ON A PAPER OF G. MASON

BY SHALOM FEIGELSTOCK

Mason, [1, Theorem 2.6], proved that for any near-ring R, there are no non-trivial injective R-modules. In his proof he embedded R into a simple R-module G of arbitrarily high cardinality. Assuming the existence of an injective R-module $I \neq 0$, he chose an arbitrary element $x \in I$, $x \neq 0$, mapped $R \rightarrow I$ via the R-homomorphism $r \mapsto rx$, and extended this map to a homomorphism $G \rightarrow I$. Since G is simple this would mean that I contains a submodule of arbitrarily high cardinality, a contradiction. The above argument falls apart if rx = 0 for all $r \in R$. In this case the extended homomorphism from G to I might be the map $g \mapsto 0$ for all $g \in G$. If there exist $r \in R$, $x \in I$ with $rx \neq 0$, then Mason's argument remains valid, except for the fact that the choice of $x \in I$, $x \neq 0$ is not arbitrary. Suppose that rx = 0 for all $r \in R$, $x \in I$. Employing the remarks preceding [1, Theorem 2.6] embed (I, +) into a simple group H with #H > #I, (# signifying the cardinality of the underlying set). The composition rh = 0 for all $r \in R$, $h \in H$ defines an *R*-module structure on *H* with *I* a submodule of H. Extend the identity map on I to an R-homomorphism $f: H \rightarrow I$. Then f(H) = I, and so #H = #f(H) = #I, a contradiction.

The above argument may be used to prove that non-trivial injectives do not exist in other categories, e.g.:

THEOREM. There are no non-trivial injectives in the category of rings (with unity).

Proof. Let I be an injective ring, $I \neq 0$. Embed I into a ring A with unity. Extend the identity map on I to a homomorphism $f: A \rightarrow I$. Clearly f(A) = I, and so I is a ring with unity e. Let Z be the ring of integers. Embed Z into a field F with #F > #I. There exists a homomorphism $g: Z \rightarrow I$ satisfying g(1) = e. Extend g to a homomorphism $h: F \rightarrow I$. Then $\#F = h(F) \leq \#I$, a contradiction.

The above result (proved differently) as well as the proof of the nonexistence of injectives in other categories may be found in [2].

Using the above argument it can be shown that there are no non-trivial injectives in the category of commutative rings (with unity).

Received by the editors August 21, 1979.

S. FEIGELSTOCK

References

G. Mason, Injective and projective near-ring modules, Compositio Math. 33 (1976), 43-54.
A. Klein, Injectives and simple objects, J. of Pure and Applied Algebra, 15 (1979), 243-245.

BAR-ILAN UNIVERSITY RAMAT-GAN, ISRAEL