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Abstract

Single-particle cryo-electron microscopy (cryo-EM) is a powerful imaging modality capable of visualizing proteins
and macromolecular complexes at near-atomic resolution. The low electron-doses used to prevent radiation damage
to the biological samples, however, result in images where the power of the noise is 100 times greater than the power
of the signal. To overcome these low signal-to-noise ratios (SNRs), hundreds of thousands of particle projections are
averaged to determine the three-dimensional structure of themolecule of interest. The sampling requirements of high-
resolution imaging impose limitations on the pixel sizes that can be used for acquisition, limiting the size of the field of
view and requiring data collection sessions of several days to accumulate sufficient numbers of particles. Meanwhile,
recent image super-resolution (SR) techniques based on neural networks have shown state-of-the-art performance on
natural images. Building on these advances, here, we present a multiple-image SR algorithm based on deep internal
learning designed specifically to work under low-SNR conditions. Our approach leverages the internal image
statistics of cryo-EM movies and does not require training on ground-truth data. When applied to single-particle
datasets of apoferritin and T20S proteasome, we show that the resolution of the 3D structure obtained from SR
micrographs can surpass the limits imposed by the imaging system. Our results indicate that the combination of low
magnification imaging with in silico image SR has the potential to accelerate cryo-EM data collection by virtue of
including more particles in each exposure and doing so without sacrificing resolution.

Impact Statement
This research paper describes an image super-resolutionmethod that improves the quality of single-particle cryo-
EM images and results in higher resolution reconstructions of protein structures. By leveraging internal image
statistics of cryo-EM movies, we propose to use a deep-learning framework that is self-supervised and does not
require training on ground-truth images. This work is addressed to people working at the interface between
biological imaging and computer vision. The proposed approach is validated on real single-particle cryo-EM
datasets and we show that the resolution of 3D structures can surpass the limits imposed by the imaging system.
This advance can potentially accelerate cryo-EM data collection and pave the way for improving the throughput
of structure determination using single-particle cryo-EM.

1. Introduction

Single-particle cryo-electron microscopy (cryo-EM) is a powerful imaging modality used to determine
the three-dimensional structure of proteins andmacromolecular complexes at near-atomic resolution(1–4).
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By combining hundreds of thousands of noisy projection images of identical copies of the molecule of
interest taken from different orientations, 3D reconstructions can be obtained where molecular level
details can be visualized. While the signal contributed by each individual projection is very weak,
averaging the contribution from many particles allows to overcome the extremely low signal-to-noise
ratios (SNRs). Acquiring such large datasets, however, is time consuming and can take several days to
complete, becoming a bottleneck in the structure determination pipeline. One strategy to improve the
throughput of data collection is to increase the size of the field of view by acquiring images at lower
magnification. For example, doubling the pixel size will increase the imaging area fourfold, resulting in
four times as many particles per exposure. While this strategy will in principle limit the attainable
resolution due to the coarser spatial sampling, it does not mean a permanent loss of high-frequency
information because images are collected in movie-mode and motion exists between the acquired frames.
Super-resolution (SR) is a widely studied problem in the field of natural image photography. In recent
years, the SR field has focused on single-image super-resolution (SISR) where a high-resolution
(HR) image is obtained from a single low-resolution (LR) input. However, SISR is mostly limited to
adding high-frequency information from learned image priors. On the other hand, multi-image super-
resolution (MISR) aims to reconstruct the original HR signal using multiple LR images. When sub-pixel
motion exists, each LR image provides different LR samples of the underlying higher-resolution scene.
MISR approaches exploit this additional information to achieve the recovery of the HR signal. This same
principle presents the opportunity of using MISR to overcome resolution constraints in single-particle
cryo-EM.

Many SR algorithms based on machine learning have been proposed that achieve state-of-the-art
(SotA) performance on natural images. Here, we set out to explore whether these strategies can be
extended to work on low-SNR images such as the noisy projections obtained in single-particle cryo-EM.
We propose to use a MISR algorithm that utilizes deep internal learning as initially presented in the zero-
shot super-resolution (ZSSR) framework(5) for SISR. Indeed, learning based on internal statistics has
shown promising results for cryo-EM image denoising(6,7). Internal data repetition at different frequency
levels occurs naturally in single-particle cryo-EM: first, movie frames that are acquired earlier in the
exposure contain more high-frequency signal than movie frames acquired later in the exposure; and
second, each exposure area contains hundreds of naturally occurring projections of the same macromol-
ecule. Our algorithm, cryo-zero-shot super-resolution (cryo-ZSSR), exploits cross scale internal data
repetition in noisy movies obtained from frozen hydrated protein samples imaged under an electron
microscope. We train a movie-specific neural network that takes in multiple frames from each LR movie
and reconstructs a single 2� SR image per exposure area. These SR images are then fed into the standard
cryo-EM data processing pipeline and used to generate a 3D reconstruction of the protein of interest
(Figure 1). Our SR algorithm is self-supervised and does not require training on ground-truth HR data,
which is nevertheless not available in cryo-EM.We evaluate the performance of our approach on two real
datasets of apoferritin and T20S proteasome and show that the SR images can produce higher resolution
reconstructions compared to the LR data. Used in combination with low-magnification imaging, our
approach can be used to accelerate data collection while still producing high-quality 3D reconstructions.

2. Related Work

There has been a tremendous amount of work on image SR in the past couple of decades, both for SISR
and for MISR. Traditional SISR algorithms can be divided into three categories: interpolation-based
methods (e.g., bilinear, Lanczos kernels, etc.), reconstruction-based methods(8,9), and example-based
methods(10,11). Interpolation-based algorithms are straightforward and fast but suffer from limited
accuracy. Reconstruction-based methods make use of prior knowledge about images by restricting the
possible solution space to generate high-quality images. However, these methods are usually time-
consuming and their performance degrades rapidly as the upsampling factors increase. Example-based
methods usually leveragemachine learning to analyze relationships between the LR and its corresponding
HR counterparts from training examples. More recently, deep-learning-based SISR algorithms(12,13) built
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upon example-based learning received wide attention and demonstrated great superiority compared to
more traditional approaches.(12,13) Generative adversarial network (GAN)(14) based deep-learning
approaches, such as Super Resolution Generative Adversarial Network (SRGAN)(15), and Photo Sam-
pling via Latent Space Exploration (PULSE)(16) are able to perform extremely well on certain natural and
facial images. However, most of these networks are trained in a supervisedmanner and require knowledge
of ground-truth images. Results reconstructed using GANs, even though visually appealing, tend to
generate information that does not exist in the actual HR pictures. In addition, the formation of training
datasets, specifically the LR images, are usually generated using predetermined ideal processes (e.g.,
bicubic downsampling, Gaussian blurring, etc.). In reality, LR images rarely follow this model, resulting
in poor performance of previously mentioned SotA methods. To overcome this limitation, ZSSR was
proposed by Shocher et al.(5). Instead of relying on prior training, this method exploits the internal
recurrence of information inside a single image and trains an image-specific CNN on examples extracted
solely from the input image itself. Thus, ZSSR is able to achieve and outperform SotA methods on LR
images generated under nonideal downsampling models.

Turning to the problem of MISR, which involves the extraction of information from many LR
observations of the same scene to reconstruct HR images, the earliest method developed by Tsai and
Huang(17) used a frequency domain technique to improve the spatial resolution of images by combining
multiple LR imageswith sub-pixel accuracy displacements. Later on, other spatial domainMISRmethods
were proposed that include nonuniform interpolation such as adaptive kernel regression(18), Bayesian
modeling algorithms(19), and projection onto convex sets (POCSs)(20). Most of these SRmethods assume
a priori knowledge about the motion model, blur kernel, and noise level. However, there are many cases
where the actual image degradation process is unknown.

Figure 1. Super-resolution single-particle structure determination pipeline and example micrographs
from two cryo-EM datasets. (a) Cryo-EM movies are collected using a large pixel size and subsequently

upsampled by a factor of 2 using our self-supervised cryo-zero-shot super-resolution (cryo-ZSSR)
approach. Super-resolved micrographs are then fed into the standard single-particle reconstruction
workflow producing three-dimensional structures at resolutions surpassing the Nyquist rate. The 2�
upsampling factor effectively results in a 4x speedup in the rate of data acquisition allowing the collection
of four times more particles in the same amount of time. (b) Left: Example of a single raw frame from a
movie of apoferritin from EMPIAR-10146 collected at 2 e�=Å2. Right: Average of 50 frames corres-
ponding to a total dose of 100 e�=Å2. (c) Left: Example of a single raw frame from a movie of T20S

proteasome from EMPIAR-10025 collected at 1.4 e�=Å2. Right: Average of 38 frames corresponding to a
total dose of 53.2 e�=Å2.
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For this reason, many blind SR image reconstruction methods were developed. These methods usually
involve two steps: (a) motion estimation for LR images, followed by (b) simultaneous estimation of both
the HR image and the blurring function. Since separating image registration and HR estimation tends to
produce sub-optimal results, some researchers have developed methods that jointly estimate motion
parameters and the HR reconstruction(21). Recently, similar to SISR problems, deep-learning-based
methods have been proposed to simultaneously solve video SR andMISR problems. Most of the existing
work is focused on video SR, such as frame recurrent SR(22) which utilizes previous inferred HR frames to
super-resolve subsequent frames in an end-to-end trainable framework that incorporates both frame
registration and HR estimation. More recently, several deep-learning-based algorithms are proposed to
solve MISR problems in satellite imaging and burst photography. HighRes-net(23) learns to co-register,
fuse, and upsample multiple frames into one super-resolved image in an end-to-end manner. Residual
attention model (RAMS) utilizes 3D convolutions to exploit spatial and temporal relationships across
images for HR reconstruction(24) of satellite images. Deep burst SR(25) combines both pixel-wise optical
flow alignment and attention based fusion module to achieve HR reconstruction from image bursts.

Despite all the previous work of SR on natural and satellite images, little work has been done onMISR
methods in the context of cryo-EM. Preliminary work done by Chen et al.(26) demonstrated that MISR
reconstruction surpassing the Nyquist frequency is possible by using a noiseless synthetic dataset and
without considering the modulation effects of the contrast transfer function (CTF). Real micrographs
acquired with an electron microscope, however, inevitably suffer from low-SNR due to the small doses
used during imaging and are modulated by the CTF. Meanwhile, deep-learning techniques have been
applied to cryo-EM imaging in a variety of other contexts, including particle picking(27–30), automated
micrograph and class selection(31), CNNs for segmentation of cryo-electron tomograms(32), map denois-
ing and local resolution estimation(33–35), and more recently the study of conformational heterogeneity
during 3D reconstruction(36). Inspired by the recent success of deep-learning-basedMISR approaches, we
aim to tackle the problem of SR using cryo-EM images by jointly registering LR images and recon-
structing SR images, all within an end-to-end trainable network based on the ZSSR framework(5). An
early version of our approach was reported in Huang et al.(37)

3. Method

3.1. Deep internal statistics of cryo-EM micrographs

The key assumptions of our approach are that cryo-EMmicrographs have data internal repetition and that
due to radiation damage, the amount of signal available at different frequencies varies for each frame, as
high-frequency information is degraded in frames with more radiation damage. Figure 1 shows an
example of a single-particle cryo-EM micrograph (average from all raw movie frames). Since each
micrograph contains hundreds of projections of the same protein-of-interest, data repetition occurs
naturally. In addition, as data is collected in movie mode, early frames and late frames are subject to
different radiation damage regimes. Earlier frames in the exposure contain more high-frequency infor-
mation than later frames which are affected by radiation damage. As shown in Figure 2, at higher
frequencies, Thon rings are more visible in micrographs obtained by averaging the first half of frames in
the movie, compared to micrographs obtained by averaging the second half of the frames. This
phenomenon was also empirically verified by Bartesaghi et al.(38) and Grant and Grigorieff(39) which
compared 3D reconstructions of proteins obtained using frames from different exposure ranges, showing
that frames from lower exposures achieve 3D reconstructions with higher resolutions compared to those
obtained using later frames in the exposure.

3.2. Problem formulation

MISR aims at recovering an HR image IHR from a set ofM LR images ILRi , i∈ 1,…,M½ �of the same scene
acquired during a certain time window. Typically, a LR image ILRi is related to the HR image IHR through
motion shift, blurring, downsampling, and noise corruption:
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ILRi ¼DC ϕmi
IHR
� �� �þσi, (1)

where D is the downsampling process, C represents blurring, ϕmi
is the relative motion for each frame,

and σi is the noise corruption. In the context of cryo-EM, ILRi are the collected LRmovie frames and IHR is
the ground-truth HR image, without CTF modulation and free of noise. Motion shift mainly comes from
beam-induced motion that occurs during data acquisition, blurring is modeled by the CTF, which
describes how contrast (information) is transferred to the image in terms of the spatial frequency. Severe
noise corruption is a result of low electron dosage during imaging. It is worth noting that the CTF, unlike
other commonly used blurring kernels such as Gaussian, has multiple zero crossings, which means
information at certain frequencies is completely lost, making direct inversion impossible. Denoising
techniques applied at the single image-level are also prone to the removal of high-frequency information
along with the actual noise. Therefore, in the standard cryo-EM data processing pipeline, CTF inversion
and denoising is not applied until the final step of 3D reconstruction. In order to cope with the special
characteristics of cryo-EM images described above, unlike most standard SR algorithms, instead of
recovering an HR image IHR that is free of blurring and noise from LR images, we aim to generate ~I

SR

subject to the modulation by the CTF and noise using our proposed methodology G:

~I
SR ¼G ILR1,…,K

� �
,

~I
SR ¼C ∗ IHRþσ:

(2)

Since raw frames ILRj , j∈ 1,…,M½ �, where M is the total number of raw frames in cryo-EM movies,
have extremely low SNR and errors of SR reconstruction from LR images grow in proportion to the noise
variance(40), and frames collected under greater electron dosage have less high-frequency information due
to radiation damage, we use moving averages of raw frames aligned to different reference frames (instead
of using raw frames as LR inputs):

Î
LR
i ¼F ILRm,…n, j

� �
, i¼ 1,…,K (3)

where F aligns and averages raw frames ILRm,…,n from the mth frame to the nth frame in the movie with
respect to the reference frame j. Reference frame j is selected at random from all possible framesM. These
generated LR frame averages Î

LR
i have higher SNR, and since each Î

LR
i is aligned to a different reference

Figure 2. Internal predictive power of movie-specific information. (a) Power spectrum calculated from
the average of the first half of frames (less radiation damage) and from the second half of frames (more
radiation damage). As indicated by the white arrows, Thon rings are more visible in the first image which
has less radiation damage compared to the second image that presents more radiation damage. As

reported earlier, this shows that earlier frames in the exposure carry more high-frequency information
than the later frames. (b) Cross-correlation between the fitted contrast transfer function (CTF) and the
measured power spectrum. Similar to panel (a), the power spectrum computed from the early part of the
exposure has higher cross-correlation compared with the theoretical CTF. The better cross-correlation fit

confirms that the high-frequency signal is stronger in the first half of the exposure.
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frame, relativemotions exist between these frame averages. Therefore, they aremore suitable as LR inputs
for SR reconstruction. In addition, as these inputs are obtained by averaging frames with high electron
exposure, they contain limited high-frequency information.

3.3. Proposed framework

Our proposed framework (Figure 3a,b) leverages both the strong internal predictive power and the
generalization capabilities of deep neural networks. Given an input movie stack ILR0,…,M withM frames, we
first divide the stack into two parts: (a) early frames in the exposure ILR0,…,M=2 (first half of the frames), and

(b) late frames in the exposure ILRM=2,…,M. We transform ILR0,…,M=2 into Î
LR
i using Equation 3 and ILR0,…,M=2 into

ILRavg by aligning and averaging all frames in the low exposure stack.We further downsample Î
LR
i by a factor

of 2 and treat the further downsampled frames as LR inputs to the network. We treat ILRavg as a pseudo HR

micrograph. The network learns to reconstruct ILRavg using further downsampled Î
LR
i . Using this pseudo

HR–LR pair, we are able to train our movie-specific SR Net without the need for any ground-truth HR
images. To summarize, a movie-specific SR Net is trained in the following ways:

1. Extract example patches of fixed size from the input LR frames Î
LR
i and the input pseudo HR

image ILRavg .

Figure 3.Overall cryo-ZSSR framework. (a) During the training stage, pseudo LR–HR pairs are formed
using further downsampled frames that have more radiation damage (second half of frames in a movie)
(Î

LR
i ) and averages of frames with less radiation damage (ILRavg, first half of frames in a movie). Extracted

patches of frames from further downsampled Î
LR
i are fed into SR Net which produces a 2� super-resolved

image ~I
SR
. SR Net learns to recover ILRavg from the coarser input Î

LR
i . (b) During the inference stage, the

resulting self-supervised SR Net is then applied to the full Î
LR
i to produce its SR output. (c) Architecture of

SR Net: input frames are first upsampled to the desired output size. The interpolated frames are used as
inputs to SR Net. These frames are encoded, fused, and decoded to generate the final SR output.
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2. Further downsample the extracted examples from Î
LR
i by a factor of s (we use 2). These down-

sampled examples now become temporary LRs.
3. Temporary HR–LR pair is formed using the downsampled extracted patches from Î

LR
i and its

corresponding extracted patch from the pseudo HR image ILRavg.
4. Feed temporary LR images obtained in step 2 into SR Net, a SR output is generated and compared

with the temporary HR.

Once the network is trained, instead of using Î
LR
i obtained using frames from the second half of the

exposure, a new set of~I
LR
i is formed by using averages of all raw frames aligned to different reference frames:

~I
LR
i ¼F ILR0,…M , j

� �
, i¼ 1,…,K, (4)

whereF represents the application of a motion correction/alignment algorithm such asMotionCor2(41). In
this new setup, LR frames are used as input to the trained network and the desired SR output ~I

SR
is

constructed. By using IHR from the first half of the frames (that contain more high-frequency information)
and learning to recover these high-frequency information from LR inputs, the movie-specific SR Net is
able to leverage the power of cross-frequency internal recurrence of image-specific information. To
further enrich the training dataset, data augmentation is applied to the set of LR images to extract more
pairs of HR–LR to train on, including mirror reflections in the vertical and horizontal directions.

The overall architecture of SR Net is based on HighResNet(23), which includes three main steps:
encoding, fusion, and decoding (Figure 3c). The network learns to implicitly co-register multiple LR
frames ILRi and fuse them into a single SR view. Unlike HighResNet, which upscales input LR views
during the decoding step using a deconvolution layer, we first upscale LR inputs ILRi to the desired SR
output size I Interi before feeding it into the encoder using bilinear interpolation. The network thus learns the
residual between the interpolated LR and the HR images. A detailed description of the architecture of
HighResNet is given in Deudon et al.(23).

Encode. The encoding stage contains two steps: first, compute a reference micrograph and second,
embed each frame jointly with the reference. The reference micrograph is computed as the median of all
input LR frames ILRi,…,K . The reference micrograph is concatenated to each frame and the concatenated
reference-frame representations serve as inputs to the embedding layer. The shared reference micrograph
serves as anchor for implicit alignment and encourages the network to learn differences across multiple
frames.

Fuse. Encoded outputs s0i,::,K from the embedding layer are then fused recursively. At each time step t,
after fusion, the number of encoded outputs is reduced by half. Given a pair of hidden states sti and s

t
j, the

fusion step merges these two representations by first concatenating sti and s
t
j and then projecting to a new

representation.
Decode. After T ¼ log2K fusion steps, the final LR encoded representation sTi is fed into the decoder

and the decoder outputs the final super-resolved micrograph, ISR.

3.3.1. Loss function
In addition to computing themean absolute error (MAE) between the generated SR and the actual pseudo-
HR images, we also use a Fourier domain frequency loss to help preserve CTF modulation.

Fourier domain frequency loss. For an image and its Fourier representation F , denote F u,vð Þ as the
Fourier coefficient at spectrum coordinate u,vð Þ. Let R u,vð Þ and I u,vð Þbe its real and imaginary parts, we
can rewrite F u,vð Þ as

F u,vð Þ¼R u,vð Þþ iI u,vð Þ: (5)

Let FHR u,vð Þ be the Fourier coefficient of the ground-truth HR image and FSR u,vð Þ be the Fourier
coefficient of the reconstructed SR image. Denote r

!HR
and r

!SR
as respective vectors mapped from

FHR u,vð Þ and FSR u,vð Þ . By the definition of amplitude and phase of each Fourier coefficient, ∣ r!∣
corresponds to the amplitude and θ corresponds to the phase. Therefore, the frequency distance can be
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represented as the distance between r
!HR

and r
!SR

, which can be calculated using the L2 Euclidean
distance:

d r!
HR

u,vð Þ, r
!SR

u,vð Þ
� �

¼ FHR uð ,vÞ�FSR u,vÞð j2:�� (6)

As both generated SR and pseudo-HR are corrupted by noise, this means that at higher frequency, its
corresponding coefficients contain both information from underlying signal and noise. Therefore,
minimizing distance at the high-frequency portion of the spectrum may lead to undesired learning of
noise. To mitigate this effect, we reweight the loss at each frequency level using a Gaussian kernel. For
higher frequencies, its resulting loss is down-weighted in the overall loss calculation. The final loss is
calculated as the sum of the MAE loss and the weighted frequency loss.

3.3.2. Implementation details
We use the ADAMoptimizer, starting with a learning rate of .001 and we adaptively decrease the learning
rate based on the training procedure proposed in Shocher et al.(5). Training stops when the learning rate
reaches 10�5, at around 200 iterations. The network is trained to learn upscaling by a factor of 2. At each
iteration, a fixed crop size of 256�256 is used, while the 2� downsampled versions have size of
128�128. This way, training time is independent of the input size. During the inference stage, the
generated SR is further combined with the back-projection technique(42,43). The final image is corrected
by back-projection. Each set of LR images takes around 2 min to train for an upsampling factor of 2, the
final SR image takes about 30 s to generate on an NVIDIATesla V100 GPU with 32GB of memory.

3.4. Overall data processing pipeline with cryo-ZSSR

As shown in Figure 1a, cryo-ZSSR serves as a pre-processing step to the overall cryo-EM 3D recon-
struction process. To summarize, the new processing pipeline is as follows:

• For each movie stack ILR0,…,M containing M frames, divide each stack into two parts: (a) early frames
in the exposure ILR0,…,M=2 (first half of the frames), and (b) late frames in the exposure ILRM=2,M (second
half of the frames).

• For ILRM=2,M , align a subset of these frames with respect to different reference frames (we used four
frames) using a motion correction algorithm such as MotionCorr to obtain Î

LR
i¼1,…,4, Equation 3. For

ILR0,…,M=2, align these frames with respect to the center frame to obtain ILRavg .

• Using Î
LR
i¼1,…,4 and ILRavg, generate pseudo HR–LR pairs and train the network by following steps in

Section 3.3.
• Align all frames with respect to the reference frames used in the second step above and obtain a new
set of Î

LR
i¼1,…,4. Feed the new Î

LR
i¼1,…,4 into trained network and obtain the final super resolved output

~I
SR
.

• Perform all the following data processing steps (CTF estimation, particle picking, orientation
estimation, and 3D reconstruction) on ~I

SR
generated micrographs from each movie stack.

4. Experiments and Validation on Single-Particle Cryo-EM Data

To validate our approach, we used cryo-EM movies of apoferritin and the T20S proteasome from the
Electron Microscopy Public Image Archive (EMPIAR) under accession codes 10146 and 10025(3,44).

EMPIAR-10146. Apoferritin is a commonly used test sample that has a molecular weight of 440 kDa
and octahedral symmetry (O). This dataset consists of 20 movies with 50 frames each and 1,240�1,200
pixels in size. The physical pixel size is 1.5 Å and the images were acquired using a beam energy of
300 kVand an exposure rate of 2 e�=Å2 (equivalent to a total dose of 100 e�/Å2), Figure 1b. The original
movies are subjected to the standard single-particle pipeline resulting in a 3.5 Å resolution reconstruction
from 1,200 particles that was used as ground truth. We then binned the original movies by a factor of
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2 using the IMOD program(45) (resulting in a pixel size of 3 Å). Downsampled frames using uncropped
frames had a size of 620�600 pixels and were aligned using MotionCorr2(41) and averaged. The frames
were aligned to four different reference frames and the corresponding frame averages were generated.

EMPIAR-10025.The T20S proteasome has amolecular weight of 750 kDa andD7 symmetry.We used
a subset of this dataset which consists of 47 movies with 38 frames each and 7,420�7,676pixels in size.
As themovies are acquired usingmicroscope’s camera SRmode, the pixel size is 0.66Å. The imageswere
acquired using a beam energy of 300 kVand an exposure rate of 1.4 e�=Å2 (equivalent to a total dose of
58 e�/Å2), Figure 1c. Instead of using the super-resolved movies as reference, we used movies binned by
a factor of 2 (1.32 Å pixel size, 3,710�3,838 image size) as ground truth. LR movie frames are obtained
by downsampling the original movies by a factor of 4 (2.64 Å pixel size, 1,855�1,919 image size). We
followed the same alignment and downsampling procedure as in EMPIAR-10406. For simplicity, we
cropped sub-micrograph patches of size 1,024�1,024 from the resulting LR frames and these sub-
micrograph patches are used as the input LR images.

Movie-specific SR Nets were trained for each movie in both datasets. Once fully trained, LR images
were upscaled by a factor of 2 through our framework. For EMPIAR-10406, the resulting SR image has
size 1,240�1,200, which is the same as the original unbinned micrographs. For EMPIAR-10025, the
resulting SR image has size 2,048�2,048. The original HR reference movies were never used or seen
during any part of the training or testing steps. The resulting SR micrographs now replaced the down-
sampled LR images and were used as inputs to the single-particle cryo-EM structure determination
pipeline. The CTF of each SR micrograph was estimated using CTFFIND4(46) and particles were
extracted and subjected to iterative 3D refinement using the cisTEM package(47). This process was
repeated for the LR images, and the SR micrographs upsampled using bilinear interpolation and cryo-
ZSSR. In both cases, we used the exact same particle stacks and estimated orientation parameters for 3D
reconstruction.

4.1. Cryo-ZSSR improves the quality of individual micrographs

To test the performance of our algorithm on individual micrographs, we estimated the CTF of each of the
micrographs in both datasets using three sets of images (LR, upsampled using bilinear interpolation, and
upsampled using cryo-ZSSR) and the ground-truth original image. Specifically, we quantified the overall
improvement in image quality by measuring the estimated fit resolution for images in both datasets.
Estimated fit resolution gives an indication of how far the signal extends (lower numbers are better). As
shown in Figure 4, left, in both datasets, SR images reconstructed using our approach have better fit
resolution than both the LR and bilinear interpolated images, indicating that cryo-ZSSR can effectively
recover HR information present in the LRmovie stacks. In addition, we show 1D CTF radial profiles of a
representative cryo-ZSSR upsampled image and its corresponding CTF cross correlation fit compared to
LR, bilinear interpolated and original images (Figure 4, right). As shown, the cross-correlation fit results
indicate that the strength of the signal present in the cryo-ZSSR result is higher when compared to the LR
and bilinear interpolated images, even though it is not as good as the original input. This implies that
although cryo-ZSSR can recover some high-frequency information present in the LR movie stacks, it
cannot achieve perfect recovery. In addition, some high-frequency information is permanently lost during
the downsampling process, making full recovery impossible.

4.2. Cryo-ZSSR improves the resolution of 3D reconstructions

We also evaluated the downstream effects of our SR interpolation algorithm bymeasuring the quality of the
final 3D reconstructions. The three sets of movies (LR, upsampled using bilinear interpolation, and cryo-
ZSSR) were used as input to the standard single-particle refinement pipeline implemented in cisTEM. For
EMPIAR-10406, 1,200particles were selected and aligned against an external reference of apoferritin using
iterative projection matching. We repeated this process using the three sets of images and the ground-truth
data (Figure 5). Consistent with the CTF estimation results, the features and resolution of the cryo-ZSSR
map are better than the ones obtainedusing bilinear interpolation and theLRdata,with estimated resolutions
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according to the 0.143-FSC criteria of 3.9 Å, 4.8 Å, and 6.0 Å, respectively (Figure 5a). The resolution
obtained using the ground-truth images is 3.5 Å. Lower numbers indicate better reconstruction quality. The
resolution obtained by cryo-ZSSR clearly surpasses the 6 Å Nyquist limit imposed by the original physical
pixel size of 3 Å, and the reconstruction shows clear density for side chains, in agreement with the atomic
model and corresponding structural features in the ground-truth map. For EMPIAR-10025, 7,810 particles
were selected as inputs to ab-initio reconstruction and homogeneous refinement. Similarly, the features and
resolution of the cryo-ZSSR map are better than the ones obtained using bilinear interpolation and LR
images,with estimated resolutions according to the 0.143-FSCcriteria of 3.9Å,4.0Å, and 5.5Å (Figure5b).
The resolution obtained using the ground-truth images was 3.1 Å. While our proposed method is able to
obtain better reconstruction compared to bilinear interpolation, the improvement is not as significant as
compared to EMPIAR-10146. It should be noted that for LR imageswith a pixel size of 2.64Å, the Nyquist
limit is 5.28 Å. However, the current reconstruction method is only able to obtain a resolution of 5.53 Å,
indicating that the resolution is limited by other factors (less symmetry) in addition to the pixel size. This
reveals a potential limitation of our proposed method: when there is less symmetry, which leads to less
internal data repetition, even though it is still able to outperform traditional interpolation-based upsampling
methods, the degree of improvement is less significant.

5. Discussion and Conclusion

We present a neural network framework to upsample low-SNR single-particle cryo-EM movies using a
MISR algorithm based on self-supervised deep internal learning. By leveraging information repetition

Figure 4. Cryo-ZSSR improves image quality metrics for individual micrographs. To evaluate the
performance of cryo-ZSSR at the micrograph level, we estimated the CTF of movies in the EMPIAR-
10146 and EMPIAR-10025 datasets before and after upsampling. (a) CTF statistics of EMPIAR-10146.
Right: Histogram of estimated fit resolution showing the net improvement in image quality obtained by
cryo-ZSSR (lower fit resolutions represent better results). Middle: Example 1D CTF radial profiles of
cryo-ZSSR upsampled image. Left: Corresponding CTF Fit cross correlation score. As shown, the output
from cryo-ZSSR has better cross correlation score compared to both bilinear interpolation and the low-
resolution image. (b) CTF statistics of EMPIAR-10025. Similar to EMPIAR-10146, cryo-ZSSR is able to
achieve better fit resolution, cross correlation score compared to LR input and the bilinear interpolated
image. Right: Histogram of estimated fit resolution. Middle: Example 1D CTF radial profiles of cryo-
ZSSR upsampled images. Left: Corresponding CTF fit cross correlation score for LR, bilinear inter-

polation, cryo-ZSSR and original inputs.
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across multiple frequencies in collected cryo-EM movies, we are able to train the network without the
need of ground-truth or prior training using HR images. Applications of this technique to a LR dataset of
apoferritin sampled at 3 Å/pixel resulted in a three-dimensional reconstruction at 3.9 Å resolution where
side chains could be visualized at a similar level of detail seen in the ground-truth map. On a LR dataset of
T20S proteasome sampled at 2.64 Å/pixel, after SR upsampling, a three-dimensional reconstruction at
3.9 Å resolution is obtained. These experiments suggest that cryo-ZSSR is an effective strategy to recover
HR information contained in low-SNR, LR cryo-EM movies. The proposed framework is most suitable
for datasets with relatively high symmetry that achieve the Nyquist frequency during 3D reconstruction,
where the main limitation factor is the pixel size. For datasets where the resolution is limited by factors
other than the pixel size, the resolution improvements brought about by our method will be less
significant. Admittedly, our proposed algorithm has some limitations: first, it does not have an explicit
motion compensation component. While implicit registration already results in SR images that contains

Figure 5. Cryo-ZSSR upsampled images improve the resolution of 3D structures. To evaluate the
performance of cryo-ZSSR at the 3D level, we performed 3D reconstruction for both apoferritin

(EMPIAR-10146) and T20S proteasome (EMPIAR-10025) datasets. In each case, reconstructions were
obtained using the same set of particles. (a) Overall structure of apoferritin and zoomed-in view of an
alpha helix with fitted atomic model, for maps obtained from the LR images (top left), upsampled images
using bilinear interpolation (top right), upsampled images using cryo-ZSSR (bottom left), and ground-
truth images (bottom right). Fourier shell correlation (FSC) curves for maps obtained using LR images
(gray), upsampled using bilinear interpolation (green), and upsampled using cryo-ZSSR (magenta)
against ground-truth reconstruction (bottom). Estimated resolutions are 6.0 Å, 4.8 Å, and 3.9 Å,

respectively, based on the 0.143-cutoff (dotted line). Lower numbers represent better reconstruction
quality. (b) Overall structure of T20S proteasome and zoomed-in view with fitted atomic model. Similar to
EMPIAR-10146, cryo-ZSSR is able to achieve better 3D resolution. FSC curves for maps obtained using
LR images (gray), upsampled using bilinear interpolation (green), and upsampled using cryo-ZSSR
(magenta) against ground-truth reconstruction (bottom). Estimated resolutions are 3.9 Å, 4.0 Å, and

5.5 Å, respectively, based on the 0.143-cutoff (dotted line). Due to low sampling rate, the FSC for the LR
reconstruction has a rapid decay at 5.5 Å.
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more high-frequency information, accurate sub-pixel motion estimation is key in further improving the
quality of the SR image. Second, the algorithm does not presently account for the resolution-lowering
effects caused by radiation damage affecting cryo-EM samples, as current fusion and decoding steps do
not incorporate dose weighting. Previous research shows that by accounting for radiation damage through
dose weighting, the resolution of 3D reconstructions can be improved. Therefore, incorporating
frequency-domain Fourier coefficient reweighting has the potential of obtaining further improvements
in resolution. As cryo-EM datasets typically contain thousands of micrographs, training of our image-
specific network can take a long time. To this end, we are investigating the possibility of training a dataset-
specific network. In addition, we will continue investigating how protein symmetry can affect the
performance of the algorithm, as symmetry plays an important role in internal statistics recurrence.
Overall, the proposed SR strategy may be used in conjunction with lower magnification imaging to
accelerate data collection without sacrificing image quality.
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