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LETIERS TO THE EDITOR

HEREDITY OF STATIONARY AND REVERSIBLE STOCHASTIC
PROCESSES

RICHARD F. SERFOZO, "Georgia Institute of Technology

Abstract

When a stochastic process (a random measure, set, field, etc. on a
group) is stationary, ergodic, or reversible, then certain functions of
this process inherit these properties. We present sufficient conditions
for this inheritance.

Introduction

Associated with a queueing network process (see Chapters 2,3 of Kelly (1979)), there
are a number of stochastic processes that describe various aspects of the queues.
Examples are (i) the point process of times at which customers move from a certain set
of queues to another set, and (ii) the process depicting the service station with the
largest queue and the length of that queue over time. When the queueing network
process is stationary or reversible, do these associated processes inherit these
properties? I shall present general criteria for this inheritance. The basic issue is: if a
stochastic process is stationary or reversible, then what types of functions of it are also
stationary or reversible?

Preliminaries

Let X = {X(t): t E R} be a stochastic process with state space S. Here R denotes the
real line or, more generally, a group with a a-field Wt on it that renders the group
operation (addition) measurable. Assume that X has sample paths in a subspace ge of
the space F(R,S) of all measurable functions from R to S. The process X is stationary
if, for any Sl' ... .s; in R,

X(SI + t), ... , X(sn + t) £ X(Sl), ... , X(sn), t E R,

(here £ means equality in distribution). A compact way of expressing this is X 0 1; £ X,
t E R, where 0 denotes the convolution operator and 1; is the time-shift transformation
on R(TtS = S + t). A stationary process X is ergodic if each of its invariant events has
probability 0 or 1 (an event A is invariant for X if there is aBE ge such that
{X 0 1; E A} = B, t E R). The process X is reversible if it is stationary and X 0 T- £ X,
where T- is the time-reversal transformation on R(T-t = -t). Note that X is reversible
if and only if X 0 1; 0 T- £ X, t ER (this is sometimes used as the definition).

The preceding terminology also applies to point processes and other random
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elements. Let N = {N(B): B E ffi} be a point process on R, where N(B) represents the
number of points (possibly infinite) in the set B. Stationarity, ergodicity, and
reversibility of N are defined as above, where 1; and T- are the time-shift and
time-reversal transformations on ClJt (instead of R: T;B = B + t, T- B = - B. For instance,
N is reversible if it is stationary (N 01; 4:N, t E R) and No T- 4:N. There are similar
definitions of stationarity, ergodicity, and reversibility for random measures, sets, etc.,
and vectors of these elements.

It is well known that if the process X is stationary and g : S~ S' and h : 7£~ F(R,S')
are measurable functions, then the processes Y(t) =g(X(t» and Z(t) =h(X01;) are
also stationary. (The g is a special case of h.) Moreover, Y and Z are ergodic when X
is. See for instance Chapter 6 of Breiman (1968). In addition, an easy check shows that
Yand Z are reversible when X is. I shall now show how these results extend to a larger
class of functions and to point processes and other random elements.

Results

A key observation is that stationarity and reversibility are special cases of the
following notion of invariance of a process under a family of 'time' transformations. Let
Y be a random element and let <I> be a family of measurable transformations from the
domain of Y onto itself. The domain of Y is R, ClJt or cartesian products of these. The
random element Y is invariant under the set of transformations <I> if yo ep 4 Y for each
ep E <1>. For example, the vector Y = (X,N) is reversible if it is invariant under the
transformations {T-, 1;: t E R}, where T- and 1; are the time-reversal and time-shift
transformations on R x ffi.

For the following results, let Y and Z denote random elements (possibly vectors of
processes, measures, sets, etc.) with sample paths or realizations in the respective
spaces ay and 91. Assume that Z = f(Y), where f: ay~ 91 is a measurable function.

Lemma. If Y is invariant under the set of transformations <1>, and f satisfies
f(y) 0 ep = f(y 0 ep), for each ep E <1>, y E o.y, then Z is invariant under the set of
transformations <1>.

Proof. This follows since, for each ep E <1>,

Z 0ep =f(Y) 0ep = f(Y 0ep) 4:f(Y) = Z.

Proposition. If Y is stationary and f satisfies

(1) f(y)o 1; =f(y 01;), for each t E R, y E ay,

then Z is stationary. If Y is reversible and f satisfies (1) and f(y) 0 T- = f(y 0 T-),
y E ay, then Z is reversible. If Y is stationary and ergodic and f satisfies (1), then Z is
stationary and ergodic.

Proof. The first two assertions are special cases of the preceding lemma. The third
assertion follows since {Z 01; E A} = {Y 01; E f-l(A)} implies that the invariant events
of Z are the same as those for Y.

Example. Suppose Y = {(Y1(t), ... ,Ym(t»: t E R} is a queueing network process,
where lj(t) denotes the number ot customers at queue j at time t. Assume that Y
cannot have an infinite number of transitions in a finite time interval. Specifics on the
operation of the queues are not needed for this discussion. Let Y,(t) = E lj(t), the

jE~

number of customers in the set of queues J => {1, ... ,m}. Let N denote the point
process of times at which customers move from J to another set of queues J(, and let
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X(t) denote the largest number of customers in J since the last time the number was O.
Clearly (N,X) = f(Y) = (h(Y), h(Y)), where

h(Y) = ~ I(lJ,(t) = Y,,(t- )-1, Yx(t) = Yx(t-)+ 1),
teB

I is the indicator function, and

h(y)(t)=max{y,,(s):it<S~t}, teR,

and it =sup {s ~ t:y;,(s) = O}, assuming that it exists for each t. Then the preceding
proposition establishes that the vector (N,X) is stationary, ergodic or reversible when Y
has these respective properties.

Extensions

The lemma extends to state-space transformations as well as time transformations, as
follows. Define the random element Y to be (h,eIl)-invariant if h(Yolj» 4h(Y) lj>,
lj> e ell, where h: OY~F(R,S') is measurable. For example, if the process X is
(h, {1;: t e R} )-invariant, where h(x)(t) = g(x(t)) and g: S~ S satisfies g(g(s)) = s, then
X is dynamically reversible (see p. 31 of Kelly (1979)). The lemma for (h, ell)-invariance
is:

if Y is (h, eIl)-invariant and f satisfies h(f(y) 0 lj» = h(f(y 0 lj> )), lj> E ell, Ye 0Ji, then
Z = f(Y) is also (h, ell)-invariant.

The preceding results readily extend to time and space transformations h, <I> that are
random.
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