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ON RANK ONE COMMUTATORS AND TRIANGULAR 
REPRESENTATIONS 

BY 

Tsoy-Wo Ma 

ABSTRACT. Starting with the extension of Lomonosov's Lemma by 
Tychonoff fixed point theorem, a result of Daughtry and Kim —Pearcy-
Shields on rank-one commutators is extended to the context of locally 
convex spaces. Non-zero diagonal coefficients, eigenvalues and simulta­
neous triangular representations of compact operators on locally convex 
spaces are studied. 

1. Introduction. This paper extends certain results for compact operators on Banach 
spaces to the context of locally convex spaces. Lomonosov's Lemma [8] is extended 
by Tychonoff s fixed point theorem [15]. The original proof is slightly simplified by 
our special way to define the related non-linear map. Following Daughtry [2] and 
Kim —Pearcy —Shields [5], a result on rank-one commutators and hyperinvariant sub-
spaces is obtained. Our proof does not distinguish the commuting and non-commuting 
cases separately. A result of Lindenstrauss [6; p. 231] becomes a simple consequence. 
No special generalization of fixed point theorem [6; p. 230 (5)] is needed. It in turn 
establishes the existence of simultaneous triangular representations of commuting 
families of compact operators as in Ringrose [11]. Since the spectrum of a compact 
operator is a null sequence, the Riesz Decomposition Theorem [12; p. 31] can be 
derived directly from the Riesz theory [13] without functional calculus in our proof 
of (3.2). This allows us to identify the non-zero diagonal coefficients and eigenvalues. 
Following Laurie — Nordgren—Radjavi — Rosenthal [7], common triangular repre­
sentations of non-commuting families of compact operators are studied. Thanks to 
Professor P. Rosenthal for sending us their preprint [7], 

2. Rank-one commutators. Let E be a complex separated locally convex space of 
infinite dimension. Let L(E) denote the algebra of all (continuous linear) operators 
on E. A closed vector subspace M of E is an invariant subspace of an operator T if 
TM C M; a hyperinvariant subspace of T if SM C M for every operator S commuting 
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with T, i.e. ST = TS. A closed vector subspace M is an invariant subspace of an algebra 
si of operators if M is invariant under every operator of si. A vector subspace is trivial 
if it is either {0} or E. An algebra si of operators is transitive if si has no non-trivial 
invariant subspace. An operator A is non-scalar if A + XI for every complex number 
X where / is the identity operator on E. The following lemma is also true for TK but 
it requires slightly more work. 

(2.1) LEMMA. Let si be a transitive algebra of operators. Then for every non-zero 
compact operator K there exists an operator T in si such that 1 is an eigenvalue of the 
compact operator KT. 

PROOF. Let Ka ^ 0 for some a E E. There exists an open convex balanced 
0-neighbourhood U such that Ka E 2U. For the compact operator K there is an open 
convex 0-neighbourhood V, such that K{V] ) is relatively compact. For the bounded set 
K(V\) we have KK(V\) G U for some A > 0. Let V — XV,. Then V is an open convex 
0-neighbourhood such that K( V) is relatively compact in E and it is a subset of U. Then 
X = c£K(a + V) is a non-empty compact convex set. We claim 

K(a + V) G E\U. (A) 

In fact, suppose to the contrary that K(a + v) = u for some v G V and u G U. Then 
Ka = u — Kv E U + U = 2U contradicts to the choice of U. Thus (A) is valid. Since 
U is open we have X C E\U and in particular every x E X is non-zero. Next we claim 

X C U { r ' (a + V) : TE d}. (B) 

Suppose to the contrary there exists y E X such that v £ T~] (a + V) for every T Œ si. 
Since sî is an algebra of operators the set M = ct {Ty : T E ^ } is an invariant subspace 
of sî. If 7> = 0 for every T in si then the subspace generated by y ^ 0 is a non-trivial 
invariant subspace of si contrary to the transitivity of si. Hence M ^ {0}. Due to 
transitivity of si again, we have M = E. On the other hand, Ty E E\(a + V) for all 
T E si by the choice of v. Since V is open we have M G E\(a + V), i.e. M ^ E. This 
contradiction establishes the open cover of the compact set X as we claimed in (B). So 
there are J\, T2, . . ., T„ in si such that X E U,-'= , 7," (a + V). Let {a,-} be a partition 
of unity on X subordinated to this finite subcover. Define a continuous map/:X —> £ 
by/(jc) = 2,w=, a,(x) KT, (JC), Vx E X. If af-U) ^ 0 then x E 77' (a + V), i.e. tfr^jt) 
E AT(a + V)C X. Since X is convex we have/(X) G X. The Tychonoff theorem [15] 
gives a fixed point b E X for the continuous map F. Define T = 2,7, aj(b)Tj. Then 
7 is an operator in the algebra si. Since X contains only non-zero vectors we have b 
-h 0. Finally 

KT (b) = K 2 af-(ft)7 (̂6) = Ï a,(£) tfT^) = / ( i ) = ft. 

Consequently 1 is an eigenvalue of KT. 
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(2.2) THEOREM. Let A be a non-scalar operator. If there exists a non-zero compact 
operator K such that rank (AK — KA) ^ 1, then A has a non-trivial hyper invariant 
subspace. 

PROOF. Suppose to the contrary that A has no non-trivial hyperinvariant subspace. 
Then the algebra of all operators commuting with A is transitive. For the non-zero 
compact operator K there is an operator T such that AT = TA and 1 is an eigenvalue 
of KT. Let x ^ 0 in E such that KTx = x. Following [5] let V be the closed vector 
subspace generated by {Anx:n ^ 0}. Clearly V ^ {0} and A(V) C V. Suppose V is finite 
dimensional. Then A | Vhas an eigenvalue, say X. Now the subspace H = ker (A — XI) 
is non-trivial since A is non-scalar. Clearly it is a hyperinvariant subspace of A 
and the proof is complete for this case. Secondly assume V to be infinite dimensional. 
Let S = KT - I and R = AS - SA. Then R = (AK - KA)T has rank ^ 1. Since ker S 
is finite dimensional we have V (L ker S. Let n be the smallest integer such that A"x GE 
ker S. Since x E ker S we have n ^ 1. Thus SA"~ ' x = 0 and SA"x ^ 0. It follows 
RA"~ ]x = —SAnx ^ 0. Since R has rank at most one we have R(E) C S(E). Let TV = 
S(E). Since (AS - SA) (E) C S(E) we have A(N) C N. Since KT is compact, N is a 
closed vector subspace of E. Its polar TV0 in E' is an invariant subspace of the transpose 
A1. Since 1 is an eigenvalue of KT, the operator S = KT — / is not surjective, e.g. [13; 
Cor 2, p. 172], i.e. TV =£ E. Let p be the index of the eigenvalue 1 of KT. Then N = 
S(E) D SP(E). Hence 1 ̂  dim E/N ^ dim E/SP(E) = dim ker S* < oo. Since (E/N)' 
and TV0 are isomorphic, N0 is non-zero finite dimensional. Therefore A'\N° has an 
eigenvalue, say X. Let J be the identity map on E'. Then A' — \J is not injective. Hence 
range (A — XI) is not v(E, E' )-dense and consequently it is not £-dense. Therefore 
the subspace H = c£(A — XI) (E) is ^ E. Since A is non-scalar, H =£ {0}. It is routine 
to verify that H is a hyperinvariant subspace of A. This completes the proof. 

(2.3) THEOREM. [6; p. 231] If a non-scalar operator A commutes with a non-zero 
compact operator K, then A has a non-trivial hyperinvariant subspace. 

(2.4) COROLLARY. Every commuting family of compact operators has a non-trivial 
invariant subspace provided the underlying space is of dimension at least two. 

3. Triangular representations. Triangular representations are now introduced in 
the context of locally convex spaces. The set of all vector subspaces of E is ordered by 
inclusion. A totally ordered set of closed vector subspaces is simply called a chain. Let 
% be a chain. For every M in % let M_ denote the closure of union of subspaces L in 
% such that L C M and L =£ M. If there is no such L then define M_ = {0}. Clearly 
M- is a closed vector subspace of M. A chain % is complete if both {0} and E are in 
% and for every subfamily 2) of % both subspaces H 2) and c£ U 2) are in c€. A complete 
chain % is simple if for each M in % we have dim (M/M-) ^ 1. A chain % is invariant 
under an operator T if every M in % is an invariant subspace of T. A simple chain which 
is invariant under T is called a triangular representation of T. A chain is a simultaneous 
triangular representation of a family si of operators if it is a triangular representation 
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of every operator in si. It is routine application of Zorn's Lemma that every commuting 
family si of compact operators has a chain which is maximal among all invariant 
chains. As a result of maximality it is always complete. Consequently for triangular rep­
resentation it suffices to prove dim (M/M-) ^ 1 for every M in a given maximal chain. 

(3.1) THEOREM. Every commuting family si of compact operators has a simulta­
neous triangular representation. 

PROOF. Let % be a maximal invariant chain of si. Suppose to the contrary that there 
is some M in % such that dim(M/M-) ^ 2. Let <p:M —» M/M- denote the quotient 
map. For each T in si let TM be the restriction of T to M. Since both M and M_ are 
invariant under T there exists a unique operator QT on M/M- such that QT<p = <pTM. 
Let V be a O-neighbourhood in E such that T(V) is relatively compact in E. Then V P\ M 
is a O-neighbourhood in M such that TM(V D M) is relatively compact in the closed 
subspace M. Because <p is open, cp(V Pi M) is a O-neighbourhood in M/M- such that 
g7[cp(V H M)] - cp[rM(V H Af )] is relatively compact in M/M_. For every S, T in % 
we have (ôsCrte = <p(SMTM) = <p(ST\M) = <p(TS\M) = (QTQs)<p, i.e. QSQT = 
QTQS- Therefore {(2r:^ E si} is a commuting family of compact operators on M/M- . 
Let H be a non-trivial invariant subspace. Then N = <p_1(//) is an invariant subspace 
of si. Since M- C N C M and M- ¥" N ^ M is contradicts the maximality of c€. This 
completes the proof. 

To introduce diagonal coefficients it suffices to work with a particular triangular 
representation % of a given compact operator T. Take any M in %. Suppose M ^ M_. 
There is zM in A/W_. Since % is simple we have TzM = yM + aMzM for some yM in M_ 
and some number aM. It can be proved that aM is independent of the choice of zM. For 
M = M- define aM = 0. The number aM is called the diagonal coefficient of T and M 
relative to %. The diagonal multiplicity of a given complex number X is the cardinal 
number of all M in % satisfying aM = X. 

(3.2) THEOREM. A non-zero number X is a diagonal coefficient iff it is an eigenvalue. 

PROOF. Suppose aM is a non-zero diagonal coefficient. Then (T - aMI)M C M_ and 
M =£ M_. Thus for the compact operator T\M, the map (T|M) - aM(l\M) is not 
subjective on M. Therefore aM is an eigenvalue of T\M, e.g. [13; Cor. 2, p. 172]. 
Consequently aM is also an eigenvalue of T. Conversely let X ^ 0 be an eigenvalue of 
T. Then the dimension of F = ker(T — XI) is finite. Let B be the boundary of any 
compact convex balanced O-neighbourhood V in F. Then every vector in B is non-zero 
because dim F ^ 1. Parallel to [12] define M = D{N E %:B H N ^ <(>}. There is at 
least one such TV, e.g. £. Since % is complete we have M E c€. Since 5 is compact 
and °ê is totally ordered we have B Pi M j= ()>. Suppose we can prove M =£ M_. Then 
5 n M- = (() and there is zM E 5 n (MW_). So zM ^ 0 and 7zM - XzM. Since (7 -
aMI)zM E M_ we have (X — aM)zM E M_, i.e. X = aM. Consequently X is a diagonal 
coefficient and the proof is complete. Now suppose to the contrary that M = M_. Then 
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M must be infinite dimensional. Let p be the index of the compact operator T\M. Let 

Q = ke r [ (7 |M) — k(l\M)]p. Then Q is an invariant subspace of T\M and X is 

the only eigenvalue of T\Q. Take any L E % such that L C M and L -=h M. Suppose 

to the contrary that dim (L Pi 2 ) = 1 • Then T\ L D Q has exactly one eigenvalue X. Let 

x i= 0 in L C\ Q satisfy Tx = kx. Le t /be the gauge of V in F and let y = x/f(x). Since 

x G F we have y E B Pi L. It follows from the choice of M we have M C L . This again 

contradicts the choice of L. Therefore M ± M as required. The proof is now complete. 

(3.3) THEOREM. Let k be a non-zero complex number. Then its diagonal multiplicity 

and algebraic multiplicity are equal. 

A compact operator T is quasinilpotent if zero is the only possible eigenvalue. As 

immediate consequence of our (3.2) and (3.3), T is quasinilpotent if T(M) C M_ for 

every M in any triangular representation c€. Also if M = M_ for every M in % then T 

is quasinilpotent. The proof of our (3.3) is identical with Ringrose [11] and hence 

omitted. 

Let % be a simultaneous triangular representation of compact operators S, T. As a 

simple chain it is also a triangular representation of S + T, aT and ST. Let dM(T) denote 

the diagonal coefficient of T at M. Clearly dM(S + T) = dM(S) + dM(T), din(<xT) = 

adM(T) and dM(ST) = dM(S)dM(T). Since invertibility of an operator is an algebraic 

property, the standard argument is applicable to the following spectral theorem which 

is needed in the proofs of the subsequent theorems. 

(3.4) THEOREM. For every polynomialf we have v[f(T)~] =f[v(T)] where CT denotes 

the spectrum of relevant operator. 

The following results are modified from [7]. The only difference is due to the fact 

that the compact operator is in the front in our first lemma which has to be used in the 

following omitted proofs. A non-commutative polynomial in two variables is a formal 

linear combination of words in variables. 

(3.5) THEOREM. The following statements are equivalent for all compact operators 

S,T. 

(a) S, T have a simultaneous triangular representation. 

(b) (ST — TS)f(S, T) is quasinilpotent for every non-commutative polynomial f. 

(c) cr[f(S, T)] C / [ C T ( 5 ) , (J(T)] for every non-commutative polynomial f 

(3.6) THEOREM. If ST — TS commutes with both S and T, then there is a simultaneous 

triangular representation. 

(3.7) THEOREM. Let si be an algebra of compact operators. If every pair of operators 

in sa has a simultaneous triangular representation, then so does the algebra si. 
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