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Abstract

We consider the Brocard–Ramanujan type Diophantine equation y2 = x! + A and ask about values of
A ∈ Z for which there are at least three solutions in the positive integers. In particular, we prove that the
set A consisting of integers with this property is infinite. In fact we construct a two-parameter family of
integers contained inA. We also give some computational results related to this equation.
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1. Introduction

One among many classical problems in Diophantine equations is a question posed by
Brocard in [4, 5]. He asked about the characterisation of all integer solutions of the
Diophantine equation

y2 = n! + 1.

The same question was posed by Ramanujan in [13]. It is well known that (n, y) =

(4, 5), (5, 11), (7, 71) are solutions of this equation and that there are no additional
solutions with n ≤ 109; this was proved by Berndt and Galway [2]. Under the
assumption of the weak Szpiro conjecture, Overholt [12] proved that there are only
finitely many solutions. Let us recall that the Szpiro conjecture says that there exists a
constant s > 0 such that, for any triple of positive integers a, b, c with a + b = c,

c ≤ N(abc)s,

where for a given integer m we have N(m) =
∏

p|m p, p prime. The number N(m)
is called the radical of the integer m and is just the product of primes dividing m
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taken without repetition. Overholt’s result was generalised by Dąbrowski [6], who
considered the equation

y2 = x! + A, A ∈ N. (1.1)

He proved unconditionally that if A is not a square then (1.1) has only finitely many
solutions. The same result holds for values of A which are squares provided that the
Szpiro conjecture is true. Some variants on (1.1) were considered by Dąbrowski [7],
Kihel and Luca [9] and Kihel et al. [10].

One can also consult the paper of Berend and Harmse [1] and the section D25 in
Guy [8].

In the papers of Togbé [14, 15] one can also find an interesting discussion related
to (1.1). He proved that the system of equations

y2 = x1! + 4k + 7, y2 = x2! + 4k + 6, y2 = x3! + 4k + 2,

has exactly one solution in integers x1, x2, x3, y provided that k + 2 is a square, say u2,
and then x1 = 0 or 1, x2 = 2, x3 = 3 and y = 2u. He also noted that, for A = 1 and
A = 505, (1.1) has at least three solutions in positive integers. As an open question he
stated the following: Can we find another value of A such that (1.1) has at least three
solutions?

The aim of this note is to give some computational and theoretical results devoted
to (1.1). In particular, in Section 2 we prove that there are infinitely many positive
integers A such that (1.1) has at least three solutions in the integers. We also state
some open questions and conjectures which arose during our research. In Section 3
we give some results on variants of (1.1).

2. Results

In [14] it is shown that for A = 505 the Diophantine equation (1.1) has at least three
solutions in integers. The question whether there exist other integers with this property
is raised. From the work of Dąbrowski we know that in this case we necessarily have
A ≡ 0, 1 (mod 4) [6, Remark 1]. Because it is unclear what we can expect we decided
to run a computer search for solutions of (1.1). To do this, a simple script was written
in Magma [3]. Let us define the set

A := {A ∈ N : there are at least three solutions of the equation y2 = x! + A}.

In Table 1 we tabulate values of A ≤ 1010 for which A ∈ A and the solutions for x
satisfying the condition 1 ≤ x ≤ 40.

In the ranges considered we found 11 elements of the set A. The large number
of required As convinced us that we can expect that the set A is infinite. Let us also
note that for any given A from Table 1 which is not a square, that is, A , 1, 11664, the
presented set of solutions in x of (1.1) is the complete set. Indeed, from the work of
Dąbrowski, as was noted in [2], we know that in this case each solution in x of (1.1)

https://doi.org/10.1017/S0004972712000512 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000512


[3] On the Diophantine equation y2 = x! + A 379

T 1. Solutions of y2 = x! + A with A ≤ 1010 and x ≤ 40.

A x A x A x

1 4, 5, 7 29905 4, 6, 8 10806084 9, 11, 14
505 4, 5, 6 172201 4, 7, 8 119145744 9, 11, 15
2529 6, 7, 8 399249 8, 9, 10 226621476 9, 10, 11
11664 8, 9, 10 1608336 8, 9, 11

is less than the smallest prime p for which the Legendre symbol (A/p) = −1. In each
case of A from Table 1 we get that x ≤ 19.

Although we know that for any given nonsquare A there are only finitely many
solutions of (1.1) and for relatively small A we can find them very quickly, it is a
nontrivial task to find more elements of A. To show that A is infinite we start with a
simple preparatory observation.

L 2.1. Let a, b, u ∈ N be given and suppose that 4u | a! and a < b. Then there
exist positive integers y, A such that

y2 = a! + A, (y + 2u)2 = b! + A. (2.1)

P. To prove the lemma it is enough to note that (2.1) is equivalent to the following
system:

4uy + 4u2 = b! − a!, y2 = a! + A.

We have replaced the first equation in (2.1) by its difference with respect to the second
equation. In this form the above system can easily be solved with respect to y and A.
We thus get

y =
1
4u

(b! − a!) − u, A =
1

16u2
(b! − a!)2 −

1
2

(b! + a!) + u2.

From the assumption 4u | a! and a < b we deduce that y, A are integers and the proof
is complete. �

R 2.2. We note that for given u ∈ N+ it is enough to assume that a ≥ 4u and then
we clearly have 4u | a!.

Lemma 2.1 shows that there are infinitely many positive integers A such that
y2 = x! + A has at least two solutions. A slightly different result of this type was also
noted in [11]. Now we are ready to prove the following result.

T 2.3. Let a, u ∈ N be given and suppose that a ≥ 4u + 2. Then there exist
A, b, c ∈ N with a < b < c such that

a! + A = �, b! + A = �, c! + A = �.
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P. Let us fix a positive integer u and let us suppose that a ≥ 4u. Then it is enough
to take

b =
1

4u2
a! − 1, c = b + 1 =

1
4u2

a!, A =
1

16u2
(b! − a!)2 −

1
2

(b! + a!) + u2. (2.2)

We then get

a! + A =

(
1
4u

(b! − a!) − u

)2

,

b! + A =

(
1
4u

(b! − a!) + u

)2

,

c! + A =

(
1
4u

(b! − a!) + (2b + 1)u
)2

.

From Lemma 2.1 we know that the first and second equations are satisfied for all
u, a, b ∈ N with 4u ≤ a < b. We thus see that in order to complete the proof we need to
check the last equality for a ≥ 4u + 2 and b, c given by (2.2). Let us put

D = (b + 1)! + A −

(
1

4u
(b! − a!) + (2b + 1)u

)2

.

Expanding the expression for D and simplifying, D = b(a! − 4u2(b + 1)). From our
assumption we know that b = (1/4u2)a! − 1. This equality immediately implies that
a! − 4u2(b + 1) = 0 and so D = 0. This equality implies the third equality above. �

R 2.4. Note that for u = 1 it is enough to assume that a ≥ 4. If u = 1 then we
take a = 4 and get b = 5. This gives A = 505 with solutions at x = 4, 5, 6. For the next
value of a, that is, a = 5, we get b = 29 and the value of A is

A = 4886047197121241831575642137408516548543712516920573952000841,

which has 61 digits with solutions at x = 5, 29, 30.

C 2.5. The system of Diophantine equations

y2
1 − x1! = y2

2 − x2! = y2
3 − x3!

has infinitely many solutions in the integers xi, yi, i = 1, 2, 3.

Because we were unable to find a value of A ∈ Z for which y2 = x! + A has at least
four solutions we state a natural question.

Q 2.6. Does there exist an integer A such that y2 = x! + A has at least four
solutions in positive integers?
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R 2.7. It would also be interesting to study the Diophantine equation

y2 = A − x!,

which clearly has only finitely many solutions in integers. One can easily prove that
there exist infinitely many As such that the above equation has at least two integer
solutions. We also found some instances of A ≤ 1010 for which there exist at least
three solutions:

A = 145, x = 1, 4, 5, A = 46249, x = 4, 7, 8,
A = 63121, x = 5, 7, 8, A = 4291662, x = 8, 10, 11.

We believe that the following conjecture is true.

C 2.8. The set

A′ = {A ∈ Z : the equation y2 = A − x! has at least three solutions}

is infinite.

The next interesting case of (1.1) is the case when the value of A is a square.
From the work of Dąbrowski we know that under the assumption of the weak Szpiro
conjecture (1.1) has only finitely many solutions. A natural question arises whether it
is possible to construct integers A such that A is square and (1.1) has ‘many’ solutions
in integers. We used a computer search to find such values of A. In Table 2 we tabulate
all values of a ∈ N for which there exist at least two positive integer solutions of (1.1),
where A = a2, and at least one solution satisfies the condition 1 ≤ x ≤ 35.

To find entries in Table 2 we proceeded as follows. For given x ≤ 35 we computed
the set

D(x) := {d ∈ N : d | x!},

which is just the set of divisors of x!. We thus know that for any given d ∈ D(x)
such that a = 1

2 (d − (x!/d)) is an integer (we can assume that this number is positive)
there exists y ∈ N such that y2 = x! + A, where A = a2. This follows from the fact that
if y2 = x! + a2 then y − a and y + a are divisors of x!, so for some d ∈ D(x) we have
y − a = d, y + a = x!/d and we obtain

y =
1
2

(
d +

x!
d

)
, a =

1
2

(
d −

x!
d

)
.

We denote by P(x) the set of positive integers of the form 1
2 (d − (x!/d)), where

d ∈ D(x). We thus see that if a ∈ P(x) then (1.1) with A = a2 has at least one solution in
integers. Moreover, the set P(x)2, that is, the set of square values of elements of P(x),
contains all possible values of A such y2 = x! + A has a solution (here x is fixed).

To find two solutions for given A = a2 we looked for further solutions up to x ≤ 50.
As the result of our search we found the values of a presented in Table 2 together
with solutions in x. All the computations were performed by Magma. From the table
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T 2. Values of a such that y2 = x! + a2 has at least two solutions and the smaller solution for x is at
most 35.

a x a x a x

1 4, 5, 7 35280 14, 15 271106640 17, 19
108 8, 9, 10 36576 12, 13 4409475840 22, 23
179 6, 8 48024 12, 13 7935621120 19, 21
204 7, 9 81720 12, 14 18641145600 22, 23
288 12, 13 267120 14, 15 561589459200 24, 27
508 9, 12 851040 16, 18 1143137318400 25, 27
828 8, 11 1060920 14, 15 2094434496000 24, 25
996 9, 11 1068480 16, 17 4693095288000 21, 24
1140 10, 11 2152080 14, 16 11579564304000 25, 27
2934 11, 13 4800160 16, 17 52250931532800 27, 29
3060 11, 15 25744320 16, 17 148245349824000 27, 30
11040 11, 13 29306592 16, 17 868006971127296000 32, 33
22640 10, 15 88361280 18, 19 144169160495044608000 35, 37
27360 11, 13 239499435 15, 18 507404900179457280000 35, 38

we can also deduce that if we want to find a such that y2 = x! + a2 has at least two
solutions and one among them is relatively big then we should expect that a will be
big too.

It is clear that this method allows us to find all A = a2 such that (1.1) has at least
one solution with x ≤C where C is a given constant. However, the computation of the
sets D(x) and P(x) is time- and memory-consuming and the question arises whether it
can be done faster. We encourage readers with more computational skills to improve
the method presented or find a new one.

For all A = a2, where a is given in Table 2, we looked for a third (or a fourth when
a = 1 or 108) solution of y2 = x! + A in the range x ≤ 104 using the approach in Berndt
and Galway [2] in the search for solutions of y2 = x! + 1 with x ≤ 109. For any given
value of x and A = a2 we computed the value of the Legendre symbol(

x! + A
p

)
for each p ∈ S , where S is the set of 15 first primes which are greater than the square of
the last entry for a in Table 2. For a given prime p, the computations were performed
modulo p. If x was found such that, for each p ∈ S , (x! + A)/p) ∈ {0, 1} then we tested
such x for the next 15 primes. Unfortunately, in each case of A from Table 2 we did
not find any additional solution with x ≤ 104.

A very interesting question arises whether it can be proved that there are infinitely
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many a ∈ N such that y2 = x! + A, where A = a2, has at least two solutions in integers.
We believe that this can be done and we decided to state the following conjecture.

C 2.9. The set

B = {A ∈ N2 : the equation y2 = x! + A has at least two solutions}

is infinite.

One can also ask the following question.

Q 2.10. Does there exist an integer a > 108 such that (1.1) with A = a2 has at
least three solutions?

We could not find any value of A such that A is negative with −A ≤ 1010 and
y2 = x! + A has at least three solutions with x ≤ 50. In fact, in the ranges considered
there are only 204 values of A for which there exist at least two solutions of y2 = x! + A.
Moreover, for any given A we looked for a third solution in the range x ≤ 104. We
found no additional solution. In light of these computations it is natural to ask the
following question.

Q 2.11. Does there exist a negative integer A such that y2 = x! + A has at least
three solutions in integers?

3. A few remarks on related Diophantine equations

In this section we give some remarks on two Diophantine equations which are
similar to y2 = x! + A. First we are interested in the following equation

y2 = x!! + A, (3.1)

where x!! is called the double factorial, defined by

(2x)!! = 2 · 4 · · · · · (2x − 2) · (2x), (2x + 1)!! = 1 · 3 · · · · · (2x − 1) · (2x + 1).

One can easily verify that

(2x)!! = 2xx!, (2x + 1)!! =
(2x + 1)!

2xx!
.

Let us recall that the Hall conjecture asserts that for every ε > 0, there exists a
constant C(ε), depending only on ε, such that if X, Y and k are nonzero integers
satisfying Y2 = X3 + k, then

max{|X|3, Y2} ≤C(ε)|k|6+ε .

We are now ready to prove the following result.
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T 3.1. If A ∈ Z is not a square then (3.1) has only finitely many solutions in
integers. If A is a square then, provided the Hall conjecture is true, (3.1) has only
finitely many solutions in integers.

P. If A is not a square then there exists a smallest prime p such that (A/p) = −1.
This immediately implies that if x > 2p then (3.1) is insolvable modulo p.

To prove the second statement of the theorem we consider two cases: x even and
x odd. Because the proof is essentially the same in both cases we present the details
only for the case of x even. We thus assume that x is even, say x = 2n, and let d
and z be the two integers with d cube-free such that x!! = (2n)!! = 2nn! = dz3. From
the well-known Chebyshev bound for the product of primes less than n,

d ≤
( ∏

p<n,p prime

p
)2

< 42n.

Equation (3.1) gives
y2 = dz3 + A,

and thus
Y2 = X3 + d2A,

where X = dz and Y = dy. Taking ε = 1 in the Hall conjecture,

d22nn! = d3z3 = X3 ≤C(1)|d2A|7.

To complete the proof, we note that (n/2)n/2 < n! and thus(n
2

)n/2
2n < 2nn! ≤C(1)|d|12|A|7 ≤C(1)424n|A|7.

Finally, we obtain ( n
295

)n/2
≤C(1)|A|7,

which immediately implies that n is bounded. �

We performed a numerical search to find As such that (3.1) has at least three
solutions in integers. The results of our computations in the range 0 < A ≤ 1010 and
x ≤ 50 are presented in Table 3.

We now prove that the set

A′ := {A ∈ N : there are at least three solutions of the equation y2 = x!! + A}

is infinite. More precisely, we have the following result.

T 3.2. Let a ∈ N≥3. Then there exist A, b, c ∈ N with a < b < c such that

(2a)!! + A = �, (2b)!! + A = �, (2c)!! + A = �.
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T 3. Solutions of y2 = x!! + A with A ≤ 1010 and x ≤ 50.

A x A x A x

1 3, 4, 5, 6 72256 7, 12, 16 47195136 16, 18, 20
16 6, 7, 8, 9 896761 6, 10, 12 84584704 7, 14, 20
241 5, 6, 8 1738816 9, 12, 14 290492416 16, 18, 20
736 6, 7, 9 2968681 6, 11, 14 313102336 12, 16, 18
9616 8, 10, 12 3102976 14, 16, 18 450553104 16, 17, 20
20736 14, 15, 16 3322944 14, 15, 18 604265104 15, 17, 18
53776 6, 12, 14 6194176 9, 16, 18 2120510016 14, 15, 18
55224 1, 9, 15 25049641 8, 11, 14

P. It is clear that we consider y2 = 2xx! + A. We start with the easy observation
that for 3 ≤ a < b and

A = 1
16 (2bb! − 2aa!)2 − 1

2 (2bb! + 2aa!) + 1,

we have y2 = 2aa! + A, (y + 2)2 = 2bb! + A with y = 1
4 (2bb! − 2aa!). To complete the

proof we take b = 2a−3a! − 1 and c = b + 1 = 2a−3a!. We show that

2b+1(b + 1)! + A = (y + 4b + 3)2.

Let us put
D = 2b+1(b + 1)! + A − ( 1

4 (2bb! − 2aa!) + 4b + 3)2.

Expanding the expression for D and simplifying,

D = 8(2b + 1)(2a−3a! − b − 1).

From our assumption we know that b = 2a−3a! − 1. This equality immediately implies
that 2a−3a! − b − 1 = 0 and so D = 0. Our theorem is proved. �

R 3.3. We can also ask whether similar results can be proved for the more
general Diophantine equation y2 = Btxx! + A, where A ∈ Z and B, t ∈ N are given. In a
forthcoming paper (‘Variations on the Brocard–Ramanujan equation’) we investigate
this and even more general equations and get some new results.

We also performed some numerical calculations related to (3.1) with A square, say
A = a2. Using the same approach as in the case of y2 = x! + A, we obtained the results
in Table 4. We looked for solutions with x ≤ 58.

In the light of the results of our computations we believe that the following
conjecture is true.

C 3.4. The set

B′ = {A ∈ N2 : the equation y2 = x!! + A has at least two solutions}

is infinite.
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T 4. Values of a such that y2 = x!! + a2 has at least two solutions and the smaller solution for x is at
most 58.

a x a x a x

4 6, 7, 8, 9 22500 15, 25 882155520 30, 32
16 7, 10 25968 15, 18 905354240 28, 32
24 9, 12 34560 17, 22 977577984 30, 33
29 8, 11 40316 14, 20 1130250240 34, 36
64 9, 12 75648 20, 24 1659248640 32, 34
88 12, 14 92132 15, 16 8072904960 31, 36
144 14, 15, 16 114432 22, 26 32799621120 36, 40
192 12, 18 238080 20, 24 46800875520 34, 36
2592 16, 17 910080 24, 26 70258089825 35, 37
3264 15, 18 1363200 23, 24 2355255705600 40, 42
5704 15, 18 1898496 24, 28 4609934622720 42, 44
5724 16, 17 3048000 25, 26 2453155268788224000 56, 60
9600 15, 22 4113216 25, 26 47793515557552128000 58, 60
13248 16, 18 82122240 28, 30

Moreover, one can ask the following question.

Q 3.5. Does there exist an integer a > 4 such that (3.1) has at least four
solutions in integers? Does there exist an integer a > 144 such that (3.1) has at least
three solutions in integers?

The next equation, which is more or less a natural variant of (1.1), is

y2 = Px + A where Px =

x∏
i=1

pi, (3.2)

where pi is the ith prime. The number Px is called the xth primordial number.
Primordial numbers were used originally by Euclid in the proof of the infinitude of
the set of prime numbers. We prove the following easy result.

T 3.6. If A ∈ Z is not a square then the Diophantine equation (3.2) has only
finitely many solutions in integers. If A is a square then (3.2) has no solutions in
integers.

P. If A is not a square then there exists a smallest prime p such that (A/p) = −1.
This immediately implies that if px > p then (3.2) cannot be solved modulo p.

In the case where A is square, say A = a2, equation (3.2) can be rewritten as
(y − a)(y + a) = Px. We know that 2 ‖ Px for each x ∈ N+, which implies that the
numbers y − a and y + a are even (because they are of the same parity) which
immediately implies that 4 | Px. This is clearly impossible. �
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T 5. Primitive solutions of y2 = Lx + A with −109 ≤ A ≤ 109 and x ≤ 100.

A x A x

109 4, 5, 7 300609 11, 13, 17
184 4, 8, 9 5539284 16, 17, 19
841 8, 11, 13 14850196 16, 17, 23
3256 8, 9, 11 126044689 8, 13, 19
42424 4, 8, 9 639937204 17, 19, 23

We performed a small numerical search for the solutions of (3.2) with −109 <
A ≤ 109 and x ≤ 50. We found only one positive A such that (3.2) has at least three
solutions. For A = 190 we found solutions for x = 2, 4, 5. For A negative we found
A = −2141 with solutions for x = 5, 6, 7. However, we can easily show that there
are infinitely many integers A (positive and negative) such that (3.2) has at least two
solutions. This leads us to the following question.

Q 3.7. Does there exist an integer A > 190 such that (3.2) has at lest three
solutions in integers? Does there exist an integer A < −2141 such that (3.2) has at
least three solutions in integers?

Finally, we state the following provocative conjecture.

C 3.8. There exists a constant C independent of A such that y2 = Px + A has
no more than C solutions in integers.

R 3.9. Just for fun, we also looked for instances of A such that

y2 =

(
2x
x

)
+ A, (3.3)

and
y2 = Lx + A, (3.4)

where Lx = lcm(1, 2, . . . , x − 1, x) has at least three solutions in positive integers.
In the range −109 < A ≤ 109 we found only three values of A such that (3.3) has at

least three solutions with x ≤ 50. These values and solutions for x are as follows:

A = 1192, x = 5, 6, 7; A = 50605, x = 3, 6, 9; A = 3456168, x = 7, 11, 12.

It would be interesting to construct infinitely many As such that (3.3) has at least three
solutions in integers. We believe that this should be relatively easy.

In the case of (3.4) we are interested only in primitive solutions, that is, solutions
x1, . . . , xk such that Lxi , Lx j for i , j. Indeed, there exist different positive integers
a, b such that La = Lb. For example L5 = L6 = 60. In Table 5 we present the results
of our search for primitive solutions of (3.4) with −109 ≤ A ≤ 109 and x ≤ 100.
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We found only one negative A in this range with the required property, namely,
A = −164 with solutions at x = 7, 8, 11. We note that in the range x ≤ 100 there are
36 essentially different values of the function Lx.

We expect the existence of infinitely many As such that (3.4) has at least three
primitive solutions. However, we think that the proof of this fact may be difficult.
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