the variation in sFF composition (De Oliveira et al., 2006; Sun
et al., 2011). The donor’s origin, age, and the stage of the follicles
from the ovary may be one of the reasons why the results shown in
this publication differed from the information published previ-
ously on the effect of FLI on porcine maturation (Yuan, et al.,
2017; Redel et al., 2021).

Porcine IVP has, to the disappointment ofmany in the industry,
lagged behind its bovine counterpart. By common consent, porcine
IVP is technically more challenging at all stages than bovine
(or even human) and incremental improvements, such as those
reported in this study, are always welcome. The potential for
routine IVP in the pig breeding industry is considerable in terms
of biosecurity, cost and environmental benefits for transport of
both male and female genetics (nationally and internationally).
Moreover, using peri-pubertal gilts as a source of ovaries, as in this
study, has great potential for the rapid introduction of new genetics
through the shortening of generation intervals. Finally, as a
resource for gene editing and biobanking, porcine embryos hold
great potential provided that the barriers to their production
can be overcome. The results of this study therefore represent a
significant advance. Given the added problems of batch variability
and biosecurity associated with the use of sFF, our future strategies
will rely on the use of FLI alone.
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Nagai, T. (2014). Leukemia inhibitory factor promotes porcine oocytematu-
ration and is accompanied by activation of signal transducer and activator of
transcription 3. Molecular Reproduction and Development, 81(3), 230–239.
doi: 10.1002/mrd.22289

De Oliveira, A. T., Lopes, R. F. and Rodrigues, J. L. (2006). Gene expression
and developmental competence of bovine embryos produced in vitro with
different serum concentrations. Reproduction in Domestic Animals, 41(2),
129–136. doi: 10.1111/j.1439-0531.2006.00653.x

Du, C., Davis, J. S., Chen, C., Li, Z., Cao, Y., Sun, H., Shao, B. S., Lin, Y. X.,
Wang, Y. S., Yang, L. G. and Hua, G. H. (2021). FGF2/FGFR signaling
promotes cumulus–oocyte complex maturation in vitro. Reproduction,
161(2), 205–214. doi: 10.1530/REP-20-0264

Hunter, M. G. (2000). Oocyte maturation and ovum quality in pigs. Reviews of
Reproduction, 5(2), 122–130. doi: 10.1530/ror.0.0050122

Kulus, M., Kranc, W., Jeseta, M., Sujka-Kordowska, P., Konwerska, A.,
Ciesiółka, S., Celichowski, P., Moncrieff, L., Kocherova, I.,
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