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1. Introduction

Consider a Galton-Watson process in which each individual reproduces in-
dependently of all others and has probability aj (j = 0,1, • • •) of giving rise to j
progeny in the following generation, and in which there is an independent im-
migration component where bj (j = 0, 1, • • •) is the probability that j individuals
enter the population at each generation. Defining Xn (n = 0, 1, • • •) to be the
population size at the «-th generation, it is known that {Xn} defines a Markov
chain on the non-negative integers.

When |x| < 1, let A(x) = YJ-O^X1, B(x) = I f = 0 ^ and P\n\x) = £ ; = 0

p\fxJ where {p\f} (i,j, n = 0, 1, • • •) are the n-step transition probabilities of the
Markov chain {Xn}. We shall assume that 0 < a0, b0 < 1. Denote the means of
the offspring and immigration distributions by a = A'(I—) and /? = B'(l—)
respectively. We always assume that /? < oo and, unless otherwise stated, a = 1.
In this case the variance of the offspring distribution is given by 2y = A" (I—)
and we assume that 0 < y < oo. Finally, let a = ft/y.

Pakes [6] has shown that if YJ=iajJ2 Iog/> B"(l ~) < °° t h e n n"P(oo ~* Mo>
(« -» oo) where 0 < ju0 < oo. For the case where {Xn} is irreducible and aperiodic,
this result shows it to be null-recurrent when a :g 1 and transient otherwise. In
section 2 we shall show that rfP\n)(x) converges to a function U(x) which is regular
in the open unit disc and which generates the invariant measure, {/i,}, of {Xn}.
Seneta [9] has demonstrated the existence and uniqueness (up to a constant
multiple) of an invariant measure under very weak hypotheses. A discussion of the
asymptotic behaviour of {p{$} and {//,} is given in section 2. Some results on the
asymptotic behaviour of the Green's function Gtj = YJ™=OP\"\ which exists under
the conditions of theorem 1 below and if a > 1, are given in section 3.

It was shown in Pakes [6] that XJn converges weakly to a gamma distributed
random variable. A related problem for Yn = ^ , = 0 J m , the total number of
individuals which have existed in the population up to the n-th generation, is
considered in section 4. More specifically, we show that YJn2 converges weakly
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278 A. G. Pakes [2]

to a random variable Y, where E(e~eY) = [sech^yfl)*)]". Finally, we briefly
examine the rate of convergence of generating functions of the total population
in a non-super-critical Galton-Watson process without immigration.

2. The asymptotic form of the transition probabilities

In the proof of theorem 1, we shall need the following result.

LEMMA 1. Let K{x) = Yj=okjxJ oe a probability generating function. If
0 < dn < 1 and 1 -dn ~ a/n, 0 < a < oo, then

f (l-K(dn))ln < oo ifff kj log ; < oo.
n=l j = l

PROOF. Since there exists finite positive constants cl and c2 such that
cjn < 1 — dn < c2\n if n > N, it suffices to show that

s = I ( l - X ( l - c / n ) ) / n < oo iff J fc,.log j < oo,

where c is a finite positive constant and N is so large that c/(N— 1) < 1. Fubini's
theorem yields

00 OO

j=0 n=N

Let 5j = X*=N(1 — (1 —c/«y)/«. For fixedy the terms of this series are monotone
decreasing and so

0 ̂  SJ-IJ g [l-(l-c/(N-l)yy(N-l) ^ 1.
where

and whereL} = ^ = 1 I/A: —logy satisfies 0 < L} < 1 and

0 ^ My
k=l

The lemma now follows on observing that

From the definition of the Markov chain {Xn} it is easily seen that

(1) P\"\x) = (An(x)iU
m = 0

where ^ 0 (x ) = x and ,4n+1(jc) = A(An(x)).
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[3] On the critical Galton-Watson process 279

THEOREM 1. If, in addition to the conditions of section 1, £JL t aj2 logy,
YJ=i fyj log j < oo, then the sequence of functions {/iT/n)(x)} converges to U(x)
(\x\ < 1) where U(x) satisfies the functional equation

(2) B(x)U{A{x)) = U(x).

The convergence is uniform over compact subsets of the open unit disc. Denoting
the power series representation of U(x) by YJ=ol^jxi, the n-step transition proba-
bilities are given by

(3) p\? = n-inj + r^n)) (i, j = 0, 1, • • •)

where rtj(n) = o(l) (n -* oo).

REMARK. Since completing this work, the author has found that Karlin and
McGregor [4] have obtained the first part of this theorem but on assuming that
B(x) is regular at x = 1 and A"'(I —) < oo. When x = 0, the above theorem
slightly strengthens theorem 1 of Pakes [6].

PROOF. It is well known that under our hypotheses An(x) t 1(« -* oo); see
Harris [3]. Thus we need only consider

(4) Dn(x) = n'P£Xx) = B(x)fi (1 + l/m)ffB(Xm(x)).
m = l

For the present consider a fixed x e [0, 1 ]. The existence of a finite positive
limit of this sequence of functions is equivalent to the convergence of the series
l : = . K W - l ) , where

dm(x) = (l + l/myB(Am(x)).

Using (1 + l/m)" = 1 +<j/m + rm where rm = 0(1 /m2) we have

(5) dm(x)-l =<jlm-(l-B(Am(x))-(T(l-B(Am(x)))/m + rmB(Am(x))

^ alm-fi{\ -Am(x)) + (l -Am(x))(P~B'(rjm))-a(l -B(Am(x)/m

+ rmB(Am(x))

where Am(x) < r\m < 1, and we have used the mean value theorem to obtain the
second equality. Theorem 1 of Kesten et al. [5] shows that 1 — An(x) ~ n/y and so
the third and fourth terms of equation (5) are 0(l/m2). Clearly, the second term
of (5) is non-negative and is dominated by (1 — Am(x)){f5 — B'{Am{x)). Application
of lemma 1 with K(x) = B'(x)/p shows that

J ( 1 - / 1 B ( # - B ' y < oo if £ bjj log j < oo.
m = 1 j = 1

Writing
l-Am(x) = [my - hm(x)+1/(1-x)]~l

we obtain

https://doi.org/10.1017/S1446788700013690 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013690


280 A. G. Pakes [4]

dm-Pil-AJix)) = a • m~*)~H'i*) „ = -ahm(x)lym2+0(llm2)
m(m -hjx)+1/(1 -x))

where we have used hm(x) = o(m); see Kesten et al. [5]. Indeed it is shown in this
reference that hm(x) = YA=O 8(^k(x)) where d(x) satisfies the (corrected) in-
equality

(6) -72(1 -*)/(l -.4(0)) g S(x) £ a(x)

where 0 ^ e(x) = y — (A(x) — x)/(l—x)2 ^ y, and e(x) is monotone non-in-
creasing on 0 ^ x < 1 and e(x) J, 0(x f 1). Thus we have

2 oo 1 m - l oo t / \ co 1 m - l
(7) - rh«* Z 2 I (i-^0)) ^ I ^ ^ E \ I «(

1 4 ( 0 ) i m * o m w o
2 I

m=i m * =

For sufficiently large M there exist positive constants a, b such that a/w < 1 — Am

(0) < b/m (m ^ M) and so we see that the terms of the series on the left of equa-
tion (7) are 0[(log m)/m2] for large m.

Observing that s(x) Sj y—A"(x), use of lemma 1 with K(x) = A"(x)j2y
shows that the series on the right of (7) will converge if £"= o

ajj2 ^°SJ < °°. Thus
Dn{x) -*• U(x), say, (n -» oo) and 0 < U(x) < oo when 0 ^ x < 1.

If 0 < R < 1, equation (4) and the result of the last paragraph implies
\rfP["\x)\ ^ Dn(R) < M(R) < oo (|JC| ^ R) where M(R) is a constant depending
on R. Vitali's theorem (Titchmarsh [10]) shows that n"P\n)(x) converges uniformly
over compact subsets of the disc |JC| < R, and thus uniformly over compact sub-
sets of the open unit disc, to a function Yj=o^jxi which coincides with £/(;*:) for
0 ^ x < 1 and thus defines U(x) for all \x\ < 1. It is clear that fij 2: 0. Equation
(3) follows from the uniform convergence.

From equation (4) we have

(l + l/nyB(x)Dn(A(x)) = Dn+l(x)

and this implies equation (2), thus completing the proof.
Equation (3) clearly demonstrates the absence of the geometric ergodicity

property; compare with the situation when a ¥= 1 in Pakes [7].
Theorem 1 allows us to write

(8) P\"\x) = n-'[U(x) + r{">(x)] (0 ^ x < 1; n = 1, 2, • • •)

where r\n)(x) = o(l) (n -> oo). We can obtain some information on the asymptotic
form of rJB)(x). Equation 1, theorem 1 and the fact that 1 -An(x) ~ n/y (Kesten
etal. [5]) shows that rf + Y(P^\x)-P\n\x)) = iU(x)(\ H{"\x))ly where ^(x) =
o(l) (n -> oo). This yields

Pf\x) = n-a(U(x) + r
(
o
n\x))-iU(x)n-"-1(l+^)(x))ly.

We shall now show that, in general, n~°r(
0"\x) tends to zero much less rapidly than

does n~"~l. This is evident from the following:
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COROLLARY. If we assume that B"(l-), Aiv(l-) < oo then

rg°(*) = -(QV(x) log n) n + 0(1 fn)
where

Q = P(y2-A'"(l-)/6)y3.

PROOF. From theorem 1 we have

r<o
n>(x) = Dn(x)(l- fl(l + l/myB(Am(x))).

m = n

Now

(9) Vn(x) = 1 - f [ (1 +1 mfB(Am(x) = £ (1 - dm(x)) + Wn(x)
m=n m=n

where Wn(x) is an error term which will be examined subsequently. The proof of
theorem 1 and the finiteness of B"(\ — ) show that

Since ^'"(1—) < oo it follows from lemma 10.1 and case c of the proof of theorem
11.1 in Harris [3] that

(10) \-dm{x) = -Q[log(l+my(l-x))]/m2+0(l/m2) (0 ^ x < 1).

If m is sufficiently large, then [log(l +am)]/m2 (0 < a < oo) becomes monotone
non-increasing and so

[log(1 +ay)-]ly2dy ^ £ [log(l+am)]/m2 ^
m = /i

for « sufficiently large. This shows, after some manipulation, that

£ (l-dm(x))= -(log n)/n +0(1/«).

Equation (10) shows that for Q ^ 0 and m sufficiently large, 1—rfm(x) is
either positive or negative, the sign being determined by that of Q. Use of the ap-
propriate one of the inequalities

CO CO 00 00 00

i ̂ B in= n m = n m=n tn= n

00 00 00 CO CO 00

y y / v1 Y ^2/2n i. V Y \ < 1 ]~T (\ Y ̂  < V Y -\-( V r2V2
m=n m—n

where 0 < ]lm = n(l --^m) < oo, shows that Wn{x) = 0(l/«).
If Q = 0, then applying the last two inequalities to the bounds of 1 — dm(x)

implied by (10) proves the corollary directly. This completes the proof.
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Observe that this corollary gives the rate at which n"P[n)(x) approaches U(x).
We now briefly examine the asymptotic behaviour of the invariant measure.

THEOREM 2. If the conditions of theorem 1 are satisfied, then

tfij-j'Ma + l) ( ; - o o )
i = 0

where T(-) is the Gamma function.

PROOF. From theorem 1 we have

(11) U(x) = B(x)f[(l + llmyB(Am(x)) (0 ^ x < 1).
m = l

Following Kesten et al. [5] we consider

U(An(0)) = B(An(0)) f [ (1 + llmYB(Am+n(0))
m = l

ft
= n+1

The convergence of the infinite product (11) implies that the second product in the
last expression -• 1 (n -> oo) thus giving

U(An(0) ~ (n

Since U(x) is monotone on 0 g x ^ 1, we have

£ / ( x ) ~ ( l - x ) - f f ( x f l )

and the theorem now follows from Karamata's theorem (Feller [2]).

3. Asymptotic properties of the Green's functions

We define the Green's functions by

(12) Gy = £ / # > ( U = 0 .1 , - - - )
n=0

where, by equation (3), the series converges if a > 1. In this section we shall
obtain some information on the behaviour of Gti when i is fixed and j -> oo and
when j is fixed and / -> oo. We turn now to the first case, the approach being
similar to that used in the proof of theorem 2.

THEOREM 3. If a > 1 and the conditions of theorem 1 are fulfilled then
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PROOF. Equation (12) yields

(13) G,(x) = J GijX
J = £ P<n)(x) (i = 0, 1, • • •; 0 ̂  x < 1).

j = 0 n = 0

which implies, on using (1),

Since rfp^ -* fi0 > 0 (n ->• oo; i = 0, 1, • • •), then for each e > 0 there exists
M(e) such that

(14) (l-e)(ml(m + n)y < p%+m)IP^ < (l+s)(ml(m + n)y

(m > M(e); n = 0, 1, • • •)•

Observing that the terms of the series YJ?=o{m + n)" a r e monotone decreasing,
comparison with ^(x + m)~adx eventually yields

1-e ^ (a-\)GlAm{0))lm ^ (1 +e)(m/(m- l)f < (l+ef

when m > max (M(B), 1 + 1/e). Thus C?,(^m(0)) ~ mj{a-\) and since (?,(*) is
monotone on 0 <L x < 1,

Gt(x) ~ l/(a-l)(l-x) ( j c f l )

and the theorem now follows on applying Karamata's theorem.
In considering the behaviour of Gtj for large i, we need the following result

generalising lemma 1 of [5] (which was stated without proof).

LEMMA 2. If 0 < an < 1, an ~ c/n and f}n ~ bn~" where 0 < b, c < oo and

a > 1, then

lim fa-oO'i'-'ft^^-TOT-l).
i-*oo n = l

PROOF. For each e > 0 we have

(15) (b-E)n-° ^ PnS (b + e)n-° (n ̂  N = N(e))

so that

The expression in curly brackets on the left and right hand side of this inequality
tends to JJ x'"e~c/xdx = c1 ~T{a — 1) and since e is arbitrary we have

(16) lim £ i'-lpne-ic/n = bcl-ar(a-l)
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Thus it suffices to show that

lim £ (e-'c'"-(l-<OV~1A. = 0.
i->oo n= 1

For each e > 0 there exists M = A/(e) such that both (15) and

(17) 0 < 1—(1 +e)c/« ^ l - a n ^ l-(l-e)c/n

hold for n 2: M. The last inequality gives

e - i c / " - ( l - a n y ^ [ e - ^ - a - a + e ' ^ 1 *

^ (ec 2

where J is a positive constant. Thus we obtain

lim sup £0Ti c /"-(l-«„)'>"-'/?„
i~* oo n = 1

lim £ (scln-c2l2n2)e-ic'"(ilny
i-*<x> n =M

But since e is arbitrary the limit superior is non-positive. Similarly, use of the left
hand sides of (15) and (17) shows that the limit inferior is non-negative, thus
completing the proof.

THEOREM 4. Let the conditions of theorem 1 be satisfied and let a > 1. Then
for each 0 ^ x < 1,

(18) Gt(x) ~ (y/iy-'ria- l)U(x) (i -> oo),

and for each j = 0, 1, • • •,

(19) Gu-iy/iy-'no-lfrj (i-oo).

PROOF. Recalling that ^ n ) ( x ) ~ n~"U(x) and that An(x) = l - a n where
an ~ l/(«y) we see, using equation (1), that lemma 2 can be applied to equation
(13) thus yielding (18).

Setting x = 0 in (18) gives (19) when j = 0 and this yields Gi(x)/Gi0 -*
U(x)Jn0 (i -> oo). Recalling that /i0 > 0,

Gi;/Gi0 S x-JGiWIGn < M < oo.

This enables us to apply the dominated convergence theorem to the series
Gi(y)/Gio w i t n ° = J < x a n d obtain Gij/Gi0 -»• /i;//i0 and this implies (19).
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4. A limit theorem for the total number of individuals

Let Yn = Yjn=o%m De the total number of individuals that have existed up to
and including the n-th generation in our Galton-Watson process with immigra-
tion. Assuming Xo = i, it is not difficult to show that

(20) Q\'\x) = £(xy") = (ffffi
m = 0

where gn(x) is the generating function of the total number of individuals up to
and including the n-th generation that are descended from a single anscestor (and
including this individual) in the zero-th generation of an ordinary Galton-Watson
process. It is well known that

(21) gn + 1(x) = xA(gn(x)), go(x) = x (n = 0, 1, • • •)

and that if a ^ 1,

(22) gn{x) i g(x) = xA(g(x)) (n -+ oo)

where g(x) generates an honest probability distribution; see [3] p. 32. (Monotone
convergence is not proven in [3], however see equation (32) below).

To see that (20) is true, consider a sequence {^n}J, of independent Galton-
Watson processes having an offspring distribution generated by A(x) and initial
distributions generated by x* when n = 0, and B{x) when n = 1, 2, • • •. Defining
yn> m to be the total number of individuals that have existed up to and including
the w-th generation of 88n, it is clear that

(23) Yn = £ ym,n_m
m = 0

and this is equivalent to (20).
Logarithmic differentiation of (20) and use of (21) yields

E(Yn) i(n + l) + fSn(n+l)/2,

which suggests considering the convergence of YJn2 in some sense.

THEOREM 5. Under the assumptions made in section 1, the random variable
YJn2 converges weakly to a random variable Y whose distribution is defined by
the Laplace-Stieltjes transform

(24) E(e-eY) = [ssch(yd)iY.

REMARKS. When a = 1, the distribution denned by (24) arises in the context
of first passage time distributions for the Wiener-Levy process, see for example
Bharucha-Reid [1 ] p. 152. It is clear from (23) that Y is the weak limit of a system
of infinitesimal random variables and, as such, it has an infinitely divisible distribu-
tion. The Kolmogorov canonical representation of the characteristic function of
Y is given by
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i/fr/2 + ff f X(eiu'-l-iut)e2(0, eimh)j{2u)du
Jo

where 02(", •) is the second theta function; the example on p. 534 of [2] is relevant
to the derivation of this result.

We now obtain two results which are needed for the proof of theorem 5.

LEMMA 3. Let u = u(x) = xA'(g{x)). Then,

*-*(*) ~[(1-*)/?]*
and

l -n (x )~2[y( l -* ) ]* , (x f l ) .

PROOF. Using a four term Taylor expansion of the right hand side of (22) we
have

1— x l—x 6

But g{x) f l(x f 1) and so the first part of the lemma follows. The second part
follows from

1 -A'(g{x)) = 2y(l -g{x))-A"{Q{\ -g(x)2/2 (g(x) < C < 1).

LEMMA 4. Let 9n = e~e/"2 (6 > 0) and let cj>(x) -» 1 as x | 1. Then

(25) lim (1 -u(6,)) "Z rt'-frW1 = -log
2

PROOF. By hypothesis we have

and using the second part of lemma 3 it is easily seen that

(27) 1— u(9n) = 2(y9)i/n + rjn, rn = o(l) (n -» oo).

Writing 5 — 2(y9)i and nm,n = (\-5lnf, it is not difficult to show that

,__,. (l)(9n)(u(9n))
m exp( — 8mjn) ,

l+W(«(flOr" l+exp (-5m/«) =|IJ"'""0

+ KI + I
Observing that (27) is equivalent to w(0n) = t]lin — rjn, we have

Noting that e"d/n = //1(II + uB where |»B| ^ <5/2n2, yields

|exp ( — dmjn) — r\m n| ^ bm\2n2.

Summing (28) from m = 0 to m = n — 1, and using the last two estimates proves
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the equality of the left hand side of (25) (if it exists) and

5 "~l exp(-Smln)
n-oo n m=i l + e x p ( — Sm/n)

However this limit does exist and is clearly equal to

Jo
,5

Jo
thus completing the proof.

PROOF OF THEOREM 5. Recalling that 9n = e~fl/"2 we have

E(cxp(-6YJn2)) = Q<?\9n)

and gn(9n) -» 1 (« -* oo), and so it suffices to consider the case i = 0. We have

(29) l o g Q ^ J = - " S ( i -% m (^)) ) -"E R»,M
m=0 m=0

where

^ fl -B(g{en))}{\ -B(gm(0n))l/B(g(6n)).

If the first sum in (29) is bounded as n -*• oo, then the second sum, denoted by
R[n)(0), tends to zero.

Using the expansion B(x) = 1 — J?(l — JC) + (1 — x)r{x), where r(x) is monotone
non-increasing on [0, 1 ] and r{x) [ 0 as x ] 1, we obtain

(30) loge
m =

where

o ^ R(
2"\d) =

m = 0

and the last quantity is o(l) if the sum in (30) remains bounded as n -> oo. Putting
the sum in (30) into the form

m~0 m=0 m=0

and using the first half of lemma 3 we see that the limit of the first expression on
the right hand side of (31) equals — (0/y)*. Thus we need only find the limit of the
second sum on the right hand side of (31). We shall do this by obtaining upper and
lower bounds for gn(x)—g(x) which will enable us to invoke lemma 4. Our ap-
proach is based on that of Seneta [8].
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Equation (21) and the mean value theorem yields, for 0 ^ x < 1

(32) 0 < gn+1(x)-g(x) = x(gn(x)-g(x))A'(rin)

(n = 0, 1, • • •; g(x) < r\n < gn{x)).

The left hand inequality is clearly true for n = 0, and so for all n, by induction.
The same argument shows that gn+l(x) ^ gn(x)(0 ^ x :g 1) and thus if we let h
be a fixed non-negative integer and write bn = l/(gn(x)—g(x)), then the following
inequality obtains for 0 :g h ^ n,

(33) u = xA'{g(x) ^ bjbn+1 ^ xA'(gh(x)).

Moreover,

where g(x) < 5n < gn(x), and this yields

bn xA"{5n) bn+l
1 + 1

u 2u

Noting that A"(g(x)) < A"(5n) ^ A"{gn{x)) ^ A"(gh(x)), and combining the
last equation with (33) finally yields

K _ xA"(gh(x)) < b + i < K _ A"{g{x))

u 2u2 " + 1 ~ u 2uA'(gh(x))'

Proceeding us in [8], we iterate this inequality and invert the result to obtain
finally,

(34)

< 2u(l-u) _ TU"
= xA"{gh{x))'

where

, xA"(g(x))
2u{\-u)bh-xA"{gh{x))

We now take h = 0. Using lemma 3, it is clear that (j)(x), T(X) -> l(x f 1), and so
lemma 4 is applicable and we obtain

lim X (
n->oo m = 0

= - - log
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Thus our boundedness requirements are satisfied and the error terms in equation
(30) are o(l). The theorem now follows on applying the continuity theorem for
Laplace-Stieltjes transforms; see Feller [2].

5. The rate of convergence of gH(x)

We shall briefly look at the rate at which gn{x) -* g(x) in a non-supercritical
Galton-Watson process, that is, a <; 1. Iteration of equation (32) gives

gn(x)-g(x) = ( x - # p ' W ^ (x-g(x))(axT
m = 0

which yields

(35) u-%n(x)-3(x)) = (x-g(x))fi [1 -x(A'(g(x))-A'(r,m))lu-].
m = 0

The left hand side of this equation will have a limit iff the series Xm=o( '̂('7m)
—A'{g(x))) is convergent. We have

0 g A'{t,m)-A'(g(x)) ^ A'(gm(x))-A'(g(x))

S (gm{x)-g{x))A'\gm{x))

S (x-g(x))(ax)mA"{gm{x)).

Thus, even if A"{\ - ) = oo, the series converges for 0 ^ x ^ 1 and uniformly so
on 0 ^ JC ̂  a < 1. If A"(\ —) < oo then the convergence is uniform on [0, 1].
The same applies to the limit of the product in equation (35), and so we have

\im{xA'(g(x)))-\gn(x)-g{x)) = G(x)

where G(x) is continuous and non-negative for 0 ^ x < 1. Equation (34) yields
bounds for G(x) namely

24>{x)A'(gh{x))(\-u) < ^ 2r(x)u(l-u)

u"A"(g(x)) ~ xuhA"(gh(x))'
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