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1. INTRODUCTION 

The problem of estimating radio sky brightness distributions from 
incomplete, and noisy, visibility measurements, such as those collected 
by a long baseline interferometer, has recently been attacked using non
linear data-adaptive techniques such as the Maximum Entropy method 
(Abies (1974), Wernecke (1976), Wernecke and D'Addario (1977), Gull and 
Daniell (1978)) and the Maximum Likelihood method (Papadopoulos (1975)). 

In general, there are many brightness distributions consistent 
with the measured visibilities (Bracewell (1956)). The Maximum entropy 
method selects, as its estimate, the brightness distribution which has 
maximum entropy and is consistent with the data. It has been interpreted 
as the most objective way of assigning the missing values of the visi
bility (Abies (1973), Ponsonby (1973)), and as selecting the most 
probable image given the Bose-Einstein statistics of photons (Kikuchi 
and Soffer (1977)). The second interpretation has the advantage that 
the two entropy measures, in current use namely log f and-f log f where 
f is the brightness (Wernecke (1976)), can be derived as limiting cases 
of a more general expression (Kikuchi and Soffer (1977)). 

The Maximum Entropy equations possess no known closed-form 
solution in two dimensions and hence they must be solved numerically 
using the techniques of constrained optimization (Wernecke and D'Addario 
(1977)). The value of the Lagrange multiplier used in this method can 
only be estimated and hence the solution is approximate. 

A method of extending the statistical interpretation of the Maximum 
Entropy method advanced by Kikuchi and Soffer (1977) is presented here 
and it is shown that a definite value can be assigned to the Lagrange 
multiplier introduced by Wernecke and D'Addario (1976). This method 
involves the use of Bayes' rule connecting conditional probabilities 
(Hoel (1947)). 

We discuss first the Maximum Likelihood method and the CLEAN algorithm. 
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2. THE MAXIMUM LIKELIHOOD METHOD 

We wish to estimate the sky brightness f(x,y) within a region of 
sky described by orthogonal coordinates x,y. We have M samples of the 
measured visibility 

nu = m(ui,vi) i = 1,2,...M (1) 

The measured v i s i b i l i t y i s r e l a t e d to the r e a l v i s i b i l i t y m. by the 
a d d i t i o n of an er ror term 

m. - m. + e. i = 1 ,2 , . . .M (2) 
i l l 

where 

m. = \ 
1 JD 

f (x ,y ) exp {- j . 2-rr. (u .x + v . y ) } dxdy (3) 

We w i l l approximate t h i s i n t e g r a l by a sum over N p ixe l s of area AA = 
Ax.Ay 

N 
mi = AA I ffc exp {-j .2ir. ( u ^ + v ^ ) } (4) 

k=l 

The pixel area AA must be chosen to be less than the resolution of the 
interferometer in order that this approximation can fit the observed 
visibilities. 

For convenience we will use vector notation for all variables. 

2C = {x. : i=l,... (no. of elements in x)} (5) 

We assume that the error terms e. are uncorrelated, zero mean, 
complex Gaussian distribution variables with a.2 on the ich sample 
point. Therefore the probability of the vector of error terms £ lying 
between _e_f and £ + d_e_' is 

-M M 9 M . 2 
P(£')de' = (2ir) H a.~l exp -1_ E lf_il de' (6) 

i=l X 2 i=l a£2 

The function P(^') is the probability density function of the error 
vector £'. from equation (2) we can see that 

e/ = m - m (7) 

and therefore P(0 de_' tells us the probability of measuring the 
visibility between m and m + dm given that the true visibility is m. 
Thus 

P(e') = P(mlm) (8) 
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is the conditional probability density function of the observed visi
bility vector m given that the true visibility vector is m. Since the 
true visibility m can be calculated from the true brightness 1_ we have 
that P(m|m) = P(m||). 

One obvious .estimate of the brightness distribution is that which 
gives maximum probability of measuring the observed visibility vector 
m. Formally, we maximise the Likelihood function given by L = P(m|,f), 
in fact this means that the true visibility in is fitted to the observed 
visibility m in the weighted least squares sense. Schwarz (1978) has 
shown that the CLEAN algorithm performs such a fit. However, this 
Maximum Likelihood estimate may have negative components, though usually 
only at the noise level. 

A simple physical constraint is that the brightness must be posi
tive. We may incorporate this constraint into the Maximum Likelihood 
estimate by the use of barrier functions (Adby and Dempster (1974). A 
barrier function can be used in optimization to restrict the range of 
possible solutions to within a subspace of the original space. For 
example to maintain positivity we may add a logarithmic term to the 
function to be maximised; this discriminates against solutions near 
zero and forbids negative solutions. Using this approach we find the 
restricted Maximum Likelihood estimate by requiring that 

N 
J = a ^ loge fk + logeL a « 1 (9) 

be maximised. For convenience, we have used the logarithm of L in 
equation (9); this produces the same estimate since the logarithm is 
a monotonically increasing function of argument. From equation (6) we 
have that 

M | A 12 
log L = -i Z *mi~mi' + constant (10) 

i=l a.2 

This estimate may be found using the iterative Maximum Entropy algor
ithm developed by Wernecke and D'Addario (1977) with their Lagrange 
multiplier set to AA(2a) 1. 

Therefore using a technique of constrained optimization, namely 
the use of barrier functions we may introduce a physical constraint, 
the positivity of brightness distributions. 

We will now describe another way of introducing physical constraints. 

3. THE BAYESIAN APPROACH 

The philosophy of Bayesian statistics (Silvey (1970)) is to 
introduce a priori knowledge about the parameters to be estimated. 
We introduce a weighting function Q(f) which describes our degree of 
belief in the vector f prior to measurement. This prior knowledge is 
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transformed to posterior knowledge by the sampling distribution P(ni|.f)' 
Bayes' rule gives the conditional probability density function of the 
brightness vector i , given the measurements m, to be 

R(f |m) = Q(f) P(m|f) ( n ) 

N(m) 

where 

N(m) = \ Q(f) P(m|f) df (12) 

all _f 

The presence of N(m) in the denominator means that Q(f) does not have 
to be normalizable (Silvey 1970), i.e. 

\ Q(f) d_f ̂  finite 

all £_ 

This leads to an extension of the Maximum Likelihood method, we 
choose the brightness vector which is most probable given that the 
measured visibility is m. 

Therefore if we can find a suitable form for Q(f), which we will 
call the prior, then we can find an estimate based on the measurements 
and on the knowledge contained in Q(f). 

Jaynes (1968) has discussed two "objective" methods of defining 
priors in cases where we have very little knowledge about the para
meters to be estimated. One of these, now known as Jaynes' Principle 
involves the maximisation of the entropy of Q(f) subject to certain 
observations constraints. This principle forms the basis of the 
Maximum Entropy method (Abies 1974) which therefore should be viewed 
as an attempt to find a prior distribution suitable for use in Bayes' 
rule. 

However we have some physical knowledgeabout the brightness 
distribution which may be used to select a prior. 

4. INTRODUCTION OF PHYSICAL KNOWLEDGE 

(i) As stated above, we know that the brightness distribution 
must be positive. Using this fact only we require 

Q(f) = constant if all f. > 0 
= 0 or undefined otfterwise (14) 

^ I 

Since we wish to find the maximum of R(f_|m) we require that the 
derivatives of Q(f) be calculable. By analogy with the barrier 
function mentioned above we can easily select a suitable function 
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N 

Q(|) = E fJ a « 1 (15) 
i»l 

This is an example of an unnormalizable function. This prior can be 
made arbitrarily close to unity for any f_ > £ by selecting a small 
enough. 

* We now choose as our estimate the vector £ which maximises 
P(f_|m), or more conveniently its logarithm. 

Therefore 

~[c« * iog J. - i " l u l l -° 
—L i=l k=l ak2 -J1.=1B 

Again this may be solved using the algorithm of Wernecke and 
D'Addario (1977). 

( i i ) We should recognize that we observe the brightness d i s 
tr ibution by photons and therefore we should use Bose-Einstein 
s t a t i s t i c s to select a pr ior . 

Kikuchi and Soffer (1977) use these s t a t i s t i c s to derive a form 
for Q(f) valid in the radio-astronomical regime. 

N 
log Q(f) = z i log f, + constant (17) 

e k-1 e k 

where z is the number of degrees of freedom for each photon. Kikuchi 
and Soffer argue that z is due to a spatial uncertainty about the 
origin of the photon within the pixel and to a temporal uncertainty 
about the time of arrival of the photon. This temporal uncertainty 
clearly depends upon the noise level, bandwidth and integration time 
and thus, in our formulation, must be included in the sample distri
bution P(m|f). Then z is given by the number of resolution elements 
in a pixel",Therefore we have that z = 1 since z cannot be fractional 
and the pixels are, by definition, not resolved. 

Note that the prior has the same form as that in (i) and thus, the 
estimate may also be solved by the algorithm of Wernecke and D'Addario 
(1977) with their Lagrange multiplier set to AA/2. 

We have used strictly physical knowledge in cases (i) and (ii) 
and have obtained the most probable estimates given that knowledge. 
However another application of Bayes' rule is possible and this we 
discuss now. 
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5. INTRODUCTION OF HUMAN JUDGEMENT 

We have a set of noisy, incomplete measurements of the visibility 
which is compatible with many different brightness distributions. In 
the above formulation we have selected the most probable, in some 
sense, of these as our estimate. 

Another approach would be to reject the selection of one of these 
distributions as an estimate but instead to try and characterise this 
set of possible brightness distributions in a smaller set. 

Let us select a property, A, of brightness distributions and 
devise a measure M. of that property. For example, Baker (1978) has 
proposed the measure 

M = 
s 

N 
I 
k=l 
V (18) 

for the sharpness or contrast of an image. Then we postulate a prior 
dependent upon this measure; for example 

Q(f) = exp (gMA) (19) 

Using the above Bayesian formulation and this prior we can define a 
most probable image f, which obeys the condition 

_9_ 

3f 

(0MA - | Z 
m. - m. * 1 l l1 ) 

i=l a.2 
i^ 

= 0 

i=4 
Then for g positive we select the distribution with property A dominant 
and for 3 negative we select the distribution with the opposite of 
property A dominant. 

If we use sharpness as property A then we find both the sharpest 
and the least sharp brightness distributions consistent with the 
measurements. 

We could now use these two brightness distributions as the subset 
characterising the full set. The presence of a feature in both 
estimates would be strong evidence that such a feature was contained 
in the true brightness distribution. 

Under this philosophy an all purpose map such as that described 
by Gull and Daniell (1978) would not be satisfactory, instead we 
would produce a number of maps by different algorithms and study this 
set instead of one member. 
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6. CONCLUSIONS 

We have used Bayesian statistics in two different modes. 

In the first we have extended the interpretation of the Maximum 
Entropy method made by Kikuchi and Soffer (1978). We acknowledge that 
we observe the radio source by photons and therefore we can apply Bose-
Einstein statistics to select, as the most probable, one of the set of 
distributions consistent with the data. This Bayesian formulation has 
the advantage that no arbitrary constraints, such as Lagrange multi
pliers, are involved. 

In the second mode we choose not to select one map as the best in 
some sense but to use several different maps to characterise the set 
of brightness distributions consistent with the data. 

Although the two modes are different philosophically the map 
produced by using Bose-Einstein statistics can be regarded as belonging 
to the characterising subset of the second mode. However this second 
mode has the advantage that the final judgement is left to the person 
processing the visibility measurement. 
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