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ABSTRACT
The past century has witnessed the rise and maturity of the flying machine, starting with the
Wright brothers flyer to today’s modern passenger aircrafts and warfighters. At the start of
this century, yet another achievement in flying vehicle technology was seen with the launch
of the Boeing 787 aircraft, which has a significant portion by weight of polymer matrix fibre
composites. This paper, therefore, addresses the effects of the manufacturing process of fibre
reinforced polymer matrix composites on mechanical performance. Computations are carried
out using the Finite Element (FE) method at the microscale where Representative Volume
Elements (RVEs) are analysed with Periodic Boundary Conditions (PBCs). Straight fibre pre-
preg-based composites and textile composites are considered. The commercial code ABAQUS
is used as the solver for the FE equations, supplemented by user-written subroutines. The
transition from a continuum to damage/failure is effected by using the Bažant-Oh crack
band model, which preserves mesh objectivity. Results are presented for RVEs that are first
subjected to curing and subsequently to mechanical loading. The effect of the fibre packing
randomness on the microstructure is examined by considering multifibre RVEs where fibre
volume fraction is held constant but with random packing of fibres. Plain weave textile
composites are also cured first and then subjected to mechanical loads. The possibility of
failure is accommodated throughout the analysis – failure can take place during the curing
process even prior to the application of in-service mechanical loads. The analysis shows the
differences in both the cured RVE strength and stiffness, when cure-induced damage has and
has not been taken into account.
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NOMENCLATURE

S+
22 transverse tensile strength, MPa

E22 transverse stiffness, MPa
Vf fiber volume fraction
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φ degree of cure
dφ/dt rate of cure, s−1

t time, s
T temperature, K
H heat of reaction, J/tonne
Hr total heat of reaction, J/tonne
M plane wave modulus, MPa
�E1,�E2 activation energies, J
f cure kinetics function
A1, A2 frequency-type rate equation parameters, s−1

ρ mass density, tonne/mm3

cp specific heat capacity, mJ/tonne-K
κ thermal conductivity, mW/mm-K
δi j Kronecker delta
σ stress, MPa
ε strain
εc cure shrinkage strain
α thermal expansion coefficient, mm/mm-K
E Young’s modulus, MPa
ν Poisson’s ratio
M per-network plane wave modulus, MPa
K per-network bulk modulus, MPa
μ per-network shear modulus, MPa
Mexp global plane wave modulus, MPa
μexp global shear modulus, MPa
GIC mode I fracture toughness, N/mm
gIC normalised mode I fracture toughness, N/mm2

h characteristic element length, mm
σcr critical mode I fracture stress, MPa
D stiffness reduction factor due to softening
σp maximum principal stress, MPa
εp maximum principal strain
ε f ultimate tensile fracture strain

E f
11 axial fibre modulus

E f
22 transverse fibre modulus

ν
f
12 fiber Poisson’s ratio in 1-2 plane

G f
12 fiber shear modulus in 1-2 plane

G f
23 fiber shear modulus in 2-3 plane

Vf fiber volume fraction in the tow
σtow,+

cr tow tensile failure stress (axial)
Gtow,+

IC mode I tow fracture toughness (axial)

1.0 INTRODUCTION
The future of aircraft and spacecraft production will be dominated by automation in
conjunction with advanced lightweight materials that afford life-cycle cost reductions(1).
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Using mass-produced textile fibre preforms in conjunction with innovative tooling and resin
transfer molding processes will lead to better performing vehicles that have longer fatigue
lives and no corrosion problems. This trend will continue to evolve leading to air vehicles that
are made with cost-effective textile fibre composites and 3D printed structures that incorporate
multi-materials. With stringent demands placed on certifying the structure of an aircraft, the
development and use of robust, high-fidelity computational models for structural analysis will
become paramount for cost savings. Indeed, the field of Integrated Computational Materials
Engineering (ICME) has emerged as a beehive of activity(2-5). Within ICME, it is increasingly
recognised that the manufacturing process influences the microstructure of a material, which
in turn dictates performance.

Future certification and insertion of multi-material structures will be accelerated through
the development of better computational models for analysis. This requires a thorough
understanding of each stage of the production cycle. Mechanics- and thermodynamics-based
models that incorporate the correct (experimentally observed) physics at each stage will
emerge as the method of choice for ICME methodologies to be used in certification of
future lightweight composite aerostructures. The need for physics-based damage, failure,
and durability analysis models(6) that can accurately capture the experimentally observed
mechanical performance of air vehicle structures and structural components, has been
identified as the most pressing industry need today in support of accelerating the development
of high-performing materials for insertion in air vehicles. An urgent call to rise up to this
challenge was evident in the keynote lectures presented recently at the 2015 American Society
of Composites Meeting(7).

ICME and its needs as it applies to materials in general are amply covered in the papers
by Arnold et al(8,9). Here we focus on an important stage of the ICME process, that of
understanding the effects of the curing process on the subsequent state and mechanical
response of Fibre-Reinforced Polymer Matrix Composites (FRPCs). Since FRPCs contain a
polymer matrix that surrounds the interspersed fibres, good understanding of the matrix state
during the curing process is necessary to have sufficient control over the quality of the cured
product. The state of the matrix during curing can be altered by the presence of fibres and
their coatings, and also by details of the curing cycle. The curing matrix undergoes shrinkage
due to chemical processes, reactions with the fibre surfaces, and heat release during chemical
reactions, all of which gives rise to internal stress generation. Plepys and Farris(10) and Plepys
et al(11) employed Finite Element (FE) calculations using incremental elasticity to show tensile
residual stress buildup of up to 28MPa post cure in a three-dimensionally constrained Epon
828 epoxy resin. Merzlyakov et al(12) quantified the variation of tensile stresses during cure
and subsequent thermal cycling. Chekanov et al(13) have reported various types of defects that
may form in a constrained epoxy resin system undergoing curing. Rabearison et al(14) studied
the curing of a thick epoxy tube using a FE model and concluded that high-stress gradients
developed during differential curing can cause cracking. Song and Waas(15) have shown that
the use of bulk matrix properties (cured without fibres) in numerical predictions of compres-
sion response of a 2D triaxially braided composite Representative Volume Element (RVE)
can lead to erroneous results – the computed compressive strength being noticeably higher
than the experimentally measured strength. They observed that the tow compressive kinking
failure mode, which controls compressive strength, was found to be sensitive to the nonlinear
shear response of the matrix and initial fibre misalignment. It has been previously recognised
that cure shrinkage in the matrix can influence the final shape of a composite structure(16).

Depending on the constituent chemistry of the matrix and the fibre surfaces, the thermal
cycle prescribed, and the fracture and strength properties of a curing matrix and fibres (these
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change with temperature) during the transition from a gel state to a solid state, a fibre-
reinforced composite can and may undergo damage and cracking during the cure cycle. It
has been observed that these cracks usually lie within the matrix, but, here again, the internal
stresses and the resistance to fracture of the matrix and the fibre/matrix interface, all of which
are a function of the temperature, will govern where that fracture will occur. Therefore, the
state of the matrix within a cured FRPC structure exhibits in situ matrix properties, which
are effective properties of the matrix that take into account unintended imperfections caused
in the matrix due to the cure process, including the presence of residual stresses. That is,
the in situ matrix properties, where the matrix is treated as a ‘new’ material with a reference
configuration that corresponds to the post-cured state, deviate from idealised or ‘virgin’ matrix
properties of the bulk matrix. The in situ matrix properties can be extracted from an inverse
analysis through the uniaxial tensile response of a ±45◦ laminate, and this is convenient in
engineering analysis of cured composites(17).

For ICME to be successful, it is necessary to have good knowledge of the influence of the
cure cycle on the subsequent mechanical response of a FRPC structure, be it a pre-preg-type
straight fibre laminate or a textile fibre fabric that reinforces a matrix. For a particular fibre-
matrix laminate system, the optimal cure cycle can be identified such that the cured product
has the desired strength and stiffness. Efforts to optimise various aspects of the cure cycle for
mitigating the residual stresses generated during cure can be found in the studies of Li et al(18),
Gopal et al(19) and White and Hahn(20).

ICME of FRPCs also encompasses other aspects of post-cure response. These
include cohesive zone modelling(21-24), modelling notched strength(6,25-29), compressive
failure(30,31), flexural response of textiles(32,33), and transverse cracking(34). In addition, several
micromechanics-based models provide insights on capturing experimental observations
and providing mechanical properties that can be used for up-scaling in structural level
calculations(28,35-38). While several other papers address various aspects of ICME of FRPCs
and ceramic matrix composites(39), this paper focuses on the specific topic of cure-induced
effects on subsequent mechanical response of FRPCs.

The effects of the cure cycle on possible damage accumulation during cure and subsequent
in-service performance at the microstructural level are studied by using randomly packed
RVEs having a total of 20 fibres. These are representative of a typical straight fibre ply material
or a textile fibre tow. A plain weave textile composite RVE is also studied to illustrate the
effects of curing on tensile strength of a textile composite. Notice the different scales at which
the studies are carried out in order to capture effects that are important with respect to the
purpose at hand.

For illustrating the findings of the present study, results for the transverse tensile response
and strength (S+

22), which is obtained by mechanically loading each of the virtually cured
RVEs along the transverse direction under tension, are presented. Then, the initial slope
and peak stress value of the nominal stress-strain response are the effective ply level
transverse stiffness E22 and ply level transverse tensile strength S+

22, respectively. The
transverse tensile strength associated with transverse matrix cracking is controlled by a
combination of factors such as matrix tensile strength, matrix fracture toughness, fibre
packing, and the adhesion strength between fibres and the matrix. Hence, it is expected
that both E22 and S+

22 are influenced by the details of the cure process. In a similar vein,
matrix cracking and the tensile strength of the fibre tow are seen to influence the RVE
tensile strength of the textile composite. Because of page limitations, an exhaustive parametric
study is not reported. Such a study is important to understand the influence of various
microstructural quantities on the up-scaled response. Notwithstanding this, the paper presents
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the subelements of an ICME framework to optimise cure cycle parameters to influence
mechanical response.

2.0 BACKGROUND
A brief background of the matrix curing process is provided. The curing process of a thermoset
polymer such as Epon 862 consists of the chemical reaction, heat generation, and conduction.
These processes lead to the generation of self-equilibrating internal stresses in the matrix and
evolution of matrix stiffness. The stress evolution is modelled through a network model as
described in Mei(40), Mei et al(41), Heinrich et al(42) and D’Mello et al(43). The degree of cure
(φ) of the matrix is defined as φ = H (t)/Hr, where H (t) is the heat generated up to time t,
and Hr is the total heat of reaction at the end of the cure cycle. Thus, at the start of the cure
process, φ = 0 and the matrix is said to be cured when φ = 1. The rate of cure ( dφ

dt ) can be
expressed as

dφ

dt
= f (T,φ) … (1)

where f (T,φ) ≥ 0 is a function. The evolution of temperature (T ) and degree of cure (φ)
for the matrix material system is determined through a coupled system that considers the
heat equation and an empirical curing law or can be supplied from the output of a simulation
that takes into account a cure kinetics model. We use the cure kinetics model proposed by
Kamal(44) through a function f (T,φ), which is described in terms of Arrhenius terms that
depend on temperature,

f (T,φ) =
[

A1 exp
(

�E1

T R

)
+ A2 exp

(
�E2

T R

)
φm

]
(1 − φ)n … (2)

where T is temperature, R is the gas constant, and �E1 and �E2 are activation energies. The
frequency-like constants A1, A2 and exponents m and n, have to be determined by fitting the
above equation to experimental data. However, due to the complexity of the function f (T,φ),
a general closed formed solution to Equation (1) is elusive. Assuming the form for f (T,φ)
in Equation (2) by setting m = A2 = �E2 = 0, n = 1 and under isothermal conditions, an
explicit relation between the degree of cure and time can be found as a solution to the
differential equation (1), which is

φ(t) = 1 − exp(−λt) … (3)

where the Arrhenius parameter λ = A1 exp( −�E1
T R ). Cure data as a function of time for Epon

862/Epikure 9553 resin under isothermal conditions are chosen for the present work and are
available in Ref. 42. The constants obtained by curve fitting with experimental data at various
temperatures are A1 = 3.62 × 1011s−1 and �E1 = 8.854 × 104 J.

During curing, the matrix heats up due to an exothermic chemical reaction and due to
conduction from the heating source at the boundary. This process can be modelled using the
governing equation,

ρc
∂T
∂t

= ∂

∂xi

(
κ(T,φ)

∂T
∂xi

)
+ ρHr

∂φ

∂t
… (4)
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where ρ is the mass density, cp is the specific heat, and κ is the thermal conductivity. The
evolution of self-equilibrating stresses σ(t) during curing is included in the analysis by using
a network model proposed by Heinrich et al(42):

σ(t) =
∫ t

0

dφ

ds
1
[

K (s)tr (ε(t) − ε(s) + εc(s) − 1α(s)�T (t, s))

+ 2μ(s)
(

ε(t) − ε(s) + εc(s) − 1
1
3

tr{ε(t) − ε(s) + εc(s)}
)]

ds … (5)

+ (1 − φ(t))K (0)tr(ε(t) − 1α(0)�T (t))1,

where K , μ, α and εc are the per-network bulk modulus, shear modulus, coefficient of
thermal expansion and cure shrinkage, respectively. The first term having the integral is the
contribution to stress evolution due to the curing matrix, whereas the second term captures
the contribution of the uncured liquid resin. The constants K (0) and α(0) correspond to
the bulk modulus and coefficient of thermal expansion of the liquid resin, respectively. The
coefficient of thermal expansion α(φ) of the curing matrix is assumed to have a constant value
of 61 × 10−6 mm/mmK. The per-network properties can be obtained from experimentally
measured values of the plane wave modulus (Mexp), and shear modulus (μexp) for the curing
matrix as:

M(φ) = dMexp

dφ
+ Kexp(0),

μ(φ) = dμexp

dφ
.

… (6)

The moduli values Mexp and μexp are measured as a function of time by concurrent Raman
and Brillouin light scattering for the pure resin, that is, for a resin curing in the absence
of fibres(42,45). These moduli are assumed to correspond to the virgin matrix as a function of
degree of cure. The variation of the Young’s modulus and Poisson’s ratio of the resin, each as a
function of cure, is provided in Fig. 1. The Young’s modulus increases from zero to 4,950 MPa
at end of cure, whereas the Poisson’s ratio decreases from the incompressibility limit of 0.5
typical of liquid resins to 0.375 at the end of cure. Once M(φ) and μ(φ) are known, the
per-network bulk modulus K (φ) can be obtained from the isotropic material relation K =
M − 4

3μ.
The per-network shrinkage strain εc(�) up to a certain degree of cure φ = � is given

by:

εc = 1
3K (�)

[(
ε(�) − (1 − �)

dε(�)
d�

)
Kexp − dε(�)

d�

∫ �

0
M(φ) dφ

]
… (7)

A gravimetric test method (see Ref. 46) can be used to obtain shrinkage of all networks
ε(�). A 2% per-network cure shrinkage has been chosen for the present investigation.

2.1 Modelling damage during cure

During curing, the matrix gradually solidifies (stiffness increases) and simultaneously
contracts (cure shrinkage) due to network formation. Residual stresses develop in the matrix
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Figure 1. Young’s modulus (E) and Poisson’s ratio (ν) of the resin as a function of cure (φ)
obtained from plane wave modulus and shear modulus data(42) for Epon 862.

owing to cure shrinkage and thermal strains. Depending on the magnitude of tensile stresses
developed, the degree of cure (φ) and the rate of cure ( dφ

dt ), the material may crack locally
during curing. A crack band model is used to simulate the possibility of tensile cracking
during the curing of the matrix. The critical tensile stress for cracking typically increases
with the degree of cure. If certain matrix regions crack locally, it would result in a reduction
in the matrix stiffness in that local region along with some energy dissipation. Such a
reduction in local matrix stiffness can control the mechanical properties of the cured RVE.
Two assumptions are enforced because degree of cure and coefficient of thermal expansion
of a partially cured local volume with microcracks are unknown and physically this local
volume does not represent a continuum in the strictest sense. First, if a certain local volume
of material cracks, it is assumed that no further curing can take place in that local volume.
Second, it is assumed that if cracking occurs locally, the local cracked volume cannot expand
or contract under temperature variations. In the context of the finite element framework that
is used to numerically simulate cure-induced damage, this local volume is a single finite
element.

At the end of Step I, the curing process is complete. In Step II, the cured RVE (containing
cracks or not, as the case maybe) is subjected to transverse tension loading. The objective
here is to compute the strength (S+

22) and stiffness (E22) of the virtually cured RVE. Based
on the temperature and cure parameters, computation of the stress evolution during cure
(Step I) and strength calculation based on mechanical loading (Step II) is performed using
the commercial finite element software ABAQUS/Standard (Simulia(47)). In this study, it is
assumed that cracking in the curing matrix can occur only for φ > 0.2 and only under tensile
stresses.

A crack band model based on the one proposed by Bažant and Oh(48) is used to model
failure in the matrix. This model assumes that once the critical fracture stress σcr is reached,
microcracks are formed and this effect is smeared over an element. The maximum principal
stress criterion is used to determine the failure initiation in the matrix. However, other failure
criteria (such as a mixed Mohr-Coulomb criterion for compressive shear failure) can also
be used, based on experimental observations and data that support such. In the present
study, when the maximum principal tensile stress exceeds the critical value σcr, the traction-
separation law controls the behavior of the damaging material as shown in Fig. 2 and the
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Figure 2. Crack band law in terms of maximum principal stress σp and maximum principal strain εp.

stiffness of the matrix is reduced using the secant value. In the present investigation, the σcr

value is assumed to be independent of φ. However, in reality, it is expected that the strength
would vary with φ. Under Mode I cracking, the energy dissipated during the fracturing process
is the critical Mode I energy release rate (GIC ), given by:

GIC =
∫ δ f

0
σp(δ) dδ = h

∫ ε f

0
σp(εp) dε … (8)

where stress σp and εp are the maximum principal stress and strain values, respectively, and the
maximum separation δ f = hε f where ε f corresponds to the strain corresponding to complete
failure of the material (accompanied by complete loss of stiffness). Here, h is the characteristic
element length that preserves mesh objectivity (see Ref. 49), by prescribing a normalised value
of GIC for each element such that gIC = GIC/h. Consequently, the value of gIC equals the area
under the σp − εp law as shown in Fig. 2. The value of GIC is chosen to be 0.2 N/mm in all the
computations, whereas the tensile fracture strength σcr is chosen to be 60 MPa. Note that, for a
given epoxy system, the values of GIC and σcr have to be obtained from experimental measure-
ment, each as a function of the degree of cure φ. That is, both, GIC and σcr, are not fixed num-
bers; they evolve as a function of the degree of cure, φ, which is dictated by local temperature.

From the crack band model formulation, the stiffness reduction factor due to softening D
with (0 ≤ D ≤ 1) for a material with initial stiffness E = E (φ), which is now in the softening
region of the traction-separation law, is computed as

D = σcr

E (ε f − εcr)

(
ε f

εp
− 1

)
… (9)

where εp is the current maximum principal strain value. Thus, D = 1 corresponds to no
damage, 0 < D < 1 corresponds to damage but no two-piece failure, while D = 0 would
indicate complete failure. This D parameter will be used to quantify the extent of stiffness
reduction after cure has completed (i.e. at the end of Step I).
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Table 1
Thermal properties of the fibres and matrix

Parameter Value Description

α
f
11 −0.54 × 10−6 mm/mm-K Axial fibre thermal expansion coefficient

α
f
22 10.08 × 10−6 mm/mm-K Transverse fibre thermal expansion coefficient

κ f 5.4 mW/mm-K Fibre thermal conductivity
c f

p 8.79 × 108 mJ/tonne-K Fibre specific heat capacity
αm 61 × 10−6 mm/mm-K Matrix thermal expansion coefficient
κm 0.2 mW/mm-K Matrix thermal conductivity
cm

p 1.2 × 109 mJ/tonne-K Matrix specific heat capacity

Figure 3. Five renditions of random 20-fibre RVEs with volume fraction Vf = 0.55.

3.0 RANDOM CELL RVE
In realistic FRPCs, the fibres are randomly distributed, which give rise to several matrix-rich
pockets. It would be instructive to understand the severity of the cure-induced damage on
the mechanical response as a function of the randomness in fibre position in an RVE. Eight
3D renditions of square FRPC RVEs with randomly distributed fibres are analysed in this
section. The distribution of fibres within the RVEs was done manually, in that, the fibres were
arbitrarily placed within the square RVE boundary. The in-plane width of this square RVE is
32 × 10−3 mm, whereas the out-of-plane thickness along the fibre direction is 30 × 10−5 mm.
The fibre volume fraction (Vf ) in all these renditions is chosen to be 0.55. Each of the RVEs
were meshed with C3D8T elements (eight node brick elements with temperature degree of
freedom). The fibres are modelled as transversely isotropic solids having radius 3μm, whereas
the surrounding matrix material that will undergo curing is modelled as an isotropic solid.
These RVEs are shown in Fig. 3. Thermal properties of the fibres and matrix used in these
computations are provided in Table 1. Few strategies to generate random RVEs may be found
in the works of Melro et al(50), Yang et al(51) and Vaughan and McCarthy(52). Recently, using
a heuristic random microstructure algorithm, Romanov et al(53): have generated RVEs that are
statistically well correlated with real FRPC RVEs.

3.1 Boundary conditions

During curing and mechanical loading, the RVE is subjected to periodic boundary conditions,
in concert with the assumption that the RVE is a small volume within an infinite medium.
The use of periodic boundary conditions for fibre-reinforced RVEs can be found in the studies
of Gonzalez and Llorca(54) and Xia et al(55), amongst others. During the cure process, the
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Figure 4. Temperature cycle (left) along with degree of cure (φ) and rate of cure (dφ/dt) (right).

RVE can contract or expand depending on temperature change and can contract due to cure
shrinkage.

Consider an arbitrary cuboid RVE in the undeformed configuration having lengths L1, L2

and L3 along the x1, x2 and x3 directions with one corner point placed at the origin (0, 0, 0).
Then, the equations corresponding to the 3D periodic boundary conditions are:

u1(L1, x2, x3) − u1(0, x2, x3) = ε11L1,

u2(L1, x2, x3) − u2(0, x2, x3) = 2ε12L1,

u3(L1, x2, x3) − u3(0, x2, x3) = 2ε13L1,

u1(x1, L2, x3) − u1(x1, 0, x3) = 2ε21L2,

u2(x1, L2, x3) − u2(x1, 0, x3) = ε22L2, … (10)

u3(x1, L2, x3) − u3(x1, 0, x3) = 2ε23L2,

u1(x1, x2, L3) − u1(x1, x2, 0) = 2ε31L3,

u2(x1, x2, L3) − u2(x1, x2, 0) = 2ε32L3,

u3(x1, x2, L3) − u3(x1, x2, 0) = ε33L3,

where u1, u2, and u3 are the displacements of the RVE boundary along the x1, x2 and x3

directions, respectively, and εi j are the tensorial strains.

3.2 Analysis procedure for virtual curing of random cell RVEs

The analysis procedure is divided into two steps as described below.

(1) Step I: A thermochemical analysis is performed using the cure parameters described
earlier. The temperature cycle, the degree of cure, and the cure rate in the matrix are
provided. Since the RVE dimensions are on the micron scale, there is little to no variation
in the temperature field across the RVE. The temperature profile, the degree of cure
(φ) and the rate of cure ( dφ

dt ) used in the present study are shown in Fig. 4. The stress
evolution calculations are performed as described in Equation (5). Shrinkage during
cure is modelled using Equation (7). At the end of this step, we have a virtually cured
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Figure 5. Contours of maximum principal stresses (MPa) in the RVE matrix at the end of the cure cycle.

solid. The possibility of damage during curing is taken into account using the crack band
model. Periodic boundary conditions are enforced throughout this step. The present step
is implemented as a coupled temperature-displacement analysis.

(2) Step II: Each of the virtually cured RVEs is subjected to transverse tensile loading (with
periodic boundary conditions in place) to back-out the stiffness and strength. Again, the
crack band model is used to simulate tensile failure in the matrix. The material state at
the beginning of this step is the one that was obtained at the end of Step I. The reference
configuration for this step is taken as the deformed configuration of the cured RVE (i.e.
corresponding to end of Step I). Hence, the constitutive law for the RVE during the
mechanical loading step is

σ = [C]εm + σ0, … (11)

where [C] is the current stiffness matrix, εm are the applied mechanical strains, and σ0

are the self-equilibrating residual stresses present in the virtually cured RVE. Note that
at the start of Step II, when εm = 0, then, σ = σ0. Thus, the additional stress buildup in
the structure during mechanical loading is caused by the applied mechanical strains εm

during transverse tensile loading.

3.3 Results

When each of the five RVEs are subjected to the cure cycle, self-equilibrated stresses are
generated governed by the network model, cure shrinkage and thermal mismatch. In particular,
predominant tensile stresses develop due to cure shrinkage when the polymer networks form
during the initial stages of the cure cycle during the first 1,500s of the cure cycle. Additional
tensile stresses develop during the cooling phase of the cure cycle (5,000s < t < 6,000s ). The
contour plots of the maximum principal stresses generated in the matrix at the end of the cure
cycle are shown in Fig. 5.

The magnitude and distribution of the residual stresses in each of the five RVEs are different
owing to the difference in fibre packing. Maximum principal stresses up to 38 MPa are
generated at the end of cure in these RVEs. Since the magnitude of tensile stress in the
curing matrix did not exceed its critical fracture stress σcr at any stage of the cure cycle,
no damage/cracking is observed.

The virtually cured random RVEs are next subjected to transverse tension loading (Step
II). The resulting nominal stress-strain response is provided in Fig. 6. Each of the stress-strain
responses initially exhibits a linear response up to a nominal strain value of 0.005, after which
there is slight pre-peak nonlinearity in the response followed by a drop in stress. This pre-
peak nonlinearity begins when microcracks initiate in the matrix at some location at the fibre
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Figure 6. Nominal stress-strain (σ22 − ε22) response of the virtually cured
random RVEs when subjected to transverse tension loading.

Figure 7. Initiation and spread of microcracks in RVE 2 that leads to deviation from linearity in the
stress-strain response prior to two-piece cracking. The microcracks are shown in red.

matrix interface that has high-stress gradients. With further loading, these microcracks form at
other locations in the RVE causing further reduction in stiffness. Using RVE 2 for illustration,
the sequence of microcrack formation at various stages of loading is shown in Fig. 7. These
microcracks spread until a prominent two-piece crack develops, which causes the load to drop
past the peak. For RVE 2, the sequence of two-piece crack formation that begins at the peak
stress is shown in Fig. 8. The peak values, which denote the RVE strength S+

22, are somewhat
different from one another, averaging 50.5 MPa with minimum and maximum strength values
of 49.4 MPa and 52.3 MPa, respectively.

Another set of transverse tension simulations were performed using each of the five random
RVEs, but where the effect of curing was neglected. That is, each of the RVEs was modelled
as an initially stress-free solid with matrix properties equal to that of neat resin, i.e. Young’s
modulus 4,950 MPa and Poisson’s ratio 0.375. The objective is to estimate the difference
between the transverse strength S+

22 if one does not take into account the effect of processing
(virtual curing). The nominal stress-strain responses of each of the RVEs when processing
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Figure 8. Initiation and rapid growth of two-piece cracking (in red) in the RVE
which starts and proceeds past the peak in RVE 2.

Figure 9. Nominal stress-strain (σ22 − ε22) response of random RVEs when subjected to transverse
tension loading (left). Two-piece crack path shown in red for RVE 2.

effects are neglected, are shown in Fig. 9. The corresponding two-piece crack paths past the
peak stress for RVE 2 is shown in Fig. 9. Like the earlier set of simulations with virtually
cured RVEs, the deviation from linearity is controlled by initiation and spread of microcracks
in the RVE and the peak is controlled by two-piece crack formation. The average S+

22 strength
is 59 MPa with very little spread – the minimum and maximum values are 58.7 MPa and
59.5 MPa, respectively. The strength values observed in these simulations are noticeably
higher than those seen from the mechanical loading of virtually cured RVEs. This observation
is expected due to the presence of self-equilibrating residual stresses present in the virtually
cured RVEs, a portion of which are tensile in nature. Although the transverse strength values
are found to be different, the transverse stiffness (E22) measurements between these two sets
of simulations are identical because no stiffness reduction was seen in the RVEs at the end
of cure for the set of matrix properties used here. A different set of properties can lead to
stiffness reduction during the curing.

4.0 PLAIN WEAVE RVE
4.1 Introduction

The second type of composite structure that will be subjected to curing is a plain weave RVE.
The plain weave is the simplest of composite textile architecture where warp and weft tows
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Figure 10. Plain weave RVE (left) with matrix shown in blue and tows shown in red; constituent tows
(right) with dimensions. Here, x-y-z axes indicate the global reference frame.

undulate over one another successively. Fairly accurate estimates for the effective stiffness
properties for the plain weave architecture can be found using analysis models for textile
composites, for example, by Quek et al(56) and Kier et al(57).

The geometry of the plain weave RVE used in the present work is given in Fig. 10. In this
RVE, the tow volume fraction is 0.28. The in-plane width of the RVE is 2.6 mm and the out-
of-plane thickness is 0.4 mm. The RVE is meshed with 24,244 quadratic tetrahedral elements
having temperature degrees of freedom.

Similar to the earlier case with random fibre RVEs, the analysis of the plain weave RVE
in this work is done using two steps. That is, in Step I, the plain weave RVE is subjected to
the cure cycle where the matrix between the tows undergoes curing. In the present work, the
tows are assumed to have already cured. The possibility of curing of the tow simultaneously
with the surrounding matrix is a subject of an ongoing study. During the cure process, the
in-plane boundaries are constrained to remain flat. That is, the faces having normals pointing
along x or y are held flat, but are allowed to contract/expand. At the end of Step I, we have
a virtually cured plain weave RVE, which is subsequently subjected to tensile loading along
the x direction in Step II. A dynamic/explicit solver is used to execute Step II. In this step,
the flat boundary conditions are relaxed and the structure is loaded under uniaxial conditions.
Throughout the analysis, damage and failure in the matrix is modelled using the crack band
approach discussed earlier. The fracture parameters for the matrix in the plain weave RVE are
taken to be similar to the one used in the earlier analysis on random fibre RVEs, i.e. critical
fracture stress σcr = 60 MPa and mode I fracture toughness GIC = 0.2 N/mm. In order to
simulate failure in the tow, a multiscale model developed by Zhang and Waas(58) is used,
which is briefly described below.

4.2 Tow damage model

The plain weave tow is modelled as a transversely isotropic solid. The tow, which is essentially
a fibre bundle held together by matrix, is assumed to have fibre volume fraction of 0.64. The
two-scale model proposed by Zhang and Waas(58), which models the behaviour of the tow,
considers a Concentric Cylinder Model (CCM) representation at each integration point of the
homogenised tow. The CCM calculates the effective transversely isotropic properties of fibre
composites in terms of matrix elastic properties, fibre transversely isotropic properties, and
fibre volume fraction. The two scales thus involved are the mesoscale tow (homogenised as
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Figure 11. Methodology of the model proposed by Zhang and Waas(58). For a given integration point on
the mesoscale tow model, strains are passed to the CCM at the microscale; updated stress and current
Jacobian get passed back from the microscale to the mesoscale at the end of an increment. The 1-2-3

axes represent local material orientation, where direction-1 points along the fibre direction.

transversely isotropic solid) and the microscale CCM that sits at each integration point of
the mesoscale tow. When global strains are applied on the textile composite RVE, strains
in the mesoscale tow at each integration point are passed to the CCM at the microscale.
Using closed form expressions for the CCM, as shown in Zhang and Waas(58), the stresses
and material Jacobian are passed back (see Fig. 11) to the mesoscale at each integration point
after updating. That is, at the CCM microscale, decisions are made predicated on the criticality
of stresses (or strains as the case may be) regarding damage and failure development in the
tow(33).

In the present computations, if the stresses at the integration point exceed critical values,
then damage in the tow at that corresponding integration point is modelled using a smeared
crack approach (SCA). In the tow, when tensile stresses along the axial direction exceed a
critical value σtow,+

cr , the softening response is modelled using the smeared crack approach.
The aforementioned failure mode occurs due to axial tow fracture, which is controlled by
fibre failure strain. Other secondary tow failure modes such as transverse tow cracking are not
considered in the present work, and are the subject of ongoing research.

The constituent fibre properties are provided in Table 2. The tow’s constituent matrix
isotropic properties are assumed to be similar to that of a completely cured Epoxy resin,
i.e. Young’s modulus 4,950 MPa, Poisson’s ratio 0.375, critical fracture stress σcr = 60 MPa,
and mode I fracture toughness GIC = 0.2 N/mm.

4.3 Analysis

The RVE shown in Fig. 10 is subjected to the cure cycle shown in Fig. 4. Residual stresses
are generated in the RVE due to temperature changes as well as due to cure shrinkage in the
matrix. At the end of the cure cycle (Step I), the state of maximum principal residual stress
in the matrix is shown in Fig. 12. It is seen that this stress state is nonhomogenous over the
matrix elements and is uniformly higher in magnitude at the centre of the RVE compared to
regions near the boundaries along the x and y directions. Note that at the centre of the RVE,
the matrix is in a region where the tows cross over. Moreover, the stresses are high in the
matrix in this region, where stress gradients are also high. Matrix damage was observed in
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Table 2
Constituent properties of the fibres in the tow along with

thermal and fracture properties of the tow

Parameter Value Description

E f
11 236,000 MPa Axial fibre modulus

E f
22 15,000 MPa Transverse fibre modulus

ν
f
12 0·28 Fibre Poisson’s ratio in 1-2 plane

G f
12 15,000 MPa Fibre shear modulus in 1-2 plane

G f
23 6,300 MPa Fibre shear modulus in 2-3 plane

Vf 0.64 Fibre volume fraction in the tow

σtow,+
cr 2,900 MPa Tow tensile failure stress (axial)

Gtow,+
IC 40 N/mm Mode I tow fracture toughness (axial)

αtow
11 −0.1×10−6 mm/mm-K Tow axial thermal expansion coefficient

αtow
22 25.6 × 10−6 mm/mm-K Tow transverse thermal expansion coefficient

κtow 3.5 mW/mm-K Tow thermal conductivity
ctow

p 9.9 × 108 mJ/tonne-K Tow specific heat capacity

Figure 12. Contours of the maximum principal stress (MPa) in the matrix:
entire RVE (left) and slice taken at mid height (right).

few elements in such regions. The damage occurring in a few elements is highlighted in red
in Fig. 13.

The virtually cured plain weave RVE is loaded in tension along the x direction. The
nominal stress-strain response, which indicates progressive damage and failure, is shown in
Fig. 14. During the initial stages of loading, a relatively stiff linear region is encountered
up to a nominal strain value of 0.005, after which there is some reduction in stiffness up
to a peak stress of 112 MPa, followed by a drop. The reduction in stiffness following the
nominal strain value of 0.005 occurs due to straightening of the tow with simultaneous matrix
cracking in regions adjacent to the tow, whereas the peak is controlled by axial tow failure.
Figure 15 shows the sequence of matrix cracking at various stages of loading. Note that two-
piece cracking has initiated as two separate bands immediately after a strain value of 0.005
(where stiffness reduction is seen in the stress-strain response), with each band growing with
additional loading. Figure 16 shows the growth and localisation of maximum principal strains
in the tows during the mechanical loading step.
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Figure 13. Sectioned images of the deformed RVE; a cut through the middle of the RVE and parallel to
the x-y plane. Matrix damage that occurs during the curing process is highlighted in red.

Figure 14. Nominal stress-strain response of the virtually cured plain weave RVE under in-plane tensile
loading along with stress-strain response of plain weave RVE under in-plane tensile loading when curing

is not taken into account.

Figure 15. Evolution of tensile cracking in the matrix during the mechanical
loading of the virtually cured plain weave RVE.
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Figure 16. Contours of maximum principal strains in the tows of the virtually cured plain weave RVE,
shown at various stages corresponding to global tensile strain values.

PaInitially, as the tow parallel to the loading direction begins to straighten out, two
prominent bands of strain localisation start to form at the tow inflection site. As the tow
further straightens out, the magnitude of straining in these regions also increases. At a nominal
strain value of 0.035, axial tow fracture occurs in one of the localisation bands, which is
reflected by a sudden jump in the strain values. Note that the peak stress in the stress-strain
response also occurs around the nominal strain value 0.035, which suggests that axial tow
fracture is the mechanism that controls the peak stress for this plain weave RVE. From this
computation, it is seen that the maximum tensile strength of the composite plain weave RVE
is approximately 112 MPa. We also performed a simulation on the plain weave RVE when it
was not subjected to curing. That is, the RVE is assumed to be initially stress-free and having
matrix property of the neat resin (Young’s modulus 4,950 MPa and Poisson’s ratio 0.375).
This RVE is also loaded in tension along the x direction. The resulting stress-strain response
is shown in Fig. 14 alongside the response of the virtually cured plain weave RVE. The tensile
strength of this RVE is 119 MPa compared to 112 MPa for the virtually cured RVE. Moreover,
the initial linear response is longer, and the departure from linearity into the prepeak regime
due to crack initiation is delayed in this RVE, occurring at a higher strain value. Thus, the
presence of residual stresses due to curing is seen to somewhat reduce the strength of the
virtually cured RVE. Using this ICME modelling framework, other strength values such as
compressive strength, in-plane and out-of-plane shear strengths, and transverse compressive
strength can be computed and the relative influence of microstructural parameters on these
strengths can be quantified. Therefore, uncertainties associated with the relative magnitudes
of microstructural variables can be quantified using the present ICME modelling framework.

5.0 CONCLUSIONS
This paper has addressed a subject that is emerging and important for future certification
of aerostructures in a timely manner. With several advances in cost-effective production of
composite aerostructures, the need to have reliable, high-fidelity and computationally efficient
virtual tools for composite aerostructures is urgent. ICME tools will become the mainstay for
rapid insertion of new high-performance structural concepts in an affordable manner. Within
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the ICME framework, the effects of cure cycle on the subsequent mechanical response of a
fibre-reinforced pre-preg lamina and a plain weave textile composite have been presented. It
is seen that the curing process influences the subsequent effective stiffness and strength of the
studied structures when subjected to mechanical loading. This is because the matrix material,
depending on details of the cure cycle, and fracture and strength properties, which are
also dependent on details of the cure cycle, can undergo microcracking due to internal
residual stresses. When subjected to mechanical loads, these stresses get added to additional
stresses generated due to applied mechanical loads. Fiber packing is seen to influence the
details of damage development. There is a non-negligible effect on predicted ply strengths and
plain weave strengths if details of the cure cycle are not included in the RVE level analysis
models. An assembly of RVEs that have the softening response shown here would need to be
modelled in order to make comparisons against experimental, coupon level data. That is an
ongoing task.

ACKNOWLEDGEMENTS
The authors are grateful for the involvement of many who have enhanced our understanding
of the effects of cure. We acknowledge Dr Li Zheng, Dr Folusho Oyerokun, Matthew
Hockemeyer, Dr Lara Liou, and Dr Thomas Sutter of General Electric; Dr Steve Engelstad
and Dr Bob Koon of Lockheed Martin; Dr G P Tandon of University of Dayton Research
Institute, and Dr Eric Baker, Dr Kevin Kendig, and Dr Greg Schoeppner from Air Force
Research Laboratory.

REFERENCES
1. Beukers, A., van Tooren, M. and Vermeeren, C. Aircraft structures in the century ahead,

Aeronaut J, 2003, 107, (1072), pp 343-357.
2. Davies, G.A.O. Aircraft structures, Aeronaut J, 1996, 100, (1000), pp 523-529.
3. Panchal, J.H., Kalidindi, S.R. and McDowell, D.L. Key computational modeling issues in

integrated computational materials engineering, Comput-Aided Des, 2013, 45, (1), pp 4-25.
4. Davies, G.A.O. and Ankersen, J. Virtual testing of realistic aerospace composite structures, J

Mater Sci, 2008, 43, pp 6586-6592.
5. Allison, J. Integrated computational materials engineering: A perspective on progress and future

steps, J Miner Met Mater Soc, 2011, 63, (4), pp 15-18.
6. Pineda, E.J., Waas, A.M. and Bednarcyk, B.A. Progressive damage and failure modeling in

notched laminated fiber reinforced composites, Int J Fract, 2009, 158, (2), pp 125-143.
7. Talreja, R. Multi-scale modeling of damage and failure in composite materials, 28-30 September

2015, Plenary talk, American Society for Composites 30th Technical Conference, Michigan State
University, East Lansing, MI, USA.

8. Arnold, S.M., Cebon, D. and Ashby, M. Materials selection for Aerospace systems, 2012,
Technical Report 2012-217411, NASA/TM.

9. Arnold, S.M., Holland, F.A., Bednarcyk, B.A. and Pineda, E.J. Combining material and model
pedigree is foundational to making ICME a reality, Integr Mater Manuf Innov, 2015, 4, (4).

10. Plepys, A.R. and Farris, R.J. Evolution of residual stresses in three-dimensionally constrained
epoxy resins, Polymer, 1990, 31, (10), pp 1932-1936.

11. Plepys, A.R., Vratsanos, M.S. and Farris, R.J. Determination of residual stresses using
incremental linear elasticity, Compos Struct, 1994, 27, (1-2), pp 51-56.

12. Merzlyakov, M., McKenna, G.B. and Simon, S.L. Cure-induced and thermal stresses in a
constrained epoxy resin, Compos: Part A, 2006, 37, pp 585-591.

13. Chekanov, Y.A., Korotkov, V.N., Rozenberg, B.A., Dhzavadyan, E.A. and Bogdanova, L.M.
Cure shrinkage defects in epoxy resins, Polymer, 1995, 36, pp 2013-2017.

https://doi.org/10.1017/aer.2015.19 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2015.19


80 January 2016The Aeronautical Journal January 2016

14. Rabearison, N., Jochum, Ch. and Grandidier, J.C. A FEM coupling model for properties
prediction during the curing of any epoxy matrix, Comput Mater Sci, 2009, 45, (3), pp 715-724.

15. Song, S., Waas, A.M., Shahwan, K.W., Xiao, X. and Faruque, O. Braided textile composites
under compressive loads: Modeling the response, strength and degradation, Compos Sci Technol,
2007, (67), pp 3059-3070.

16. Kim, K. and Hahn, H. Residual stress development during processing of graphite/epoxy
composites, Compos Sci Technol, 1989, 36, pp 121-132.

17. Ng, W., Salvi, A. and Waas, A.M. Characterization of the in-situ nonlinear shear response of
laminated fiber reinforced composites, Compos Sci Technol, 2010, 70, (7), Special Issue, pp 1126-
1134.

18. Li, M., Zhu, Q., Geubelle, P.H. and Tucker, C.L. Optimal curing for thermoset matrix composites:
Thermochemical considerations, Polym Compos, 2001, 22, pp 118-131.

19. Gopal, A.K., Adali, S. and Verijenko, V.E. Optimal temperature profiles for minimum residual
stress in the cure process of polymer composites, Compos Struct, 2000, 48, pp 99-106.

20. White, S. and Hahn, H. Cure cycle optimization for the reduction of processing-induced residual
stresses in composite materials, J Compos Mater, 1993, 27, pp 1352-1378.

21. Sills, R.B. and Thouless, M.D. Cohesive-length scales for damage and toughening mechanisms,
Int J Solids Struct, 2015, 55, pp 32-43.

22. Li, S., Thouless, M.D., Schroeder, J.A. and Zavattieri, P.D. Mixed-mode cohesive-zone models
for fracture of an adhesively bonded polymer-matrix composite, Eng Fract Mech, 2006, 73, (1), pp
64-78.

23. Xie, D. and Waas, A.M. Discrete cohesive zone model for mixed-mode fracturing using finite
element analysis, Eng Fract Mech, 2006, 73, (13), pp 1783-1796.

24. Gustafson, P.A. and Waas, A.M. The influence of adhesive constitutive parameters in cohesive
zone finite element models of adhesively bonded joints, Int J Solids Struct, 2009, 46, (10), pp 2201-
2215.

25. Wisnom, M.R., Hallett, S.R. and Soutis, C. Scaling effects in notched composites, J Compos
Mater, 2010, 44, (2), pp 195-210.

26. Soutis, C., Curtis, P.T. and Fleck, N.A. Compressive failure of notched carbon fiber composites,
Proc R Soc A, 1993, 440, (1909), pp 241-256.

27. Ahn, J.H. and Waas, A.M. Prediction of compressive failure in laminated composites at room and
elevated temperature, AIAA J, 2002, 40, (2), pp 346-358.

28. Pineda, E.J., Bednarcyk, B.A., Waas, A.M. and Arnold, S.M. Progressive failure of a
unidirectional fiber-reinforced composite using the method of cells: Discretization objective
computational results, Int J Solids Struct, 2013, 50, (9), pp 1203-1216.

29. Davidson, P., Pineda, E.J., Heinrich, C. and Waas, A.M. A unified model for predicting the open
hole tensile and compressive strengths of composite laminates for aerospace applications, 2013,
54th AIAA Structures, Structural Dynamics and Materials Conference, Boston, MA, USA, AIAA-
CP2013-1613, Control ID 1514265.

30. Prabhakar, P. and Waas, A.M. Interaction between kinking and splitting in the compressive failure
of unidirectional fiber reinforced composites, Compos Struct, 2013, 98, pp 85-92.

31. Heinrich, C., Alridge, M., Wineman, A.S., Kieffer, J., Waas, A.M. and Shahwan, K.W. The
role of curing stresses in subsequent response, damage and failure of textile polymer composites, J
Mech Phys Solids, 2013, 61, (5), pp 1241-1264.

32. Zhang, D., Waas, A.M. and Yen, C.-Y. Progressive damage and failure response of hybrid 3D
textile composites subjected to flexural loading, part I: Experimental studies, Int J Solids Struct,
2015, 75-76, pp 309-320.

33. Zhang, D., Waas, A.M. and Yen, C.-Y. Progressive damage and failure response of hybrid 3D
textile composites subjected to flexural loading, part II: Mechanics based multi scale computational
modeling of progressive damage and failure, Int J Solids Struct, 2015, 75-76, pp 321-335.

34. Singh, C.V. and Talreja, R. Evolution of ply cracks in multidirectional composite laminates, Int J
Solids Struct, 2010, 47, (10), pp 1338-1349.

35. Aboudi, J. Mechanics of Composite Materials: A Unified Micromechanical Approach, 1991,
Elsevier, Amsterdam, The Netherlands.

36. Paley, M. and Aboudi, J. Micromechanical analysis of composites by the generalized cells model,
Mech Mater, 1992, 14, pp 127-139.

https://doi.org/10.1017/aer.2015.19 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2015.19


D’mello ET AL 81Virtual manufacturing of composite aerostructures

37. Bednarcyk, B.A. and Arnold, S.M. Micromechanics based modeling of woven polymer matrix
composites, AIAA J, 2003, 41, (9), pp 1788-1796.

38. Prabhakar, P. and Waas, A.M. Upscaling from a micromechanics model to capture laminate
compressive strength due to kink band instability, Comput Mater Sci, 2013, 67, pp 40-47.

39. Meyer, P. and Waas, A.M. FEM predictions of damage in continuous fiber ceramic matrix
composites under transverse tension using the crack band method, Acta Materalia, 2016, 102, pp
292-303.

40. Mei, Y. Stress Evolution in a Conductive Adhesive During Curing and Cooling, 2000, PhD Thesis,
University of Michigan.

41. Mei, Y., Yee, A.S., Wineman, A.S. and Xiao, C. Stress evolution during theromset cure, 1998,
Material Research Society Symposia Proceedings.

42. Heinrich, C., Alridge, M., Wineman, A.S., Kieffer, J., Waas, A.M. and Shahwan, K.W.
Generation of heat and stress during the cure of polymers used in fiber composites, Int J Eng Sci,
2012, 53, pp 85-111.

43. D’Mello, R.J., Maiarù, M. and Waas, A.M. Effect of the curing process on the transverse tensile
strength of fiber-reinforced polymer matrix lamina using micromechanics computations, Integr
Mater Manuf Innov, 2015, 4, (7).

44. Kamal, M.R. Thermoset characterization for moldability analysis, Polym Eng Sci, 1974, 14, (3), pp
231-239.

45. Aldridge, M.F. In situ Light Scattering Analysis of the Curing Behavior and the Mechanical
Properties of Thermoset Polymers, 2014, PhD thesis, Materials Science & Engineering, University
of Michigan, Ann Arbor, USA.

46. Li, C., Potter, K., Wisnom, M.R. and Stinger, G. In-situ measurement of chemical shrinkage of
MY750 epoxy resin by a novel gravimetric method, Compos Sci Technol, 2004, 64, (1), pp 55-64.

47. Simulia Abaqus user manual, Version 6.12, electronic version, 2012.
48. Bažant, Z.P. and Oh, B. Crack band theory for fracture of concrete, Mater Struct, 1983, 16, (3), pp

155-177.
49. Jirásek, M. and Bažant, Z.P. Inelastic Analysis of Structures, 2002, John Wiley & Sons.
50. Melro, A.R., Camanho, P.P. and Pinho, S.T. Generation of random distributions of fibres in long-

fibre reinforced composites, Compos Sci Technol, 2008, 68, (9), pp 2092-2102.
51. Yang, L., Ying, Y., Ran, Z. and Liu, Y. A new method for generating random fiber distributions

for fiber reinforced composites, Compos Sci Technol, 2013, 76, pp 14-20.
52. Vaughan, T.J. and McCarthy, C.T. A combined experimental-numerical approach for generating

statistically equivalent fiber distributions for high strength laminated composite materials, Compos
Sci Technol, 2010, 70, (2), pp 291-297.

53. Romanov, V., Lomov, S.V., Swolfs, Y., Orlova, S., Gorbatikh, L. and Verpoest, I. Statistical
analysis of real and simulated fibre arrangements in unidirectional composites, Compos Sci Technol,
2013, 87, pp 126-134.

54. Gonzalez, C. and Llorca, J. Mechanical behavior of unidirectional fiber-reinforced polymers
under transverse compression: Microscopic mechanisms and modeling, Compos Sci Technol, 2007,
7, pp 2795-2806.

55. Xia, Z., Zhang, Y. and Ellyin, F. A unified periodical boundary conditions for representative
volume elements of composites and applications, Int J Solids Struct, 2003, 40, pp 1907-1921.

56. Quek, S.C., Waas, A.M., Shahwan, K.W. and Agaram, V. Compressive response and failure of
braided textile composites: Part 2 – Computations, Int J Non-Linear Mech, 2004, 39, (4), pp 649-
663.

57. Kier, Z.T., Salvi, A., Theis, G., Waas, A.M. and Shahwan, K.W. Estimating mechanical properties
of 2D triaxially braided textile composites based on microstructure properties, Compos Part B: Eng,
2015, 68, pp 288-299.

58. Zhang, D. and Waas, A.M. A micromechanics based multiscale model for nonlinear composites,
Acta Mech, 2014, 225, (4), pp 1391-1417.

https://doi.org/10.1017/aer.2015.19 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2015.19

	1.0 INTRODUCTION
	2.0 BACKGROUND
	2.1 Modelling damage during cure

	3.0 RANDOM CELL RVE
	3.1 Boundary conditions
	3.2 Analysis procedure for virtual curing of random cell RVEs
	3.3 Results

	4.0 PLAIN WEAVE RVE
	4.1 Introduction
	4.2 Tow damage model
	4.3 Analysis

	5.0 CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

