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Abstract

The purpose of this study was to establish a machine-learning model that predicts heart dose in
left-sided breast cancer patients treated with volumetric modulated arc therapy (VMAT). As
radiotherapy (RT) poses an increased risk of cardiac toxicity, the model employs anatomical
features to predict heart dose, tackling a significant issue in the management of breast cancer.
This retrospective analysis focused on 53 patients with left-sided breast cancer who received
VMAT RT. Various partial arc VMAT techniques were assessed, including the 2P, 4P and 5P
methods. Key anatomical parameters measured included mean heart distance (MHD), total
heart volume (THV) within the treatment field, heart volume (HV) and planning target volume
(PTV). Elastic Net regressionmodels were created to forecast heart dosemetrics associated with
different VMAT techniques. The Elastic Net regression models successfully predicted heart
dose metrics, with VMAT-4P achieving the best performance, reflected in the lowest root mean
squared error (RMSE) of 0·9099 and a median absolute error (MEDAE) of 0·5760 for the mean
dose. VMAT-5P was particularly effective in predicting V5Gy, with an RMSE of 4·8242 and a
MEDAE of 2·1188, while VMAT-2P recorded the lowest MEDAE for V25Gy at 1·0053. The
feature importance analysis highlighted MHD as the primary predictor, contributing 75%,
followed by THV at 18%, HV at 4% and PTV at 3%. The findings of this study emphasise the
critical need to consider patient-specific anatomical features and the effectiveness of VMAT
techniques in the treatment planning for left-sided breast cancer. The predictive models
established present a pathway for personalised treatment enhancement. Treatment planners are
encouraged to assess a range of anatomical characteristics when choosing the optimal VMAT
technique.

Introduction

Breast cancer continues to pose a major global health issue, with 2·3 million new diagnoses and
685,000 fatalities recorded worldwide in 2020. As the most frequently diagnosed cancer in
women, projections indicate that cases could surpass 3 million by 2040.1 The increasing burden,
especially in transitioning nations where both incidence and mortality rates are elevated,
highlights the urgent requirement for enhanced treatment options and focused interventions.2

Approximately 50% of these cases affect the left breast, which poses unique challenges for
radiation therapy due to the close proximity of the heart.3 Although adjuvant radiotherapy (RT)
enhances locoregional control and increases survival rates, the long-term implications of
radiation toxicity, especially the heightened risk of cardiac issues such as coronary artery disease,
are critical considerations for patients diagnosed with left-sided breast cancer.

The pivotal research conducted by Darby et al. demonstrated a direct relationship between
the average heart dose and the occurrence of significant coronary events, indicating a
concerning 7·4% rise in risk for each grey of exposure.4 Numerous aspects contribute to
cardiotoxicity, surpassing the average heart dose considerations. Addressing these challenges,
the field of radiation oncology has seen substantial advancements in technology. Despite the
effectiveness of Deep Inspiration Breath Hold in lowering cardiac exposure, it is not a viable
option for every patient.5 Therefore, it is essential to utilise free-breathing techniques that yield
comparable heart-protective outcomes.

Volumetric modulated arc therapy (VMAT) has become a noteworthy technique,
demonstrating the ability to achieve enhanced dose conformity and greater sparing of
organs-at-risk (OARs) relative to conventional treatment approaches.6 The capability of VMAT
to deliver radiation through continuous gantry rotation combined with dynamic multileaf
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collimator modulation provides significant flexibility in dose
optimisation, potentially allowing for enhanced heart avoidance
while ensuring comprehensive target coverage.7 Research into the
optimisation of VMAT for left-sided breast cancer treatment is
ongoing. A variety of arc configurations, including both partial and
full arcs, have been explored, each associated with distinct
dosimetric effects.8,9 However, in spite of these advancements,
the ability to accurately predict heart dose is still critical in
treatment planning, as it direct influence on the efficacy of VMAT
in minimising cardiac risk.

The precise prediction of heart dose plays a vital role in the
planning of treatment, as variables such as patient anatomy,
breathing patterns and daily setup can alter the actual dose
received.10 Thus, accurate heart dose prediction is essential for
managing left-sided breast cancer effectively, highlighting the need
for the development of strong models to refine treatment plans and
mitigate cardiac risk. Various anatomical factors have been studied
as possible predictors of heart dose in conventional RT, such as
maximum heart distance (MHD) and central lung distance.11,12

In the past decade, the integration of artificial intelligence and
machine learning (ML) techniques has become more prevalent in
the area of RT.13–16 Despite this trend, there are few studies that
have focused on usingML to predict theMHD during RT based on
patient data.17–20 The relevance of anatomical predictors in the
context of VMAT planning is not clearly defined, and their
relationship with different VMAT arc configurations has not been
extensively investigated.

However, Elastic Net regression, developed by Zou and Hastie
in 2005,21 effectively integrates the benefits of Ridge and Lasso
regression, making it particularly effective in situations where the
significance of predictor variables is unclear. This technique not
only enhances model fitting efficiency but also performs feature
selection, as indicated by Friedman et al. in 2010.22 Ridge regression
is adept at addressing multicollinearity among predictor variables,
while Lasso regression is focused on identifying the most influential
factors affecting outcomes. By capitalising on the strengths of both
Ridge andLasso, ElasticNet provides a formidable tool for uncovering
critical predictors in complex datasets.

Therefore, the purpose of this study is to evaluate the
performance of Elastic Net models in predicting heart dose
metrics across multiple VMAT techniques in patients with left-
sided breast cancer undergoing RT. Additionally, we will apply
Elastic Net models for feature selection to identify significant
anatomical predictors of heart dose.

Methods and Materials

Study design and patient selection

A retrospective analysis was performed involving 53 female
patients diagnosed with left-sided breast cancer who underwent
VMAT RT at the State Cancer Institute, Indira Gandhi Institute of
Medical Science, Patna, Bihar, within the Department of Radiation
Oncology andMedical Physics, fromDecember 2022 to June 2024.
Eligible participants included women aged 18 and older with
histologically confirmed left-sided breast cancer, who received
VMAT treatment and had comprehensive medical records
detailing Tumor, Node, Metastasis (TNM) staging and receptor
status. Exclusion criteria encompassed male breast cancer patients,
those with right-sided breast cancer, individuals diagnosed with
metastatic disease, incomplete medical records, patients who did
not receive VMAT RT, those who had not completed their

treatment and pregnant women. The study received approval from
the institutional review board.

Patient characteristics

The characteristics of the 53-patient population demonstrated
notable diversity, emphasising the complex presentations asso-
ciated with breast cancer. The median age among participants was
47 years, with a range from 29 to 76 years. Tumour stages were
classified fromT1 to T4, and nodal involvement was recorded from
N0 to N3 after modified radical mastectomy. The study included
patients treated both before and after neoadjuvant therapy.
Additionally, there was notable variability in hormone receptor
(ER/PR) and HER2 status among the patients, with a mix of both
positive and negative cases for each.

CT simulation and contouring

The CT simulation was executed with a GE Revolution EVO CT
simulator, which had a slice thickness of 2·5 mm. Patients were
positioned supinely and immobilised using a two-clamp
thermoplastic mask on an integrated breast board, which was
set to an appropriate wedge angle. The affected arm was
abducted and held at an angle of 90 degrees or more, while the
head was turned towards the opposite side. Reference points
were established by placing fiducials on the chest wall, both
centrally and laterally on each side. The CT images were
imported into the Eclipse planning system using DICOM. The
delineation of the Clinical Target Volume, planning target
volume (PTV) and OARs, including the heart and lungs, was
carried out following the guidelines set forth by the Radiation
Therapy Oncology Group protocol.

Treatment planning

The Eclipse treatment planning system (TPS) (version 16·1, Varian
Medical Systems, USA) was used to develop and enhance
treatment plans, which were then executed with a Varian
TrueBeam SVC linear accelerator equipped with Millennium
120 multileaf collimators. Three separate VMAT planning
methods utilising partial arcs with 6MV photon beam were
applied. The two-partial arc method (V-2P) consists of a clockwise
arc spanning from 295–300° to 160–165°, with the collimator angle
adjusted to þ30°. This is followed by a counterclockwise arc that
returns from 160–165° back to 295–300°, utilising a collimator
angle of −30°. The four-partial arc method (V-4P) builds upon the
V-2P technique by adding twomore arcs: a clockwise arc from 300°
to 41° with a collimator angle of 35°, and a counterclockwise arc
from 165° to 80° with a collimator angle of 345°. This method
employs jaw splitting to minimise exposure to the lungs and heart.
The beam-eye view is shown in Fig. 1(a). The five-partial arc
method (V-5P) further refines the planning approach by
integrating all five arcs with jaw splitting: Arc 1 from 310° to
41° at a collimator angle of 17°, Arc 2 from 81° to 160° at 343°, Arc 3
from 331° to 160° at 80°, Arc 4 from 160° to 81° at 357° and Arc 5
from 41° to 310° at 3°and the beam-eye-view is shown in Fig. 1(b).

The VMAT plan was optimised using the Photon Optimizer,
and the final calculations were carried out with the Anisotropic
Analytical Algorithm, employing a grid size of 2·5 mm throughout
the process. The treatment plan prescribed a total dose of 40·05 Gy,
administered in 15 fractions over a 3-week duration. The
optimisation goals included:
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Figure 1. (a) Beam-eye view of beginning setup
in four-partial arc VMAT techniques. (b) Beam-
eye view of beginning setup in five-partial arc
VMAT techniques.
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• Ensuring that 95% of the PTV receives the prescribed dose
(not exceeding 107%).

• Limiting the mean heart dose to≤ 5 Gy, with V5≤ 20% and
V25≤ 10%.

• Restricting the mean lung dose to≤ 15 Gy, with V5≤ 65%,
V10≤ 40%, and V20 ≤ 30%.

• Contralateral lung and breast mean dose less than 3Gy.

Anatomical parameters measurements

In order to find the centre of the target on the central axial CT slice,
one must first identify the midpoint of the PTV along the cranial-
caudal axis. This can be accomplished either through direct visual
inspection of the CT slices or by utilising a measurement tool
within the TPS to determine the cranial-caudal distance of the PTV
and dividing that figure by two. Subsequently, tangent lines should
be drawn from both the lateral and medial edges of the tangential
posterior margin of the PTV. The maximum distance from the
tangent line to the anterior surface of the heart is measured in
centimetres, which is referred to as the MHD. The volume of the
heart that lies above the tangent line is calculated using the TPS and
reported in cubic centimetres (cc), known as the total heart volume
(THV) in the field.23 Additionally, the volume of the contoured
heart is termed the Heart Volume (HV) and the volume of the
contoured PTV is computed and expressed in cubic centimetres
(cc), recognised as the PTV as demonstrated in Fig. 2.

Modelling approach

For this study, the dataset was assembled with the aim of training
and evaluating the Elastic Netmodel as demonstrated in Fig. 3(a) &
3(b). The significance of the predictor variables was assessed by
extracting feature importance from the Elastic Net model as
demonstrated in Fig. 3(c).

Statistical analysis

Elastic net model performance and feature importance
This process required reading the Comma-Separated values (CSV)
file containing patient records and discarding the third column
from the data frame. The predictor (X) and target (y) variable

values were then extracted from the data frame. Finally, the dataset
was divided into training (70%) and testing (30%) sets to allow for
effective model evaluation and its effectiveness was evaluated on
the separate test set. The assessment utilised root mean squared
error (RMSE) and median absolute error(MEDAE) as the metrics
for evaluation.

The significance of the predictor variables was assessed by
extracting feature importance from the Elastic Net model as
demonstrated in Fig. 3(c). Initially, the target variable (Heart mean
doses) was removed from the list of feature names. The feature
importance values were subsequently normalised to total of 1,
allowing for an accurate evaluation of each variable’s relative
contribution. Finally, these values were arranged in descending
order to highlight the most impactful predictors.

Results

This investigation demonstrated that all VMAT plans met the
clinical benchmarks for PTV coverage, ensuring that at least 95%
of the prescribed dose was delivered without any hotspots
exceeding 107%. The sparing of OAR was consistently achieved,
with the Mean Heart Dose (MHD) maintained at ≤ 5 Gy and lung
and heart dose-volume parameters adhered to specified limits.
Moreover, the average dose to the contralateral lung and breast was
kept below 3 Gy. Importantly, our findings stressed the role of
anatomical features in predicting heart dose.

Anatomical features

Tables 1 and 2 demonstrated the heart parameters associated with
the various VMAT techniques utilised in this study. The
assessment included the heart mean dose, heart V5Gy and heart
V25Gy for each VMATmethod across the three patient cohorts. In
Group 1, the VMAT-2P technique recorded the highest mean
heart dose at 5·00 Gy (with a range of 3·27–6·55 Gy), followed by
VMAT-4P at 4·71 Gy (range: 3·14–6·17 Gy) and VMAT-5P at 4·40
Gy (range: 3·16–5·98 Gy). The heart V5Gy was also greatest for
VMAT-2P at 23·82% (range: 14·22–34·02%), while VMAT-4P and
VMAT-5P recorded 21·00% (range: 13·00–30·33%) and 19·61%
(range: 12·51–29·87%), respectively. The heart V25Gy values were

Figure 2. Shows themaximumheart distance and tangent heart
volume in field measurements.
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Figure 3. (a) Importing the required libraries and preparing the dataset, and (b) Training and Evaluation of the ElasticNet regression model. (c) Feature Importance of various
anatomical features in predicting Mean Dose using ElasticNet regression model.
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comparable across all three techniques, falling within the range of
2·70–2·81%.

In Group 2, the VMAT-2P technique exhibited the highest
mean heart dose at 5·70 Gy (with a range of 3·84–7·47 Gy),
followed closely by VMAT-4P at 5·31 Gy (range: 3·54–7·07 Gy)
and VMAT-5P at 5·08 Gy (range: 3·27–7·19 Gy). The heart V5Gy
was also greatest for VMAT-2P, recorded at 26·13% (range: 14·72–
40·65%), while VMAT-4P and VMAT-5P showed values of
22·59% (range: 12·77–32·66%) and 21·56% (range: 11·44–37·11%),
respectively. The heart V25Gy values varied between 3·43% and
4·41% across the three techniques.

In Group 3, the VMAT-2P technique recorded the highest
mean heart dose at 6·24 Gy (with a range of 3·89–8·85 Gy). This
was followed by VMAT-4P, which delivered a mean dose of 5·69
Gy (range: 3·48–7·14Gy), and VMAT-5P, with amean dose of 5·57
Gy (range: 3·72–7·66 Gy). The heart V5Gy was also greatest for
VMAT-2P at 29·70% (range: 14·35–53·78%), while VMAT-4P and
VMAT-5P had heart V5Gy values of 24·04% (range: 12·20–
35·79%) and 23·03% (range: 13·40–37·59%), respectively. The
heart V25Gy values varied between 5·22% and 5·60% across the
three techniques.

Predictive model

We employed the Elastic Net regression model to predict heart
doses for the performance of three VMAT techniques (2P, 4P and
5P) was evaluated using RMSE, Median and absolute error (AE)
for mean dose, V5Gy and V25Gy. The results are as demonstrated
in Table 3.

In terms of mean dose, VMAT-4P achieved the lowest RMSE of
0·9099 and a MEDAE of 0·5760, indicating its potential for the
most precise dose prediction among the three methods evaluated.
Regarding V5Gy, VMAT-5P outperformed the others with the
lowest RMSE of 4·8242 and a MEDAE of 2·1188, suggesting its
effectiveness in predicting and reducing the volume of tissue
exposed to low doses. For V25Gy, VMAT-2P recorded the lowest
MEDAE at 1·0053, while VMAT-4P demonstrated a marginally
lower RMSE of 2·1798 compared to VMAT-2P is 2·1473.

Discussion

Our study was designed to assess the impact of various VMAT
techniques on heart dose parameters in patients with left-sided

Table 1. Patient groups and heart anatomical parameters

Group (Range) No. of Patients MHD (cm) THV (cc) HV (cc) PTVV (cc)

1 12 1·4–2·25 17·1–36·8 300–430·0 300–550

2 20 2·3–2·89 36·9–64·4 430·1–510 550·1–700

3 21 2·9–4 64·5–125 510·1–725 700·1–1190·1

MHD, maximum heart distance (cm); THV, tangent heart volume in field (cc); HV, heart volume (cc); PTV, planning target volume (cc).

Table 2. Heart dosimetric parameters by different volumetric modulated arc therapy (VMAT) techniques

Group (Range) VMAT Techniques Heart Mean Dose (Gy) Avg. (Min.–Max.) Heart V5Gy (%) Avg. (Min.–Max.) Heart V25Gy (%) Avg. (Min.–Max.)

1 VMAT-2P 5·00 (3·27–6·55) 23·82 (14·22–34·02) 2·70 (0·33–6·00)

VMAT-4P 4·71 (3·14–6·17) 21·00 (13·00–30·33) 2·71 (0·06–6·01)

VMAT-5P 4·40 (3·16–5·98) 19·61 (12·51–29·87) 2·81 (0·05–6·24)

2 VMAT-2P 5·70 (3·84–7·47) 26·13 (14·72–40·65) 4·28 (1·43–8·82)

VMAT-4P 5·31 (3·54–7·07) 22·59 (12·77–32·66) 3·43 (1·17–8·70)

VMAT-5P 5·08 (3·27–7·19) 21·56 (11·44–37·11) 4·41 (1·15–9·09)

3 VMAT-2P 6·24 (3·89–8·85) 29·70 (14·35–53·78) 5·27 (1·51–9·35)

VMAT-4P 5·69 (3·48–7·14) 24·04 (12·20–35·79) 5·22 (1·53–9·30)

VMAT-5P 5·57 (3·72–7·66) 23·03 (13·40–37·59) 5·60 (1·74–9·96)

VMAT, volumetric modulated arc therapy; 2P,4P,5P, partial arcs.

Table 3. Elastic Net regression model to predict heart doses for the performance of three volumetric modulated arc therapy (VMAT) techniques

Heart Parameters

VMAT 2P VMAT 4P VMAT 5P

RMSE MedianAE RMSE MedianAE RMSE MedianAE

MEAN DOSE (Gy) 0·9180840719 0·5926458332 0·9099624084 0·5760808472 1·081165994 0·7508545

V5Gy (%) 7·971793505 5·570206228 5·999036149 4·798075169 4·824229404 2·118848501

V25Gy(%) 2·147328691 1·005335023 2·179816114 1·531300543 2·538276043 2·123246959

RMSE, root mean square error; MedianAE, median absolute error.
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breast cancer, considering different anatomical parameters.
Additionally, we evaluated the predictive capabilities of Elastic
Net regression models for heart dose metrics. The findings provide
essential insights into the relationship between patient anatomy,
the choice of VMAT techniques and cardiac exposure during RT.

Patient anatomy and VMAT technique effectiveness

Organising patients into three categories based on increasing heart
anatomical parameters revealed a notable trend: heart doses
generally escalated from Group 1 to Group 3 across all VMAT
techniques, as shown in Tables 1 and 2. This link between larger
heart volumes, increased MHDs and heightened cardiac exposure
underscores the importance of factoring in individual patient
anatomy during treatment planning.

Notably, our study findings revelled that VMAT-5P typically
resulted in the lowest average heart doses, especially in patients
with smaller MHDs. However, its advantages were not as
significant for patients with larger MHDs and more intricate
anatomical parameters. It is important to note that V25Gy did not
always correspond with the mean heart dose, underscoring the
need to evaluate a range of dosimetric factors.

These results imply that treatment planners should take into
account MHD, THV, HV and PTV when determining the most
appropriate VMAT technique. While VMAT-5P may be optimal
for patients with favourable anatomical features, the decision
between VMAT-4P and VMAT-5P for those with larger MHDs
should be based on specific dosimetric objectives and individual
patient characteristics.

A previous study24,25 has predominantly utilised MHD as the
main predictor for heart dosimetry in tangential field RT for left-
sided breast cancer. Our research, however, proposes that a more
integrated approach is necessary. This approach should take into
account various parameters, such as MHD, THV within the field,
heart volume (HV) and PTV, to select the most appropriate
VMAT technique, ensuring optimal heart dosimetry.

Predictive modelling and feature importance

The Elastic Net regression models yielded encouraging findings in
the prediction of heart dose metrics for VMAT techniques as
demonstrated in Table 3. For mean heart dose, the models
displayed consistent performance, with RMSE values ranging from

0·91 to 1·08 Gy. Interestingly, the model’s accuracy in predicting
V5Gy improved with incresing arc in VMAT techniques
complexity, suggesting that advanced techniques provide more
reliable low-dose distribution predictions demonstrated in
Fig. 4(a) and 4(b) showed that the radar chart indicates that the
5P plan tends to outperform the others, particularly in terms of
lowering the mean dose and V25Gy, while achieving comparable
V5Gy coverage. This suggests that the 5P VMAT plan may offer a
superior dose distribution advantage.

Fig. 5 demonstrates that feature importance analysis has
identified MHD as the most significant factor, contributing nearly
74% to the model’s predictive accuracy. This finding is consistent
with prior studies24,25 that have recognised the importance of
MHD in treatment planning. Our analysis further indicated that
THV, HV and PTVV also significantly impact the model’s
decision-making, with THV being the second most influential
factor at approximately 18% and HV at about 4%. The
incorporation of PTV Volume as a predictive variable is
significant, despite its lower importance approx. 3%. Although
previous study26,27 emphasised the importance of target volume in
estimating heart dose, our results indicate that its impact may be
less significant compared to heart-specific metrics. These results
suggest that while MHD is a dominant factor, it is important to
consider other parameters when choosing a VMAT technique.

Our investigation shows that Elastic Net regression models are
proficient in predicting heart dosemetrics for VMAT techniques. The
three-fold cross-validation results affirm the models’ strength, with
RMSE values recorded between 0·91 and 1·08Gy formean heart dose,
4·82 to 5·23 Gy for V5Gy and 2·14 to 2·25 Gy for V25Gy. These
findings indicate that the models can be utilised to predict heart dose
metrics for VMAT techniques with considerable accuracy.

Our study findings reveal that each VMAT technique possesses
distinct advantages and disadvantages regarding dosimetric
accuracy. VMAT-4P exhibited the lowest RMSE and MEDAE for
mean dose, indicating its potential for the most accurate dose
prediction among the three techniques assessed. Conversely, VMAT-
5P excelled in minimising the volume of tissue receiving low doses
(V5Gy), achieving the lowest RMSE and MEDAE. For the V25Gy
metric, VMAT-2P showed the lowest MEDAE, while VMAT-4P had
a slightly lower RMSE than VMAT-2P. These results suggest that the
selection of a VMAT technique should be tailored to specific
dosimetric goals and the unique characteristics of each patient.

Figure 4. (a) & (b) radar chart across three VMAT techniques in Elastic Net regression models.
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The findings of our research present three key implications.
First, treatment planners are encouraged to take into account
various anatomical parameters, such asMHD, THV, HV and PTV,
when selecting the most suitable VMAT technique for patients
with left-sided breast cancer. Second, the choice of VMAT
technique should align with specific dosimetric goals, including
mean dose, V5Gy or V25Gy. Lastly, our research underscores the
importance of a deeper comprehension of the connections between
patient anatomy, the effectiveness of VMAT techniques and
dosimetric precision. By understanding the interactions among
these elements, treatment planners can create more effective and
tailored treatment approaches.

Compared to earlier ML models, our Elastic Net regression
models exhibited superior performance in forecasting heart dose
metrics. A study conducted by Wang et al.28 utilised a random
forest model for heart dose prediction, yielding a RMSE of 1·23 Gy.
In contrast, our Elastic Net models achieved an RMSE between
0·91 and 1·08 Gy, demonstrating a notable improvement in
predictive accuracy for heart dose estimation. This aligns with Li
et al.29 study that has demonstrated the efficacy of Elastic Net
regression in forecasting radiation doses to at-risk organs.
Additionally, our models highlighted MHD as the most critical
predictor of heart dose, which is consistent with the findings of
Darby et al.30 and Ranger et al.,31 who also underscored the
importance of MHD in optimising heart protection during RT.

Treatment planning considerations

The findings of this study carry important implications for the
formulation of more effective and customised treatment
approaches for patients with left-sided breast cancer. By under-
standing the relationship between patient anatomy, the efficacy of
VMAT techniques, and the precision of dosimetric measurements,
treatment planners can enhance their decision-making processes.
The predictive models established here can act as essential
resources for rapidly assessing heart dose metrics, which may
facilitate a more efficient treatment planning workflow.

Limitation of study and future consideration

This study has several limitations, notably the small sample size of
53 patients, whichmay restrict the applicability of the findings. The

evaluation was limited to only three VMAT techniques, and
important confounding factors such as patient age, tumour
location and treatment planning parameters were not included in
the analysis. Future investigations should aim for larger patient
populations, examine a wider variety of VMAT techniques and
take into account a more comprehensive set of variables that could
affect heart dose metrics. Additionally, prospective studies are
needed to validate the predictive models in clinical settings and
assess their influence on treatment outcomes.

Conclusion

This study investigation highlights the essential aspects of patient
anatomy, the effectiveness of VMAT techniques and the accuracy
of dosimetric evaluations in the context of treatment planning for
left-sided breast cancer. The findings indicate that Elastic Net
regression models can reliably predict heart dose metrics for
different VMAT approaches, thereby supporting tailored treat-
ment planning. It is vital to consider multiple anatomical factors,
including MHD, THV, HV and PTV, when selecting VMAT
techniques, as each option carries its own set of dosimetric pros
and cons. Future research should focus on validating these insights
in larger patient populations and exploring the integration of
predictive models into automated planning systems to enhance
treatment outcomes and lower the risk of cardiac toxicity.
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