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Abstract. We prove that the existence of one horosphere in the universal cover of a
closed Riemannian manifold of dimension n ≥ 3 with strongly 1/4-pinched or relatively
1/2-pinched sectional curvature, on which the stable holonomy along one horosphere
coincides with the Riemannian parallel transport, implies that the manifold is homothetic
to a real hyperbolic manifold.
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1. Introduction
Mostow’s seminal rigidity theorem [19] asserts that the geometry of a closed hyperbolic
manifold of dimension greater than two is determined by its fundamental group. Inspired
by Mostow’s theorem, we undertake a study of related, yet, more general themes. In this
paper, we look at natural geometric submanifolds, the horospheres, and ask to what extent
do these determine the geometry of the whole manifold. Precisely, we are concerned with
the following general question.

Question 1.1. Does the geometry of the horospheres of a closed, negatively curved
manifold of dimension greater than two determine the geometry of the whole manifold?

In general, there are very few answers to Question 1.1, and all of these relate the
extrinsic geometry of the horospheres to the geometry of M. For instance, by combining
[5, 10] (see [5, Corollary 9.18]), one shows that if all the horospheres have constant mean
curvature, then the underlying manifold is locally symmetric (of negative curvature). Let
us recall that the mean curvature of a hypersurface is related to the derivative of its volume
element in the normal direction to the hypersurface, and hence the mean curvature is
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an extrinsic quantity. In this paper, our main hypothesis is to relax the assumption on
the sectional curvature in Mostow’s theorem and allow it to be strictly quarter negatively
curved pinched. In this case, constant mean curvature of the horospheres only occurs for
real hyperbolic manifolds (up to homothety). In contrast, we would like to emphasize that
we only consider the intrinsic properties of the induced metric on the horospheres.

Before stating our main theorem, let us recall a few important features of the manifolds
under consideration and results that are related to our work in this paper. Let M denote
an (n + 1)-dimensional, closed, Riemannian manifold endowed with a metric of negative
sectional curvature, n ≥ 2. It follows from the Cartan–Hadamard theorem that M̃ , the
universal cover of M, is diffeomorphic to R

n+1. Let M̃ be endowed with the pull-back
Riemannian metric from M, under the natural projection π : M̃ → M . The geometric
boundary ∂M̃ of M̃ is the set of equivalence classes of geodesic rays in M̃ , where two
geodesic rays are equivalent if they remain at a bounded Hausdorff distance. We recall
that, in our context, it is homeomorphic to S

n.
Given a point, x0 ∈ M̃ , and a unit tangent vector, ṽ ∈ Tx0M̃ , we let cṽ denote the unique

geodesic ray determined by cṽ(0) = x0 and ċṽ(0) = ṽ. It is well known that the map,
ṽ ∈ Tx0M̃ �→ [cṽ] ∈ ∂M̃ , defines a homeomorphism between the unit sphere in Tx0M̃ and
∂M̃ . Given a point ξ = [cṽ] ∈ ∂M̃ , the Busemann function Bξ (·) is then defined for all
ξ ∈ ∂M̃ and for all x ∈ M̃ by Bξ (x) = limt→∞(d(x, cṽ(t)) − d(x0, cṽ(t))).

Since M is a closed negatively curved manifold, for each ξ ∈ ∂M̃ , it is known that the
Busemann function Bξ (·) is C∞-smooth. Furthermore, for any t ∈ R, the level set

Hξ(t) = {x ∈ M̃; Bξ (x) = t}

is a smooth submanifold of M̃ which is diffeomorphic to R
n and which is called a

horosphere centered at ξ . The sublevel set

HBξ(t) = {x ∈ M̃; Bξ (x) ≤ t}
is called a horoball. It follows that horospheres inherit a complete Riemannian metric
induced by the restriction of the metric of M̃ . For instance, if (M , g) is a real hyperbolic
manifold, every horosphere of M̃ is flat and therefore isometric to the Euclidean space Rn.

So far, we defined horospheres as special submanifolds in M̃ . However, a dynamical
perspective turns out to be important in the proof of the main theorem. Let p̃ : T 1M̃ → M̃

and p : T 1M → M denote the natural projections. The geodesic flow g̃t on T 1M̃ is
known to be an Anosov flow, that is, the tangent bundle T T 1M̃ admits a decomposition
as T T 1M̃ = RX ⊕ Ẽss ⊕ Ẽsu, where X is the vector field generating the geodesic flow
and Ẽss , Ẽsu are the strong stable and strong unstable distributions, respectively. These
distributions are known to be integrable, invariant under the differential dg̃t of the geodesic
flow, and to give rise to two transverse foliations of T 1M̃ , W̃ ss and W̃ su, the strong
stable and strong unstable foliations, respectively, whose leaves are smooth submanifolds.
A classical property of these foliations is that, in general, they are transversally Hölder
with exponent less than one, and when the sectional curvature, denoted by K, is strictly
1/4-pinched (that is, −4 < K ≤ −1), they are transversally C1 (see [16, p. 226]), but we
do not use such a regularity.
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A link between the two points of view on horospheres is the following. For ṽ ∈ T 1M̃ ,
the strong stable leaf W̃ ss(ṽ) through ṽ is defined to be the set of unit vectors w̃ ∈ T 1M̃

which are normal to the horosphere Hξ(t) and pointing inward of the horoball HBξ(t) in
the direction of ξ = cṽ(+∞), with t = Bξ (p̃(ṽ)) so that Hξ(t) = p̃(Wss(ṽ)).

With this notation in place, let us now describe our main theorem and the foundational
work we build upon. In §3, we will recall the construction of the stable holonomy.
The notion of stable holonomy goes back to the work of Bonatti, Gómez-Mont, and
Viana [6], and has been extensively studied by various authors, Viana [21] (also in the
non-uniformly hyperbolic setting), Avila and Viana [4], Avila, Santamaria, and Viana [3],
and Kalinin and Sadovskaya [17], in the context of partially hyperbolic systems. In our
setting, it is a family, for each horosphere, of isomorphisms between the tangent spaces
at any two points of it. Given ξ ∈ ∂M̃ and x, y a pair of points on a horosphere Hξ

centered at ξ , we will informally denote �ξ(x, y) the isomorphism between the tangent
spaces to this horosphere at x and y, and the stable holonomy will be the collection of
all these isomorphisms �ξ(x, y). The stable holonomy was originally constructed as a
family, for each strong stable leaf of the geodesic flow, of isomorphisms H(ṽ, w̃) between
the tangent spaces to this leaf at any pair of points ṽ, w̃ and not on the horospheres
as we will present here. However, the two constructions are equivalent since there is
the conjugation H(ṽ, w̃) = Dp̃(w̃)−1 ◦ �ξ(x, y) ◦ Dp̃(ṽ), where p̃ṽ = x, p̃w̃ = y and
cṽ(+∞) = cw̃(+∞) = ξ (see more in Appendix A). This construction, which holds in the
general setting of linear cocycles over partially hyperbolic diffeomorphisms, requires the
‘fiber bunched’ condition, as in [17] (more on this in §3). In the context of the geodesic flow
of a negatively curved closed manifold, the fiber bunched condition is a consequence of a
pinching condition on the sectional curvature. We will consider two kinds of pinching. The
strong 1/4-pinching of the curvature means that for every x ∈ M , the sectional curvature
K(x) satisfies

−4 < K(x) ≤ −1. (1.1)

Given a > 0, the curvature of M is said to be relatively a-pinched if there exists a
strictly negative function C : M → R<0 such that for every x ∈ M , the sectional curvature
satisfies

C(x) ≤ K(x) < aC(x). (1.2)

In general, none of these two pinching conditions imply the other. To the best of our
knowledge, a stable holonomy cannot be defined without some pinching condition on the
curvature. In what follows, we will describe the construction of the stable holonomy on the
horospheres under the strong 1/4-pinching or the relative 1/2-conditions. However, every
horosphere Hξ(s) carries the Riemannian metric induced by the one of M̃ . In particular, for
every pair of sufficiently close points x, y ∈ Hξ(s), there is a unique minimizing geodesic
of Hξ(s) joining them. Hence, we may consider the parallel transport associated to the
Levi-Civita connection of the induced metric on Hξ(s), denoted by P

ξ
s (x, y), between

the tangent spaces to Hξ(s) at these points x and y. As mentioned before, in the case of
K ≡ −1, the induced Riemannian metric on horospheres is flat and the stable holonomy
�

ξ
s (x, y) and the parallel transport P

ξ
s (x, y) coincide for every pair of points x and y
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on Hξ(s). Our main result is that the converse is true among strongly 1/4-pinched or
1/2-relatively pinched negatively curved manifolds.

THEOREM 1.2. (Main Theorem) Let M be a closed, Riemannian manifold of dimension
n ≥ 3, endowed with a strongly 1/4-pinched or 1/2-relatively pinched negatively curved
sectional curvature. Assume that there exists ξ ∈ ∂M̃ and s ∈ R such that for every pair
of points x, y ∈ Hξ(s) joined by a unique minimizing geodesic, the stable holonomy
�

ξ
s (x, y) is identical to the parallel transport P

ξ
s (x, y). Then, (M , g) is homothetic to

a real hyperbolic manifold.

As mentioned before, the restriction on the sectional curvature ensures the existence
of the stable holonomy. For Theorem 1.2 to hold, it is indeed sufficient to make the
assumption for a single horosphere in M̃ since in Proposition 2.1, we show that it implies
that all horospheres satisfy it. Since it is known that pinched curvature implies pinching
of Lyapunov exponents, we could hope, as suggested by the anonymous referee, that a
pinching of Lyapunov exponents might be sufficient. This point is left for further study.

In the case that dim M = 2, Theorem 1.2 may still be true. However, our proof in the
case of dim M ≥ 3 does not apply since it relies on Theorems 1.3 and 1.5 which both
require an assumption on the dimension, see more details below.

Essential to the proof of our main theorem is the following deep characterization of
closed, real hyperbolic manifolds stated by Butler [8]. This result is related to the way the
geometry of horospheres evolves under the action of the geodesic flow. Butler showed,
in what might be called now as Lyapunov rigidity, that the equality of the modulus of
the eigenvalues of dgt |Ess(v) along every periodic geodesic has an important geometric
consequence. Let us recall his theorem.

THEOREM 1.3. [8, Theorem 1.1] Let M be a closed, negatively curved manifold of
dimension n ≥ 3. For a periodic orbit gt (v) of the geodesic flow on T 1M with period
l(v), let ξ1(v), . . . , ξn(v) be the complex eigenvalues of Dgl(v)(v)|Ess(v), counted with
multiplicities. Assume that |ξ1(v)| = · · · = |ξn(v)| holds for each periodic orbit gt (v),
then M is homothetic to a compact quotient of the real hyperbolic space.

In this theorem, the assumption on dim M ≥ 3 is indeed necessary. Indeed, let us
consider a closed surface M with a 1/4-pinched negative sectional curvature Riemannian
metric g. The metric g can be chosen to be, for example, a small perturbation of an
hyperbolic metric. In this case, the horospheres in M̃ endowed with their induced metric
are complete Riemannian lines and the assumption on the eigenvalues of Dgl(v)(v)|Ess(v)

along periodic orbits gt (v) does not provide any useful information; indeed, there is a
single eigenvalue and the action of Dgt on Ess is therefore trivially conformal.

Theorem 1.2 is a consequence of Theorem 1.3, Proposition 2.1, and the following result.

THEOREM 1.4. Under the assumptions of Theorem 1.2, let cṽ(t) project to a periodic
geodesic cv(t) of period l(v) in M and let ξ = cṽ(+∞). Then, the complex eigenvalues of
Dgl(v)(v)|Ess(v) satisfy |ξ1(v)| = · · · = |ξn(v)|.

Let us now briefly describe the proof of Theorem 1.4. First note that the closeness of
the manifold of M is a necessary assumption as one can verify on the examples given
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by the Heintze groups. Recall that a Heintze group is a solvable group GA := R�A R
n,

where A is an n × n real matrix and R acts on R
n by x → etAx. In the case where the

real parts of the eigenvalues of A have the same sign, Heintze [14] showed the existence
of left invariant metrics on GA with negative sectional curvature. In this case, horospheres
centered at a particular point on ∂GA and endowed with the induced metric are flat (see
§2 and, in particular, equation (2.8)). Notice that for a Heintze group, the existence of one
‘flat’ horosphere does not imply that all horospheres are flat. Indeed, crucial in the proof
of Proposition 2.1 is the fact that the metric under consideration comes from a closed
Riemannian manifold while a Heintze group does not have any cocompact quotient unless
it is the hyperbolic space. If A is a multiple of the identity matrix, GA is then homothetic
to the real hyperbolic space; furthermore, it was proved by Heintze in [13] that the Heintze
groups GA have no cocompact lattice unless they are homothetic to the hyperbolic space.
Moreover, X. Xie obtained a necessary condition for GA to be quasi-isometric to a finitely
generated group. His result is also essential for the proof of our main theorem. Before
stating it, recall that, given an n × n-matrix A, the ‘real part Jordan form’ of A is obtained
from the Jordan form of A by replacing each diagonal entry with its real part and reordering
to make it canonical.

THEOREM 1.5. [22, Corollary 1.6] Let A be an n × n real matrix whose eigenvalues all
have positive real parts. If GA is quasi-isometric to a finitely generated group, then the
real part Jordan form of A is a multiple of the identity matrix.

The main idea of the proof of Theorem 1.4 is therefore to show that for each periodic
orbit gt (v) of the geodesic flow of T 1M of period l(v), M̃ is quasi-isometric to a Heintze
group GA, where A is a matrix whose eigenvalues all have positive real parts and such
that el(v)A is conjugate to Dgl(v)(v)|Ess(v). By assumption, M is a closed manifold
endowed with a negatively curved metric. It is well known that M̃ is quasi-isometric to the
fundamental group of M which is, in particular, finitely generated. Hence, GA turns out to
be quasi-isometric to a finitely generated group. It now follows from the above-mentioned
theorem of Xie that the real part of the eigenvalues of A coincide and therefore, the
eigenvalues of Dgl(v)(v)|Ess(v) have the same modulus.

Therefore, we are left with proving that M̃ is quasi-isometric to a Heintze group GA.
This is done as follows. Let us fix a geodesic in M̃ with an endpoint ξ ∈ ∂M̃ . The set of
stable horospheres Hξ(t) centered at ξ and the set of geodesics asymptotic to ξ define
two orthogonal foliations of M̃ . These foliations determine horospherical coordinates
R × Hξ(0) = R × R

n on M̃ . In these coordinates, the metric of M̃ decomposes at every
point (t , x) ∈ R × R

n as an orthogonal sum

g̃ = dt2 + ht , (1.3)

where dt2 is the standard metric on R and ht is a one-parameter family of flat metrics on
Hξ(0) = R

n. However, a Heintze group GA is, by definition, also diffeomorphic to R × R
n

with a metric, written similarly at every point (t , x) ∈ R × R
n, as the orthogonal sum

gA := dt2 + 〈etA·, etA·〉, (1.4)

https://doi.org/10.1017/etds.2024.58 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.58


Rigidity of flat holonomies 1053

where 〈etA·, etA·〉 is a one-parameter family of flat metrics on R
n, with 〈·, ·〉 being

the standard scalar product on R
n. It is worth recalling that the family of flat metrics

〈etA·, etA·〉 on the R
n factor have the same Levi-Civita connection. This implies that the

geodesic flow (s, y) → (s + t , y) acting on GA ≈ R × R
n commutes with the parallel

transport along the horospheres {s} × R
n.

Turning back to M̃ ≈ R × R
n with its horospherical coordinates associated to

ξ = cṽ(+∞), where cṽ projects to a closed geodesic cv of period l(v) in M, we will
prove that M̃ is quasi-isometric to GA, for A defined by

el(v)A = Dp̃ ◦ (D(γ ◦ g̃l(v)(ṽ)|Ess(ṽ)) ◦ Dp̃−1 (1.5)

and where γ is the element of the fundamental group of M such that Dγ (g̃l(ṽ)(ṽ)) = ṽ, by
proving that hl(v)k = 〈ekA·, ekA·〉 for all positive integer k.

The proof of this equality reduces to a consequence of our assumptions that the
parallel transport along the horospheres commutes with the flow (s, y) → (s + t , y)

acting on M̃ ≈ R × R
n. Indeed, it follows form this commutation that the computation

of hl(v)k(l(v)k, y)(X, X) for any tangent vector X to R
n at the point (l(v)k, y) does not

depend on the point y ∈ R
n. Thus, it will be computed at the point (l(v)k, y0), where y0 is

chosen so that (0, y0) are the coordinates of the point x0 ∈ M̃ lying on the intersection of
the geodesic cṽ with the horosphere Hξ(0) = R

n; the relation hl(v)k(l(v)k, y0)(X, X) =
〈ekAX, ekAX〉 is then easily derived from the fact that the flow (s, y) → (s + t , y) is the
projection by p̃ on M̃ of the geodesic flow.

Let us conclude this quick description by briefly describing how the commutation of
the parallel transport along the horospheres with the geodesic flow is derived. To this
end, we adapt the construction in [3] and [17], which amounts to using the geodesic flow
to construct a transportation along horospheres, which is called the stable holonomy. By
construction, it is invariant by the geodesic flow. It turns out that to make this construction
work, we need the strict 1/4-pinching curvature assumption or the relatively 1/2-pinched
sectional curvature, which in turn corresponds to the notion of a bunched dynamical system
appearing in [3, 17].

The organization of the paper is as follows. In §2, we show that the assumption of
the main theorem on one horosphere implies that it is satisfied on all of them using the
properties of the stable foliation of T 1M and the density of each leaf. We also describe the
geometry of the Heintze groups in the same section. In §3, we describe the construction of
our version of the stable holonomy, adapted from [3] and [17]. We also prove that for this
new transportation, if it coincides with the parallel transport for the induced metric on one
horosphere, then it is also the case for all horospheres. Finally, in §4, this new tool allows
us to prove that M̃ is quasi-isometric to the hyperbolic space, and that the derivative of the
flow on the stable manifolds has complex eigenvalues which all have the same modulus.
This concludes the proof of Theorem 1.4, and therefore of Theorem 1.2. In Appendix A,
we show that the strong 1/4-pinching assumption in equation (1.2) implies the bunching
of the stable cocycle of the geodesic flow defined in [17]. We will also prove that the stable
holonomy defined is this work on horospheres is actually conjugate to the stable holonomy
defined on the strong stable leaves of the geodesic flow.
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2. Geometry of horospheres and the Heintze groups
In this section, we first prove Proposition 2.1 below which, among others, we prove
several continuity properties of horospheres and assert that if one of them is flat, then
all horospheres are flat. We then describe the main family of examples showing that the
closeness assumption in Theorem 1.2 is necessary. These examples, consisting of simply
connected Lie groups endowed with negatively curved left invariant metrics (see [14]), are
due to E. Heintze and are called ‘Heintze groups’. At the end of this section, we provide a
proof of the fact that for every ξ ∈ ∂M̃ , the Busemann function B(·, ξ) is smooth.

2.1. Geometry of horospheres. Let us start by recalling a few facts about the dynamical
approach describing horospheres. We first note that the strong stable and unstable distribu-
tions Ẽss , Ẽsu and their associated foliations W̃ ss , W̃ su are invariant under the action of the
fundamental group of M, and hence they all project onto their natural counterparts denoted
by Ess , Esu, Wss , and Wsu in T T 1M and T 1M , respectively. An important consequence
of the closeness of M is that each leaf of the strong stable or unstable foliations Wss and
Wsu is dense in T 1M (see [1]). An application of the dynamical interpretation is described
in the proposition below and will be important in what follows. Given a unit tangent vector
ṽ ∈ T 1

z M̃ , we will denote by Hṽ the horosphere centered at the point cṽ(+∞) ∈ ∂M̃ and
passing through the base point z of ṽ. Observe that Hṽ = Hξ(s), where ξ = cṽ(+∞)

and s = Bξ (z). This notation will make the formulation of the next proposition easier. If
x, y ∈ Hṽ are two points such that there exists a unique geodesic of Hṽ joining x and y, we
write PHṽ

(x, y) : TxHṽ → TyHṽ as the parallel transport along the geodesic path between
x and y. We will denote by dHṽ

the distance on Hṽ . Recall that the parallel transport is
measured with respect to the induced Riemannian metric on Hṽ .

PROPOSITION 2.1. Let M be a closed (n + 1)-dimensional Riemannian manifold with
negative sectional curvature, then the following hold.
(1) Let (ṽk)k be a sequence in T 1M̃ such that limk ṽk = ṽ. Then, Hṽk

C∞-converge to
Hṽ on compact subsets.

(2) It is equivalent that one or every horosphere in M̃ is flat.
(3) There exists a positive constant ρ > 0 such that the injectivity radius of each

horosphere is bounded below by ρ.
(4) Let (ṽk)k ∈ T 1

xk
M̃ such that limk ṽk = ṽ ∈ T 1

x M̃ (notice that limk xk = x). Let Xk ∈
Txk

Hṽk
and yk ∈ Hṽk

such that limk yk = y ∈ Hṽ , limk Xk = X ∈ TxHṽ , and, if
dHṽ

(x, y) < ρ, then limk PHṽk
(xk , yk)(Xk) = PHṽ

(x, y)(X).

Proof. Let us prove the first part of the proposition. Suppose that the sequence (ṽk)k is
converging to ṽ in T 1M̃ . The set of unit vectors w̃ normal to Hṽ such that [cw̃] = [cṽ] ∈
∂M̃ is the strong stable leaf W̃ ss(ṽ). Recall that the projection p̃ : T 1M̃ → M̃ maps the
strong stable leaf W̃ ss(ṽ) diffeomorphically onto Hṽ = p̃(W̃ ss(ṽ)). Similarly, for each k,
the horosphere Hṽk

is the projection of a strong stable leaf W̃ ss(ṽk), Hṽk
= p̃(W̃ ss(ṽk)).

Let vk and v denote the projection under dπ : T 1M̃ → T 1M of ṽk and ṽ, where π : M̃ →
M is the projection. Let us consider a chart U ⊂ T 1M of the strong stable foliation Wss

containing v and let Q = U ∩ Wss(v) be the plaque of the foliation Wss through v. Since U
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is a chart of the foliation Wss , for k large enough, U ∩ Wss(vk) �= ∅ and the plaques Qk :=
U ∩ Wss(vk) Hausdorff converge to Q. Consequently, for the lift Q̃ ⊂ T 1M̃ of Q contain-
ing ṽ, the set p̃(Q̃) ⊂ Hṽ is the Hausdorff limit of the sequence of sets p̃(Q̃k) ⊂ Hṽk

,
where Q̃k are lifts of Qk containing ṽk . We will show that for all r ≥ 0, p̃(Q̃) is the limit
in the Cr -topology, r ≥ 0, of p̃(Q̃k), which will conclude the first part of the proposition.

Let us choose a chart U small enough so that Q̃k and Q̃ project diffeomorphically
onto Qk and Q. Similarly, we can assume that the projection p : T 1M → M also maps
diffeomorphically Qk and Q into M. Finally, if U is small enough, we have that p(Qk) and
p(Q) are isometrically covered by p̃(Q̃k) and p̃(Q̃), respectively. We can therefore work
equivalently with p(Qk) and p(Q) instead of p̃(Q̃k) and p̃(Q̃). Note that for any t0 > 0,
the strong stable foliation Wss of the geodesic flow gt coincides with the strong stable folia-
tion of the diffeomorphism gt0 , which we will denote by f. The time t0 will be fixed later on.

We will now apply [20, Theorem IV.1, Appendix IV, p. 79] to the diffeomorphism f

of T 1M , the decomposition of T T 1M = E1 ⊕ E2 with E1 := RX ⊕ Esu and E2 := Ess .
Moreover, since the geodesic flow on T 1M is an Anosov flow, we can choose t0 so that
the following hold:

‖Df (v)‖ ≤ λ‖v‖ (2.1)

for every v ∈ E2\{0} and

‖Df (v)‖ ≥ μ‖v‖ (2.2)

for every v ∈ E1\{0}, with the parameters μ = 1 and λ = e−1. Notice that in equations
(2.1) and (2.2), the norm is the Riemannian metric on T 1M . The theorem mentioned above
can now be applied while asserting that the set of plaques Q of the leaves of the strong
stable foliation Wss of f is locally a continuous family of Cr -embeddings into T 1M , for
any r ≥ 0, of the unit disk Dn in R

n. More precisely, for ε > 0, let us define

Wss
ε (v) = {u ∈ T 1M| d(f n(v), f n(u)) ≤ ε, for all n ≥ 0, and d(f n(v), f n(u)) −→ 0

n→+∞}.
(2.3)

Let E r (Dn, T 1M) denote the space of Cr embeddings of Dn into T 1M , endowed
with the Cr topology, where Dn is the unit disk in Rn. Since f is Cr , for any r ≥ 0, the
assertions of the theorem are that for every v ∈ T 1M , we can choose a neighborhood V of
v such that there exists a continuous map

� : V → E r (Dn, T 1M) , (2.4)

such that �(w)(0) = w and �(w)(Dn) = Wss
ε (w) for all w ∈ V . We deduce that

the sequence of maps �(vk) : Dn → Wss
ε (vk) converges to the map �(v) : Dn →

Wss
ε (v). We may also choose V ⊂ U and ε > 0 small enough so that p maps

Wss
ε (vk) diffeomorphically into Qk for k large enough and, similarly, p maps Wss

ε (v)

diffeomorphically into Q. We may also assume that Qk and Q lift diffeomorphically to
Q̃k ⊂ T 1M̃ and Q̃ ⊂ T 1M̃ . We then deduce that the sequence of diffeomorphism

αk := π−1 ◦ p ◦ �(vk) : Dn → p̃(Q̃k) (2.5)
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converges to the diffeomorphism

α := π−1 ◦ p ◦ �(v) : Dn → p̃(Q̃), (2.6)

which proves the first part of the proposition.

Remark 2.2. Notice that in the above convergence, p̃(Q̃k) ⊂ Hξṽk
and p̃(Q̃) ⊂ Hξṽ

contains balls of radius ε′ := ε′(ε) > 0 centered at p̃(ṽk) and p̃(ṽ), respectively. The
above convergence therefore holds on open sets of uniform size.

We now prove the second part of the proposition. Let us assume that Hṽ is flat for
the induced metric and consider Hw̃. Since M is a closed manifold, each leaf of the
strong stable foliation Wss , in particular, Wss(v), is dense in T 1M (see [1, Theorem 15]).
Therefore, each plaque Q of Wss(w) contained in a chart U ⊂ T 1M of the foliation is the
Hausdorff limit of a sequence of plaques Ql of Wss(v) in the same chart. Consequently, for
the lift Q̃ ⊂ T 1M̃ containing w̃, the set p̃(Q̃) ⊂ Hw̃ is the Hausdorff limit of a sequence
of sets p̃(Q̃l) ⊂ Hṽ , where Q̃l are lifts of Ql .

Let 
 be any transversal to Wss passing through w (for example, 
 could be a
neighborhood of w in its weak unstable manifold), and let vl be the intersection of 


with the plaque Ql ⊂ Wss(v) which approximate Q, that is, vl → w when l → +∞.
Applying the first part of the proposition, the sequence Hṽl

locally converges in the
Cr -topology to Hw̃. To be more precise, the metric

(π−1 ◦ p ◦ �(w))∗(g)

is pulled back to Dn of the metric induced by the metric g of M̃ on π−1(p(�(w)(Dn))) ⊂
Hw̃ and, by the first part of the proposition, we deduce that

(π−1 ◦ p ◦ �(w))∗(g) = lim
l→∞(π−1 ◦ p ◦ �(vl))

∗(g)

in the Cr−1-topology for every r. By tensoriality, the curvature of (p ◦ �(w))∗(g) is pulled
back of the intrinsic curvature of this projected horosphere (note that the curvature depends
only on the differential of p ◦ �). Since all of these quantities depend continuously on w,
it follows that p̃(Q̃) with the induced metric is flat, just as the p̃(Q̃l) are for all l.

This concludes the second part of the proposition.
The fourth part of the proposition follows along the same lines as above. Let ṽk ∈ T 1

xk
M̃

and ṽ ∈ T 1
x M̃ as in the statement. As above, we have convergence

(π−1 ◦ p ◦ �(v))∗(g) = lim
k→∞(π−1 ◦ p ◦ �(vk))

∗(g)

in the Cr−1-topology for every r and therefore the Levi-Civita connection of (π−1 ◦ p ◦
�(vk))

∗(g) converges to the Levi-Civita of (π−1 ◦ p ◦ �(v))∗(g). In particular, for k large
enough and dHṽk

(xk , yk) < ρ, the unique geodesic between xk and yk converges to the
unique geodesic joining x and y, and thus the corresponding parallel transport along these
geodesics converges. This concludes the proof of the fourth part of the proposition.

Let us prove the third part of the proposition. We argue by contradiction assuming that
there exists a sequence ṽk ∈ T 1

xk
M̃ such that the injectivity radius injHṽk

(xk) of Hṽk
at

xk tends to zero. By compactness of M, we may assume, after translation by elements
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of π1(M), that ṽk converges to ṽ ∈ T 1
x M̃ . As above, we have convergence of the metrics

(π−1 ◦ p ◦ �(v))∗(g) = liml→∞(π−1 ◦ p ◦ �(vk))
∗(g) in the Cr -topology for every

r ≥ 2, and hence the injectivity radii injHṽk
(xk) of Hṽk

at xk converges to the injectivity
radius injHṽ

(x) of Hṽ at x. Since injHṽ
(x) > 0, we get a contradiction, which concludes

the proof of the third part of the proposition.

2.2. Heintze groups. We now describe a family of examples illustrating that the
compactness of M is a necessary assumption in Theorem 1.2. A Heintze group is a
solvable group GA = R�A R

n, where A is an n × n matrix whose entries are real
numbers. Such a group GA is diffeomorphic to R × R

n with a group action given by
(s, y).(s′, y′) = (s + s′, y + esAy′). In what follows, we will use the coordinates given by
the diffeomorphism ψ : R × R

n → GA defined by ψ(s, y) := (s, esAy). When the real
parts of the eigenvalues of A have the same sign, Heintze showed the existence of left
invariant metrics on GA with negative sectional curvature, see [14]. When the matrix A is
a multiple of the identity, GA, endowed with any left invariant metric is homothetic to the
hyperbolic space. Furthermore, a Heintze group GA contains no cocompact lattice unless
it is homothetic to the hyperbolic space [13].

As an example, consider the n × n matrix A defined by

A =

⎛
⎜⎜⎝

a1 0 · · · 0
0 a2 · · · 0

· · · · · · · · · · · ·
0 0 · · · an

⎞
⎟⎟⎠ (2.7)

where a1 ≤ a2 · · · ≤ an < 0. The left invariant metric g given at (0, 0) by the standard
Euclidean scalar product dt2 + |dy1|2 + · · · + |dyn|2 is written in the above coordinates
GA = R × R

n as

g = ds2 + e2a1s |dy1|2 + · · · + e2ans |dyn|2 (2.8)

and gives GA the structure of a Cartan–Hadamard manifold with pinched negative
sectional curvature satisfying −a2

n ≤ K ≤ −a2
1. In the above coordinates and for this

metric, for every y ∈ R
n, the curves t → (t , y) are geodesics, all being asymptotic to a

point ξ ∈ ∂GA when t → +∞. For each s ∈ R, the sets {(s, y) , y ∈ R
n} are horospheres

Hξ(s) centered at ξ . For each s, the horospheres Hξ(s) are clearly isometric to the
Euclidean space R

n. However, GA is isometric to the real hyperbolic space if and only if
a1 = a2 = · · · = an and it does not admit a compact quotient unless the ai terms coincide,
as proved in [13]. This exemplifies that having a family of Euclidean horospheres Hξ(t)

centered at a given boundary point does not characterize the real hyperbolic space.
Also note that the flow ϕt defined in the above coordinates of GA by

ϕt (s, y) := (s + t , y)

permutes the horospheres, mapping Hξ(s) on Hξ(s + t). Writing hs as the metric induced
by g on Hξ(s), we have

hs := e2a1s |dy1|2 + · · · + e2ans |dyn|2
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and

ϕ∗
t (hs+t ) = e2a1(s+t)|dy1|2 + · · · + e2an(s+t)|dyn|2,

and hence the two metrics hs and ϕ∗
t (hs+t ) are linearly equivalent and therefore they share

the same Levi-Civita connecyion. The flow ϕt then preserves the Levi-Civita connecyions
and thus commutes with the parallel transport of the induced metrics on the Hξ(s) terms.

2.3. Busemann function. Let M̃ be a Cartan Hadamard manifold endowed with pinched
negative sectional curvature −a2 ≤ K ≤ −b2 < 0. The Busemann functions B(·, ξ) are
C2 for every ξ ∈ ∂M̃ , [15, Proposition 3.1], and it is also known that they are C∞ in the
case that M̃ is the universal cover of a closed manifold.

For the sake of completeness, let us give here the proof of this fact. The geodesic flow g̃t

on M̃ is generated by the smooth vector field Z := d/dt |t=0g̃t on T 1M̃ . For every ξ ∈ ∂M̃ ,
the set defined by

W̃ s(ξ) = {ṽ | cṽ(+∞) = ξ} (2.9)

is a weak stable leaf of g̃t , preserved by g̃t . It is a smooth submanifold of T 1M̃ [20,
Theorem IV.1] and the projection p̃ induces a diffeomorphism between W̃ξ and M̃ . For
every ṽ ∈ T 1M̃ , the vector Z(ṽ) := d/dt |t=0(g̃t (ṽ)) is tangent to the flow direction at ṽ

and the following holds:

Dp̃(ṽ)(Z(ṽ)) = ċṽ(0) = −∇B(p̃(ṽ), ξ). (2.10)

Therefore, if we defined p̃−1(x) = ṽ ∈ W̃ξ , we get that ∇B(x, ξ) = −Dp̃(p̃−1(x))

(Z(p̃−1(x)) is a smooth vector field on M̃ and therefore B(·, ξ) is smooth.
This fact will be useful in §4 while constructing a quasi-isometry between M̃ and GA

using horospherical coordinates.

3. Stable holonomies for horospheres in negatively curved manifolds
A priori, the parallel transport associated to the induced metrics on horospheres does not
commute with the action of the geodesic flow. In a sharp contrast, at the end of §2.2, we
noticed that for Heintze groups, it does. In this section, we will describe another transport
along horospheres, called the stable holonomy, which, by construction, commutes with
the geodesic flow. A consequence of the equality of these a priori unrelated two parallel
transports is that the Levi-Civita connections of the horospheres are flat and commute with
the geodesic flow. We will see in §4 that when these two properties hold true on the family
of horospheres Hξ(s), s ∈ R, for ξ ∈ ∂M̃ fixed by some element γ ∈ π1(M), then M̃ is
quasi-isometric to the Heintze group GA, where A is the derivative of the Poincaré first
return map along the periodic geodesic associated to γ .

We now describe the construction of the stable holonomy following [3, 17]. It uses in a
crucial way either the strong 1/4-pinching or the relative 1/2-pinching assumption on the
curvature which corresponds to the ‘fiber bunched’ condition of [17] (see Appendix A). In
fact, Propositions 3.5 and 3.12 are a consequence of [17, Proposition 4.2]. However, we will
construct the stable holonomy in a way which is adjusted to our particular geometric setting
and to make the paper self contained. We conclude this section with Proposition 3.13 and
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Corollary 3.14, stating that equality of the two transports on a single horosphere implies
equality on all horospheres.

Throughout this section, we will work with the tangent bundle of horospheres in M̃

which, in turn, as a level set of Busemann functions, are smooth submanifolds of the
universal cover of M. Keeping the notation from §1, let gt : T 1M → T 1M denote the
geodesic flow on M, i.e., the projection of g̃t under the map Dπ : T 1M̃ → T 1M . Let us
choose a point ξ ∈ ∂M̃ . It is a well-known feature of the negative curvature of M̃ that
any point in M̃ lies on a unique geodesic ray ending at ξ . Hence, the canonical projection
p̃ : T 1M̃ → M̃ induces a diffeomorphism from the set of unit vectors that are pointing in
the direction of ξ and M̃ . This subset of unit tangent vectors will be denoted by W̃ s(ξ),
and is usually called the (weak) stable manifold and the induced diffeomorphism will be
denoted by p̃ξ .

With this identification, for every t ∈ R and for every ξ ∈ ∂M̃ , the action of the geodesic
flow on W̃ s(ξ) provides us with a one-parameter group of diffeomorphism of M̃ ,

ϕt ,ξ = p̃ξ ◦ g̃t ◦ p̃−1
ξ . (3.1)

For ṽ0 ∈ T 1M̃ , let ξ = cṽ0(+∞) and assume that p̃ξ (ṽ0) = x0 with cṽ0(0) = x0. By
definition, p̃ξ maps W̃ ss(ṽ0) diffeomorphically onto the unique horosphere centered at
ξ which contains x0. If we denote this horosphere by Hξ(0), then it also follows from
the definitions that the derivative Dp̃ξ (ṽ0) maps Ẽss(ṽ0) isomorphically onto Tx0Hξ(0).
Finally, we note that the family of horospheres centered at ξ can be parameterized by the
time parameter, i.e., for s ∈ R, the horosphere Hξ(s) will denote the unique horosphere in
M̃ , centered at ξ , which intersects the geodesic cṽ0 at time s. By the property of invariance
of the strong stable foliation by the geodesic flow, it follows that the diffeomorphisms ϕt ,ξ

permutes the set of horospheres centered at ξ , namely, ϕt ,ξHξ (s) = Hξ(s + t).
We now turn to the main construction of this section, see [3, 17]. The stable holonomy,

which we describe below, provides a geodesic flow invariant way to identify tangent spaces
at different points on any fixed horosphere. We fix x0 ∈ M̃ and recall that the horospheres
are defined by

Hξ(s) = {x ∈ M̃ | Bξ (x) = s},
where the Buseman function Bξ has been normalized such that Bξ (x0) = 0.

We start with the following definition (see [17, Definition 4.1] and Figure 1).

Definition 3.1. (Stable holonomy for horospheres) A stable holonomy is a family of maps
(x, y, ξ) → �

ξ
s (x, y), s ∈ R, defined on the set of points (x, y, ξ) such that x, y belong

to the horosphere Hξ(s), and such that the following properties hold:

(1) �
ξ
s (x, y) is a linear map from TxHξ (s) to TyHξ (s) for every s ∈ R, x, y ∈ Hξ(s);

(2) �
ξ
s (x, x) = Id and �

ξ
s (x, y) = �

ξ
s (z, y) ◦ �

ξ
s (x, z) for every s ∈ R, x, y, z ∈

Hξ(s);
(3) �

ξ
s (x, y) = Dϕ−1

t ,ξ (ϕt ,ξ (y))◦�
ξ
s+t (ϕt ,ξ (x), ϕt ,ξ (y))◦Dϕt ,ξ (x) for all t ∈R, s ∈R;

(4) for every γ ∈ π1(M), �
γξ

s+Bγξ (γ x0)
(γ x, γy) = Dγ (y) ◦ �

ξ
s (x, t) ◦ (Dγ (x))−1;

in condition (3), Dϕt ,ξ (z) denotes the differential of ϕt ,ξ at the point z.
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FIGURE 1. Horospheres and action of ϕt = ϕt ,ξ .

Notice that condition (2) tells that this stable holonomy, if it exists, is ‘flat’ and condition
(4) that the stable holonomy is equivariant under the action of the fundamental group of M
on the set of horospheres.

Let us choose a point ξ ∈ ∂M̃ . After this section, we will set ϕt := ϕt ,ξ , t ∈ R and
p̃ξ = p̃. Recall that the induced Riemannian metric on Hξ(t) is denoted by ht , and let ∇ t

denote the Levi-Civita connection associated to ht . The parallel transport with respect to
∇ t , along any path joining any two points x and y in Hξ(t), is an isometry between TxHξ (t)

and TyHξ (t). The isometry a priori depends on the path. However, if x, y in Hξ(t) are at
a distance less than the injectivity radius of Hξ(t), there exists a unique geodesic segment
joining x and y and we will therefore denote by

P
ξ
t (x, y) (3.2)

the parallel transport along this segment.
We now turn to the main proposition of this section that will grant us the existence of

the stable holonomy along horospheres. It is a reformulation of [17, Proposition 4.2] or of
[8, Proposition 2.2]. Since we will use the construction later on, we will briefly describe it.
We first need two lemmas.

The first lemma gives uniform contraction properties of the maps ϕt under the strong
1/4-pinching condition on the curvature of M. Let us normalize the sectional curvature K
of M, so that the following inequalities are satisfied for some constant 1 > τ > 0:

−4(1 − τ) ≤ K ≤ −1. (3.3)
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LEMMA 3.2. Let x, y be two points on Hξ(s) and let X be a tangent vector in TxHξ (s).
Then, for any t ≥ 0, the following estimates hold:
(1) ‖Dϕt(x)(X)‖hs+t ≤ e−t‖X‖hs ;
(2) ‖Dϕ−1

t (x)(X)‖hs−t ≤ e(2
√

1−τ)t‖X‖hs ≤ e(2−τ)t‖X‖hs ; and
(3) dhs+t (ϕt (x), ϕt (y)) ≤ e−t dhs (x, y).

Proof. The norm and the distance we use above are computed with respect to the induced
Riemannian metric on the corresponding horosphere. Recall that a stable Jacobi field Y (t)

along a geodesic ray cṽ(t), t > 0, is a bounded Jacobi field, see [15, Definition 2.1]. The
proof of these inequalities is a direct consequence of the estimate of the growth of the
stable Jacobi fields, as done in [15, Theorem 2.4].

In fact, we only need to show that Dϕt(X) is a stable Jacobi field. This follows from the
Anosov property of the geodesic flow of M, see [2, Appendix 21]. Indeed, if X is a tangent
vector in TxHξ (s) at the point x, then X = Dp̃(ṽ)(V ), where V ∈ Ess(ṽ) ⊂ TṽT

1M̃ , and
ṽ is the unit vector in TxM̃ perpendicular to Hξ(s) and pointing toward ξ . Therefore, by
applying the chain rule to equation (3.1) and recalling that x = p̃(ṽ), we obtain that

Dϕt(x)(X) = Dp̃(g̃t (ṽ)) ◦ Dg̃t (ṽ)(V ). (3.4)

Since the geodesic flow of M is Anosov and V ∈ Ess(ṽ), it follows that

lim
t→∞ ‖Dg̃t (ṽ)(V )‖ = 0, (3.5)

which implies that limt→∞ ‖Dϕt(x)(X)‖ = 0. Indeed, the map p̃ : T 1M̃ → M̃ is defined
on the quotient (by π1(M)) by p : T 1M → M , and the compactness of M grants us that
p̃ as well as Dp̃ are bounded. Hence, it follows that Dϕt(X) is a stable Jacobi field and
this concludes the proof of the first assertion of Lemma 3.2. The other assertions follow
easily.

Since (M̃ , g̃) covers the closed manifold (M , g), for each σ ∈ [0, 1], we are able to
obtain a uniform control on the action of ϕσ as follows. We first study the behavior
of the family of horospheres Hξ(s), s ∈ R, orthogonal to the geodesic cṽ(s) such that
cṽ(+∞) = ξ . By assertion (3) of Proposition 2.1, we will assume from now on that the
injectivity radius of every horosphere is bounded below by ρ > 0. For each x ∈ Hξ(s), we
denote cx as the geodesic passing through x asymptotic to ξ , i.e., cx(+∞) = cṽ(+∞) = ξ

parameterized in such a way that cx(s) = x.

LEMMA 3.3. For every R > 0, there exists a constant CR > 0 such that for any s ∈ R,
any σ ∈ [0, R], any two points x, y ∈ Hξ(s) such that dHξ (s)(x, y) < ρ, and any X ∈
TxHξ (s), the following holds:

‖(Dϕ−1
σ (ϕσ (y)) ◦ P

ξ
s+σ (ϕσ (x), ϕσ (y)) ◦ Dϕσ (x) − P ξ

s (x, y))(X)‖hs

≤ CRdhs (x, y) ‖X‖hs . (3.6)

Proof. Let us first assume that X ∈ TxHξ (s) has a unit norm. Define Xσ := Dϕσ (x)X

and let c : [0, d] → Hξ(s) be the geodesic segment of Hξ(s) between x and y, where d =
dhs (x, y). Let cσ (u) : [0, d] −→ Hξ(s + σ) be the geodesic segment, parameterized with
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constant speed, joining ϕσ (x) and ϕσ (y) which exists by Lemma 3.2(3). Notice that also
by Lemma 3.2, we have

e−(2−τ) ≤ |ċσ | ≤ 1. (3.7)

We have

Dϕ−1
σ (ϕσ (y)) ◦ P

ξ
s+σ (ϕσ (x), ϕσ (y)) ◦ Dϕσ (x) − P ξ

s (x, y)

=
∫ d

0

d

du
(Dϕ−1

σ (cσ (u)) ◦ (P
ξ
s+σ (ϕσ (x), cσ (u)) ◦ Dϕσ (x)

− Dϕσ (c(u)) ◦ P ξ
s (x, c(u)))) du.

By compactness of M and by equation (3.1), the norm of every covariant derivative of
ϕ

ξ
σ and (ϕ

ξ
σ )−1, ξ ∈ ∂M̃ and σ ∈ [0, R] is bounded above by a constant depending on the

degree of derivation. In particular, there exists a constant CR > 0 such that the integrand
in the right-hand side term is bounded above by CR .

We deduce that

‖P ξ
s (x, y)(X) − Dϕ−1

σ (ϕσ (y)) ◦ P
ξ
s+σ (ϕσ (x), ϕσ (y)) ◦ Dϕσ (x)(X)‖hs ≤ Cdhs (x, y).

(3.8)

If the norm of X is not equal to 1, the desired inequality follows by simple modifications
of the proof above.

Remark 3.4. Notice that the constant C in the above proposition does not depend on the
horosphere Hξ(s) nor even on ξ . More precisely, in equation 3.8, the parallel transport
operators are isometries, and hence their norms are bounded by one. Only the differential
of φσ matters. These maps, for σ ∈ [0, 1], are projections, by p̃ to M̃ , of the geodesic flow
on T 1M̃ restricted to the submanifolds W̃ s(ξ). Now by compactness of M, T 1(M), and
[0, 1], p̃ and the geodesic flow on T 1M̃ have bounded derivatives at any order. Finally,
the arguments in §2.1 show that the manifolds W̃ s(ξ) have uniformly bounded geometry
at any order with constants independent of ξ . Notice, however, that independence on ξ is
not really needed in our argument.

We now turn to prove the existence of a stable holonomy. In the following proposition,
we assume that the sectional curvature satisfies either the strong 1/4-pinching or relative
1/2-pinching assumption. We will then describe possible generalizations based on the
results in [11]. However, stable holonomy may exist without any pinching assumption but
just under the negativity of the sectional curvature. We do not know any counterexample to
this. For every ṽ ∈ T 1M̃ , we consider the family of horospheres centered at ξ := cṽ(+∞),
which we parameterize as Hξ(t), t ∈ R, where the parameter t = 0 corresponds to the
horosphere containing the base point of ṽ.

PROPOSITION 3.5. Let M be a closed Riemannian manifold with pinched negative
curvature satisfying either the strong 1/4-pinching condition −4(1 − τ) ≤ κ ≤ −1 or
the relative 1/2-pinching condition. Let ṽ be a unit vector tangent to M̃ . Let ξ =
limt→+∞ cṽ(t) ∈ ∂M̃ . Then:
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(i) for every s ∈ R, x, y ∈ Hξ(s), there exists a linear map

�ξ
s (x, y) : TxHξ (s) → TyHξ (s)

satisfying conditions (1), (2), and (3) in Definition 3.1;
(ii) ‖�ξ

s (x, y) − P
ξ
s (x, y)‖ ≤ Cdhs (x, y) for all x, y such that dhs (x, y) < ρ;

(iii) properties (i) and (ii) uniquely determine the stable holonomy;
(iv) the stable holonomy is π1(M)-equivariant, i.e., for every γ ∈ π1(M), we have

�
γξ

s+Bγξ (γ x0)
(γ x, γy) = Dγ (y) ◦ �ξ

s (x, t) ◦ (Dγ (x))−1.

Proof. The proof follows closely the methods given in [17, Proposition 4.2]. We reproduce
here only the part of the construction, modified to our setting, which we will need in what
follows. The proof is organized into the two cases corresponding to the different curvature
assumptions.

The case of strong 1/4-pinching of the curvature. Recall that we have denoted ϕt :=
ϕξ ,t . Let us consider x, y ∈ Hξ(s) such that dHξ (s)(x, y) ≤ R for some fixed R. For
every x ∈ Hξ(s), denote xt := ϕt (x) ∈ Hξ(s + t). By Lemma 3.2(3), there exists t0 :=
t0(R) ≥ 0 such that dHξ (s+t0)(xt0 , yt0) < ρ.

Let us turn to proving assertion (i). For every t ∈ R, define

ct : [0, 1] → Hξ(s + t)

as the geodesic segment, parameterized with constant speed, between xt and yt which is
well defined when their distance is less than ρ.

For x, y ∈ Hξ(s), we define

�ξ
s (x, y) = lim

t→∞ dϕ−1
t (yt ) ◦ P

ξ
t (xt , yt ) ◦ dϕt (x). (3.9)

Note that the term P
ξ
t (xt , yt ) in the limit is well defined for all t ≥ t0, since the distance

between xt and yt is decreasing. Let us show that the above limit exists. Define for j ≥ 0,
x, y ∈ Hξ(s),

�
ξ
s,j (x, y) := dϕ−1

t0+j (yt0+j ) ◦ P
ξ
s+t0+j (xt0+j , yt0+j ) ◦ dϕt0+j (x).

We have for every N ≥ 0,

�
ξ
s,N(x, y) = �

ξ
s,0(x, y) +

N−1∑
j=0

(�
ξ
s,j+1(x, y) − �

ξ
s,j (x, y)). (3.10)

Each term in the above sum is expanded as

(�
ξ
s,j+1 − �

ξ
s,j )(x, y)

= Dϕ−1
t0+j (yt0+j ) ◦ [

Dϕ−1
1 (yt0+j+1) ◦ P

ξ
s+t0+j+1(xt0+j+1, yt0+j+1) ◦ Dϕ1(xt0+j )

− Pcj
(xt0+j , yt0+j )

] ◦ Dϕt0+j (x),
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and hence, by Lemma 3.3, we get

‖(�ξ
s,j+1 − �

ξ
s,j )(x, y)‖ ≤ C‖Dϕ−1

t0+j (yt0+j )‖‖Dϕt0+j (x)‖dhs+t0+j
(xt0+j , yt0+j ).

(3.11)

Assertion (3) of Lemma 3.2 implies that

dht0+s+j
(xt0+j , yt0+j ) ≤ e−(t0+j)dhs (x, y). (3.12)

Substituting this inequality back in equation (3.11) and using the estimates (1) and (2) of
Lemma 3.2 yield that

‖(�ξ
s,j+1 − �

ξ
s,j )(x, y)‖ ≤ Ce−τ(t0+j)dhs (x, y). (3.13)

Therefore, the limit in equation (3.9) exists and is well defined. The π1(M)-invariance is
obvious and proofs of the others parts of this proposition are the same as in those of [17,
Theorem 4.2].

The case of relative 1/2-pinching of the curvature. In this case, we use a result of
B. Hasselblatt stating that the geodesic flow gt of a closed manifold with a relatively
1/2-pinched negative curvature satisfies the following ‘bunching’ condition [12, Theorem
6]. The geodesic flow gt on T 1M is α-bunched, α > 0, if there exists functions μ± :
T 1M × R+ → (0, 1) such that for every v ∈ T 1M , X ∈ Ess(v), and t > 0,

μ−(v, t)‖X‖ ≤ ‖Dgt(X)‖ ≤ μ+(v, t)‖X‖ (3.14)

and

lim
t→∞ sup

v∈T 1M

μ+(v, t)2/αμ−(v, t)−1 = 0. (3.15)

THEOREM 3.6. [12] Let M be a closed Riemannian manifold with relative 1/2-pinched
negative curvature. Then the geodesic flow of M is (1 + ε)-bunched for some ε > 0.

It turns out that in the proof of this theorem it is shown that the convergence in equation
(3.15) is exponential, i.e., there exists τ > 0 and A > 0 such that

sup
v∈T 1M

μ+(v, t)2/αμ−(v, t)−1 ≤ A e−τ t . (3.16)

The proof of the proposition in the relative pinching case in Proposition 3.5 is then similar
to that under the strong pinching assumption. We first notice that equations (3.14) and
(3.15) lift the universal cover into

μ̃−(ṽ, t)‖X‖ ≤ ‖Dg̃t (X)‖ ≤ μ̃+(ṽ, t)‖X‖ (3.17)

and

sup
ṽ∈T 1M̃

μ̃+(ṽ, t)2/αμ̃−(ṽ, t)−1 ≤ A e−τ t , (3.18)

where t > 0, X ∈ Ess(ṽ), and the functions μ̃± : T 1M̃ × R+ → (0, 1) are invariant under
the action of the fundamental group of M on the first variable. By equation (3.1), recall that

ϕt ,ξ = p̃ξ ◦ g̃t ◦ p̃−1
ξ .
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For ṽ ∈ T 1M̃ , x = π(ṽ), and ξ = cṽ(+∞), denote

μ
ξ
±(x, t) := μ̃±(ṽ, t).

Since there exists C > 0 such that C−1 ≤ ‖Dp̃±1
ξ ‖ ≤ C by compactness of M, the above

equations (3.17) and (3.18) translate into

C−2μ
ξ
−(x, t)‖X‖ ≤ ‖Dϕt ,ξ (X)‖ ≤ C2μ

ξ
+(x, t)‖X‖ (3.19)

and

sup
x∈M̃ ,ξ∈∂M̃

μ
ξ
+(x, t)2/αμ

ξ
−(x, t)−1 ≤ A e−τ t , (3.20)

where X is a vector tangent at x to the horosphere centered at ξ and passing through x.
Since α = 1 + ε and μ

ξ
+(x, t) = μ̃+(ṽ, t) < 1, we can choose by equation (3.20) t0 > 0

and 0 < θ < 1 such that for every x ∈ M̃ ,

μ
ξ
+(x, t0)

2μ
ξ
−(x, t0)

−1 ≤ θ . (3.21)

We now argue as in the previous case. We define

�
ξ
s,j (x, y) := dϕ−1

t0(1+j)(yt0(1+j)) ◦ P
ξ

s+t0(1+j)(xt0(1+j), yt0(1+j)) ◦ dϕt0(1+j)(x)

and get similarly as in equation (3.11)

‖(�ξ
s,j+1 − �

ξ
s,j )(x, y)‖

≤ C1‖(Dϕt0(1+j)(y))−1‖‖Dϕt0(1+j)(x)‖dhs+t0(1+j)
(xt0(1+j), yt0(1+j)). (3.22)

There is here a slight difference with the previous case coming from the fact that the
term ‖(Dϕt0(1+j)(y))−1‖‖Dϕt0(1+j)(x)‖ in equation (3.22) cannot be estimated through
the estimates of Lemma 3.2, which are uniform in x and y. Instead, we argue like in
[17, Lemma 4.3]: denoting xk := ϕt0(1+k)(x) and similarly replacing x by y, we have

Dϕt0(1+j)(x) = Dϕt0(xt0(1+j−1)) ◦ · · · ◦ Dϕt0(x)

and

Dϕt0(1+j)(y) = Dϕt0(yt0(1+j−1)) ◦ · · · ◦ Dϕt0(y),

and hence

‖(Dϕt0(1+j)(y))−1‖‖Dϕt0(1+j)(x)‖ ≤ �
k=j−1
k=0 (‖Dϕt0(yk)

−1‖‖Dϕt0(xk)‖); (3.23)

therefore,

‖(Dϕt0(1+j)(y))−1‖‖Dϕt0(1+j)(x)‖
≤ �

k=j−1
k=0 (‖Dϕt0(yk)

−1‖‖Dϕt0(yk)‖)�k=j−1
k=0

‖Dϕt0(xk)‖
‖Dϕt0(yk)‖ . (3.24)

Let us estimate the last product in equation (3.24). Since for every x ∈ M̃ , we
have C−1

2 ≤ ‖Dϕt0(x)‖ ≤ C2 for C2 = C2 supx(μ
ξ
+(x, t0)) by equation (3.19), we deduce
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from Lemma 3.3 that

‖(P ξ
s+t0

(ϕt0(x), ϕt0(y)) ◦ Dϕt0(x) − Dϕt0(y) ◦ P ξ
s (x, y))(X)‖hs

≤ C3 CRdhs (x, y) ‖X‖hs , (3.25)

and since the parallel transport is an isometry, we have

|‖Dϕt0(x)‖ − ‖Dϕt0(y)‖| ≤ C3 CRdhs (x, y). (3.26)

We therefore get ∣∣∣∣
(

1 − ‖Dϕt0(x)‖
‖Dϕt0(y)‖

)∣∣∣∣ ≤ C4 CRdhs (x, y), (3.27)

where C4 = C2 C3. Now, recalling that the sectional curvature of M satisfies K ≤
−a2 < 0 for some a, we deduce that d(xk , yk) ≤ e−at0(1+k) and thus that there exists
C5 > 0 such that for every k,

�
k=j−1
k=0

‖Dϕt0(xk)‖
‖Dϕt0(yk)‖ ≤ C5. (3.28)

From equations (3.22), (3.24), and (3.28), we obtain

‖(�ξ
s,j+1 − �

ξ
s,j )(x, y)‖

≤ C6�
k=j−1
k=0 (‖Dϕt0(yk)

−1‖‖Dϕt0(yk)‖)dhs+t0(1+j)
(xt0(1+j), yt0(1+j)). (3.29)

From equations (3.19) and (3.29), we get

‖(�ξ
s,j+1 − �

ξ
s,j )(x, y)‖

≤ C6�
k=j−1
k=0 ((μ

ξ
−(yk , t0))

−1μ
ξ
+(yk , t0))dhs+t0(1+j)

(xt0(1+j), yt0(1+j)). (3.30)

Now, similarly as in [7, Lemma 1.1], we see that

dhs+t0(1+j)
(xt0(1+j), yt0(1+j)) ≤ C7 �

k=j−1
k=0 μ

ξ
+(yk , t0), (3.31)

and hence from equation (3.30), we deduce

‖(�ξ
s,j+1 − �

ξ
s,j )(x, y)‖ ≤ C8�

k=j−1
k=0 ((μ

ξ
−(yk , t0))

−1(μ
ξ
+(yk , t0))

2). (3.32)

By equation (3.21), we therefore have

‖(�ξ
s,j+1 − �

ξ
s,j )(x, y)‖ ≤ C9 θj+1 (3.33)

and we conclude as in the previous case.

3.1. General relative pinching. Theorem 3.6 can be extended; indeed, following [11],
one could consider the situation of a more general relative pinching. To get a result with
the same technique than in [12], that is, comparison theorems for the Riccati equations, we
need to combined strong pinching and relative pinching. More precisely, let us recall the
statement of [11, Theorem 4.3].
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THEOREM 3.7. Let a and b satisfy 0 ≤ b ≤ a ≤ 1. The geodesic flow of a closed negatively
curved Riemannian manifold which is b-pinched and relatively a-pinched is

C(a, b) + ε-bunched

for some positive ε, where C(a, b) = a − b + √
(a + b)2 + 4(1 − a)b.

Like in [12], the ε > 0 is small and it appears because of how the pinching assumptions
are strict. Notice that when the upper sectional curvature approaches zero, even though a
relative pinching is given, the comparison may not give the bunching, so the role played by
the strong pinching is then to circumvent this difficulty. In [11], some interesting explicit
solutions and evidence of the optimality of this result are given.

Now, if a and b are chosen so that C(a, b) = 1, we get (1 + ε)-bunching and are able
to apply a proof similar to the one given for Theorem 3.6. A direct computation shows that
C(a, b) = 1 is equivalent to a + b = 1/2. The following remark then gives some useful
information.

Remark 3.8. Let us first remark (see [11, Remark 1.5]) that, under the hypotheses given
in Theorem 3.7: C(a, b) ≥ 2a and C(a, a) = 2

√
a. It is furthermore obvious to check

that if a = 1/2, then b = 0 yields (1 + ε)-bunching which means nothing more than the
sectional curvature is non-positive, this is our second case. Also, if a = 1/4, then b = 1/4,
which means that we have a strong quarter-pinching and not only a relative one; this is our
first case. These are the only cases for which only one pinching condition is necessary.
To go further, note that the bunching condition satisfies a monotonicity property; indeed,
if α ≥ β, then α-bunched implies β-bunched. A straightforward consequence is that
the condition we really need to make the construction of the stable holonomy is that
C(a, b) ≥ 1 + ε, for some small ε, which is equivalent, by the same direct computation,
to a + b > 1/2. Consequently, a = 1/4 + η′ and b = 1/4 − η with η′ > η makes possible
the construction. Here, η′ can takes all values in the interval ]0, 1/4[. The two extreme
cases are given by our case 1 and case 2, and this remark yields situations that interpolate
between them. The price to pay for these new cases is to combine the two pinching
conditions, strong and relative.

Remark 3.9. In the proof of the above proposition, the following fact, which will be useful
later, was applied several times.

CLAIM 3.10. For every ε > 0 and d > 0, there exists N such that for every ξ ∈ ∂M̃ and
every pair of points in a horosphere Hξ such that dHξ (x, y) ≤ d , then

‖�ξ(x, y) − �
ξ
N(x, y)‖ ≤ ε,

where �
ξ
N(x, y) is defined in equation (3.10) with s = 0.

Proof. Let us prove the claim. In the case of strong 1/4-pinching, it follows by equation
(3.10) that

�ξ(x, y) − �
ξ
N(x, y) =

∞∑
j=N

(�
ξ
j+1(x, y) − �

ξ
j (x, y)),
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and by equation (3.13), we obtain

‖�ξ(x, y) − �
ξ
N(x, y)‖ ≤ C

∞∑
j=N

e−τ(t0+j)dhs (x, y).

This concludes the proof of the claim since the rest of the series satisfies
∞∑

j=N

e−τ(t0+j)dhs (x, y) ≤ d

∞∑
j=N

e−jτ ≤ ε

for N large enough.

In the case of relative 1/2-pinching, the proof is similar, replacing equation (3.13) by
equation (3.33) in the last step.

We now wish to compare the stable holonomy with the parallel transport of the
Levi-Civita connection on horospheres. Consider two points x, y on a horosphere Hξ in
M̃ centered at ξ ∈ ∂M̃ . Assume that dHξ (x, y) < ρ is smaller than the injectivity radius
of Hξ . We recall that, by Proposition 2.1(3), the injectivity radius of every horosphere
is bounded below by a constant ρ > 0. The stable holonomy �ξ(x, y) and the parallel
transport P ξ (x, y) along the unique geodesic segment joining x and y a priori do not
coincide. We insist on the fact that the stable holonomy is a dynamical object, whereas the
Levi-Civita connection is geometric. Assuming that they coincide locally on a horosphere
has the following strong implication.

PROPOSITION 3.11. Let M be a closed Riemannian manifold with sectional curvature
satisfying either the strong 1/4-pinching or relative 1/2-pinching assumption. Let ξ be
a point in ∂M̃ and x0 ∈ Hξ be a point in a horosphere centered at ξ . Assume that for every
x, y ∈ BHξ (x0, ρ/2), the stable holonomy �ξ(x, y) coincides with the parallel transport
P ξ (x, y) of the Levi-Civita connection of Hξ . Then, the induced metric on Hξ restricted
to BHξ (x0, ρ/2) is flat.

Proof. Since any pair of points in BHξ (x0, ρ/2) are at distance less than ρ, there is a
unique geodesic segment joining them, and by our coincidence assumption and assertion
(2) of Definition 3.1, it follows that

P ξ (x, y) = P ξ (z, y) ◦ P ξ (x, z).

From the classical formula of the curvature in terms of the parallel transport, see for
instance [18, Theorem 7.1], we deduce that the curvature of the induced metric of Hξ

restricted to BHξ (x0, ρ/2) is identically zero.

The goal of what follows is to show that if the stable holonomy and the parallel transport
of the Levi-Civita connection locally coincide on a given horosphere Hξ , then the same
property holds on all horospheres. To accomplish this, we need to establish the continuity
of the stable holonomy. Let ṽ be a unit vector tangent to M̃ and ṽk ∈ T 1M̃ a sequence
of unit tangent vectors such that limk ṽk = ṽ. Let ξṽ = cṽ(+∞) be the associated point
on ∂M̃ . Denote by Hṽ the horosphere centered at ξṽ passing through the base point of
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ṽ. Let Q̃k and Q̃ be the lifts of the plaques Qk and Q of the strong stable foliation Wss

embedded in a chart U ⊂ T 1M and containing ṽk and ṽ, respectively. Recall that, from
Proposition 2.1, the sequence of diffeomorphisms

π−1 ◦ p ◦ �(vk) : Dn → p̃(Q̃k) (3.34)

converges in the Cr -topology to

π−1 ◦ p ◦ �(v) : Dn → p̃(Q̃). (3.35)

PROPOSITION 3.12. Let ṽk ∈ T 1M̃ be a sequence of unit tangent vectors such that
limk ṽk = ṽ. Let x = π−1 ◦ p ◦ �(v)(qx), y = π−1 ◦ p ◦ �(v)(qy) be a pair of points
in p̃(Q̃) and xk = π−1 ◦ p ◦ �(vk)(qxk

), yk = π−1 ◦ p ◦ �(vk)(qyk
) in p̃(Q̃k). Then,

lim
k

�
ξṽk (xk , yk) = �ξv (x, y).

Proof. Let us fix ε > 0. By Claim 3.10, we can choose N such that for every x, y ∈ p̃(Q̃)

and every xk , yk ∈ p̃(Q̃k), we have

||�ξṽ (x, y) − �
ξṽ

N (x, y)|| ≤ ε (3.36)

and similarly,

||�ξṽk (xk , yk) − �
ξṽk

N (xk , yk)|| ≤ ε. (3.37)

By the above convergence of equation (3.34) to equation (3.35), the points xk and yk

converge to x and y, and the unit normals to p̃(Q̃k) at xk and yk converge to the unit normals

to p̃(Q̃) at x and y, respectively. Therefore, the flows (ϕ
ξṽk
t )|p̃(Q̃k)

converge to (ϕ
ξṽ
t )|p̃(Q̃)

uniformly for t ∈ [0, T ] for every T. Now, the way �
ξṽ

N (x, y) depends on ϕ
ξṽ
t , t ≤ N , and

the fact that t0 ≤ log ρ implies that �
ξṽk

N (xk , yk) converges to �
ξṽ

N (x, y). Therefore, there
exists K > 0 such that for all k ≥ K ,

‖�ξṽ

N (x, y) − �
ξṽk

N (xk , yk)‖ ≤ ε.

We then deduce that for N and k ≥ K ,

‖�ξṽ (x, y) − �
ξṽk (xk , yk)‖

≤ ‖�ξṽ (x, y) − �
ξṽ

N (x, y)‖ + ‖�ξṽ

N (x, y) − �
ξṽk

N (xk , yk)‖
+ ‖�ξṽk

N (xk , yk) − �
ξṽk (xk , yk)‖

and thus, ‖�ξṽ (x, y) − �
ξṽk (xk , yk)‖ ≤ 3ε, which concludes the proof.

We can now state the main result of this section.

PROPOSITION 3.13. Let M be a closed Riemannian manifold with sectional curvature
satisfying either the strong 1/4-pinching or the 1/2-relative pinching assumption. Let
ṽ be a unit tangent vector in T 1M̃ and ξṽ = cṽ(+∞) the corresponding point in ∂M̃ .
Assume that the stable holonomy �ξṽ (x, y) and the parallel transport for the Levi-Civita
connection P ξṽ (x, y) coincide on every ball of radius ρ/2 of the horosphere Hξṽ

. Then,
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for every horosphere Hξw̃
, w̃ ∈ T 1M̃ , and every z ∈ Hξw̃

, there exists a neighborhood
V(z) ⊂ Hξw̃

of z such that the stable holonomy �ξṽ (x, y) and the parallel transport for the
Levi-Civita connection P ξṽ (x, y) coincide for all points x, y ∈ V(z).

Proof. Suppose that Hṽ satisfies the assumption of the proposition and let us consider
a different horosphere Hw̃. We will prove that locally around p̃(w̃) on Hw̃, the stable
holonomy and the Levi-Civita parallel transport coincide. As mentioned in the proof of
assertion (2) in Proposition 2.1, each leaf of the strong stable foliation Wss ⊂ T 1M , in
particular, Wss(v), is dense in T 1M , where v = dπ̃(ṽ). Moreover, thanks to equations
(2.5) and (2.6) in Proposition 2.1, the lift p̃(Q̃) ⊂ Hw̃ is the Cr limit of the sequence
of sets p̃(Q̃l), where Q̃l are lifts of Ql . These lifts Q̃l are subsets of translates, by
elements of the fundamental group of M, of Hṽ . By the π1(M)-equivariance of the stable
holonomy (coming from Proposition 3.5) and of the Levi-Civita connection, we get from
our assumption that the stable holonomy and the parallel transport of the Levi-Civita
connection coincide on p̃(Q̃l). The proof then follows from the continuity properties of
Propositions 3.12 and 2.1(4).

COROLLARY 3.14. Let M be a closed Riemannian manifold with sectional curvature
satisfying either the strong 1/4-pinching or relative 1/2-pinching assumption. If the
stable holonomy and the parallel transport of the induced Levi-Civita connection coincide
on every ball of radius ρ/2 of one horosphere Hξṽ

, then the induced metric on each
horosphere of M̃ is isometric to a Euclidean metric. Moreover, for every w̃ ∈ T 1M̃ ,
x, y ∈ Hξw̃

, we have �
ξw̃
s (x, y) = P

ξw̃
s (x, y), in other words, the stable holonomy and

the parallel transport associated to the Euclidean metric coincide on every horosphere.
In particular, the parallel transport associated to the Euclidean metric is invariant by the
geodesic flow.

Proof. By Proposition 3.13, for every horosphere Hξw̃
and x ∈ Hξw̃

, the stable holon-
omy and the parallel transport associated to the Levi-Civita connection coincide on a
neighbohood V(x) of x. Thanks to Proposition 3.11 applied to V(x), we deduce that the
induced metric on every horosphere has a flat Levi-Civita connection, and hence is an
Euclidean metric. This proves the first part. Let us prove the second part of the corollary.
Let us consider x, y ∈ Hξw̃

. Choose a continuous path c : [0, 1] → Hξw̃
such that c(0) = x

and c(1) = y. There exists t0 = 0 < t1 < · · · < t2k = 1 such that {V(c(t2i ))}ki=0 is a
finite covering of c([0, 1]) and c(t2i+1) ∈ V(c(t2i )) ∩ V(c(t2(i+1))). Since the Levi-Civita
connection on the metric of Hξw̃

is flat, we have

P
ξw̃
s (x, y) = P

ξw̃
s (c(t0), c(t1)) ◦ P

ξw̃
s (c(t1, c(t2)) ◦ · · · ◦ P

ξw̃
s (c(t2k−1, c(t2k))

and similarly, thanks to property (2) of Definition 3.1,

�
ξw̃
s (x, y) = �

ξw̃
s (c(t0), c(t1)) ◦ �

ξw̃
s (c(t1, c(t2)) ◦ · · · ◦ �

ξw̃
s (c(t2k−1, c(t2k)).

We then conclude that P
ξw̃
s (x, y) = �

ξw̃
s (x, y) since P

ξw̃
s (c(tj ), c(tj+1)) = �

ξw̃
s (c(tj ),

c(tj+1)).
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4. A quasi-isometry between M̃ and a Heintze group
In this section, the main theorem of this article, Theorem 1.2, will be proved. As we
explained in §1, the proof amounts to proving Theorem 1.4. Henceforth, M is assumed
to satisfy either the strong 1/4-pinching or relative 1/2-pinching assumption and to be
of dimension greater than or equal to 3. Furthermore, by Corollary 3.14, we may assume
that all the horospheres in M̃ are isometric to the Euclidean space and that the associated
parallel transport is invariant by the geodesic flow. We will therefore be able to prove
below the following. Given a geodesic cṽ(t) in M̃ which projects to a closed geodesic in
M, there exists a quasi-isometry between the universal cover M̃ of M and the Heintze group
GA, where A is the derivative of the first return Poincaré map along the closed geodesic.
Theorem 1.5, will then imply that the eigenvalues of A all have the same modulus, and
hence conclude the proof of Theorem 1.4.

Let us choose a geodesic cṽ(t) in M̃ with end point ξ = cṽ(∞) ∈ ∂M̃ , which projects
to a closed geodesic in M. We consider the horosphere Hξ(0) centered at ξ and passing
through the base point x0 = cṽ(0). For each p ∈ M̃ , the geodesic c joining p and ξ

intersects Hξ(0) at a point x = c(0). The pair, (t , x) ∈ R × Hξ(0), is the horospherical
coordinates of p.

Keeping the same notation as in §3, we recall that {ϕt }t∈R is a one-parameter group of
diffeomorphisms of M̃ which sends Hξ(0) diffeomorphically onto Hξ(t) (see Definition
3.1) and the above horospherical coordinates realize the following diffeomorphism � :
R×Hξ(0) → M̃ defined by

(t , x) → ϕt (x) for t ∈ R and x ∈ Hξ(0). (4.1)

Therefore, in horospherical coordinates, the pull back by � of the metric g̃ on M̃ at (t , x)

writes as the orthogonal sum:

�∗(g̃) = dt2 + ϕ∗
t ht (x), (4.2)

where ϕ∗
t ht is a flat metric on Hξ(0). Note that ϕt acts by translation on geodesics, and

hence, there is no effect on the dt2 factor.
As before, since the horosphere (Hξ (0), h0) is flat, we will identify it with the Euclidean

space (Rn, heucl). The geodesic cṽ projects to a closed geodesic on M of period l. Let γ be
the element of the fundamental group of M with axis cṽ such that Dγ (g̃l(ṽ)) = ṽ. The map
ψ = γ ◦ ϕl is a diffeomorphism of M̃ (see Definition 4.5). When restricted to Hξ(0), ψ

can be considered as a diffeomorphism of Rn fixing x0, and dψ(x0) as a linear operator of
R

n which we will denote by T, see Definitions 4.5 and 4.7, where T = T 1. Up to replacing
T by T 2, we can assume that T is contained in a one-parameter group in GL(n, R), that is,
T = elA for some matrix A (see [9]). Indeed, replacing T with T 2 = Dψ(x0)

2, we simply
work with twice the periodic orbit of period 2l and the argument is rigorously the same.
We thus can assume from now on that T = elA. Let us consider the Heintze group GA

associated to the matrix A and recall from §2 that GA = R�A R
n is the solvable group

endowed with the multiplication law

(s, x) · (t , y) = (s + t , x + e−sAy) for all s, t ∈ R, x, y ∈ R
n. (4.3)
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FIGURE 2. The action of ψ on horospheres.

The group GA is diffeomorphic to R × R
n, and the tangent space at each point (s, x)

of GA splits as R × R
n. Let us consider the left invariant metric gA on GA which is

defined to be the standard Euclidean metric at (0, 0) ∈ GA, where R × {0} is orthogonal
to {0} × R

n. Since the inverse of the left multiplication is given by L(s,x)−1(t , y) = (t − s,
−esAx + esAy), an easy computation shows that the metric gA is then defined, for a vector
Z = (a, X) which is tangent to GA at an arbitrary point (s, x) ∈ GA, by

gA(s, x)(Z, Z) = a2 + heucl(e
sAX, esAX). (4.4)

We start by identifying the flat horosphere (Hξ(0), h0) with the Euclidean space
(Rn, deucl). Let us recall that cṽ is a geodesic in M̃ with ξ = cṽ(∞) ∈ ∂M̃ , which projects
to a closed geodesic in M of period l. We do not require that this geodesic is primitive;
in fact, we will later replace the corresponding element γ of the fundamental group by a
large enough power of it.

We now consider the diffeomorphism of Hξ(0) defined by

ψ(x) = γ ◦ ϕl(x) for x ∈ Hξ(0). (4.5)

For all k ≥ 1, let ψk = ψ ◦ ψ · · · ◦ ψ denote the kth power of ψ (see Figure 2). For
x ∈ Hξ(0), we define

Tk(x) = dψ(ψk−1(x)) (4.6)
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and

T k(x) = Tk(x) · Tk−1(x) · · · T1(x). (4.7)

Since γ and ϕt commute for all t ∈ R, it follows that

ψk(x) = γ k ◦ ϕkl(x) and T k(x) = Dψk(x) = Dγ k ◦ Dϕkl(x). (4.8)

As explained at the beginning of the section, we recall that T 1(x0) = eA for A being a
(n × n)-matrix. In particular,

T k(x0) = Dψk(x0) = Dγ k ◦ Dϕkl(x0) = elkA. (4.9)

The main result of this section is the following.

THEOREM 4.1. With the notation above, (M̃ , g̃) is bi-Lipschitz diffeomorphic, and hence
quasi-isometric, to (GA, gA).

Proof. In fact, we will show that there is a bi-Lipschitz diffeomorphism between GA

and M̃ . Recall that the map � : R × Hξ(0) → M̃ defined by �(s, x) = ϕs(x) is a
diffeomorphism.

By Corollary 3.14, the horosphere Hξ(0) endowed with the induced metric from M̃ is
flat, and hence, R × Hξ(0) = R × R

n and, therefore, we can see � as a diffeomorphism
between GA and M̃ .

We first show that the two metrics �∗g̃ and gA coincide at points with coordinates
(lk, y) where k is an integer.

LEMMA 4.2. For every k ∈ Z and y ∈ R
n, we have �∗g̃(lk, y) = gA(lk, y).

Proof. It is clear that for tangent vectors of the form Z = (a, 0), we have g̃(Z, Z) =
gA(Z, Z) = a2 at any point of coordinate (t , x). Therefore, we now focus on tangent
vectors of the type Z = (0, X), where X ∈ R

n is a vector tangent to Hξ(0) = R
n at x.

By equation (4.4), it suffices to show that

�∗g̃(lk, x)(Z, Z) = heucl(e
lkAX, elkAX). (4.10)

In fact, it follows from equation (4.2) that

�∗g̃(lk, x)(Z, Z) = hlk(dϕlk(X), dϕlk(X)), (4.11)

where dϕlk(X) is a vector tangent to Hξ(lk) at xlk = ϕlk(x), and hlk is the flat metric of
Hξ(lk). Note that the tangent vector X can be extended to a constant vector field on R

n,
which we will still denote by X.

Recall (see §3) that for each integer k, P
ξ
lk is the parallel transport associated to the flat

metric hlk on Hξ(lk), and that x0 = cv(0) is the unique point on Hξ(0) which lies on the
axis of γ . Let us denote by qlk the point ϕlk(x0). We thus have

hlk(dϕlk(X), dϕlk(X)) = hlk(P
ξ
lk(xlk , qlk)(dϕlk(X)), P

ξ
lk(xlk , qlk)(dϕlk(X))). (4.12)

By assumption (ii) of Theorem 1.2, the parallel transport of the flat metric h0 = heucl (hlk)
coincides with the stable holonomy �

ξ
0 (�ξ

lk). In particular, the commutation property (3)
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of Definition 3.1 holds:

dϕlk(x0) ◦ P
ξ
0 (x, x0)(X) = P

ξ
lk(xlk , qlk)(dϕlk(X)). (4.13)

Note that equation (4.13) relies on the fact that the family of parallel transports of the
Levi-Civita connections coincide with the stable holonomies, and hence is invariant by the
geodesic flow and that it is the only place in the proof where we use it. We now deduce
from equation (4.13) that

hlk(dϕlk(X), dϕlk(X)) = hlk(dϕlk(x0) ◦ P
ξ
0 (x, x0)(X), dϕlk(x0) ◦ P

ξ
0 (x, x0)(X)).

(4.14)

Since for every k, γ k is an isometry, we obtain

hlk(dϕlk(X), dϕlk(X))

= h0(dγ k ◦ dϕlk(x0)(P
ξ
0 (x, x0)(X)), dγ k ◦ dϕlk(x0)(P

ξ
0 (x, x0)(X))), (4.15)

and thus, by equation (4.9),

hlk(dϕlk(X), dϕlk(X)) = h0(e
lkA(P

ξ
0 (x, x0)(X)), elkA(P

ξ
0 (x, x0)(X))). (4.16)

Since Hξ(0) with the induced metric from M̃ is identified with R
n, h0 with the standard

Euclidean metric heucl, and X is a constant vector field, we have P
ξ
0 (x, x0)(X) = X and

h0(e
lkA(P

ξ
0 (x, x0)(X)), elkA(P

ξ
0 (x, x0)(X))) = heucl(e

lkAX, elkAX), (4.17)

which implies by equations (4.11) and (4.16) that

�∗g̃(lk, x)(Z, Z) = heucl(e
lkAX, elkAX) = gA(lk, x)(Z, Z), (4.18)

which completes the proof of Lemma 4.2.

For t ∈ R, let k be the integer part of t/ l. We now compare gA(t , x) and gA(lk, x) at
any x ∈ R

n. Let us set σ = t/ l − k with σ ∈ [0, 1[. For Z = (0, X), we have

gA(t , x)(Z, Z) = heucl(e
tAX, etAX) = heucl(e

lσAelkAX, elσAelkAX). (4.19)

Recall that elA = D(γ ◦ ϕl)(x0) = Dψ(x0) is a fixed n × n matrix, so that there exists
a constant C such that ‖e±lσA‖2 ≤ C for every σ ∈ [0, 1[. Therefore, we deduce from
equation (4.19) that

C−1gA(lk, x) ≤ gA(t , x) ≤ CgA(lk, x) (4.20)

for every lk ≤ t < (k + 1)l. However, we have

ht (DϕtX, DϕtX) = ht (Dϕlσ ◦ DϕlkX, dϕlσ ◦ DϕlkX)

and the same argument as before yields

C−1�∗g̃(lk, x) ≤ �∗g̃(t , x) ≤ C�∗g̃(lk, x). (4.21)

Then equations (4.20) and (4.21) and Lemma 4.2 conclude the proof of Theorem 4.1.

COROLLARY 4.3. All the eigenvalues of T = Dψ(x0) have the same modulus.
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Proof. By Theorem 4.1, (GA, gA) is quasi-isometric to (M̃ , g̃). Since M is closed, (M̃ , g̃)

is quasi-isometric to the finitely generated group π1(M) endowed with the word metric,
which is therefore a hyperbolic group. We thus deduce that GA is quasi-isometric to a
hyperbolic group and by Theorem 1.5, this can occur only if the real part of the complex
eigenvalues of A are equal. Recall that A has been chosen so that either T = elA or T 2 =
elA, where T = Dψ(x0). We deduce that the eigenvalues of T have the same modulus.

We are now in position to prove Theorem 1.4, and thus, complete the proof of
Theorem 1.2.

Proof of Theorem 1.4. Theorem 4.1 holds for any choice of a closed geodesic, or
equivalently of an element γ of the fundamental group of M, and so does Corollary 4.3.
This implies that for any such choice, the moduli of the complex eigenvalues of T =
Dψ(x0) coincide.

Recall that

Dψ(x0) = el(v)A = Dp̃ ◦ (D(γ ◦ g̃l(v)(ṽ)|Ess(ṽ)) ◦ Dp̃−1, (4.22)

so that Dgl(v)|Ess and Dψ(x0) are conjugate matrices; therefore, we conclude that the
eigenvalues of Dgl(v)|Ess have the same modulus.
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A. Appendix. Pinching, bunching and stable holonomies
The goal of this appendix is twofold. We first will show that the strong 1/4-pinching
assumption implies the bunching of the stable cocycle of the geodesic flow defined in
[17]. Then we will show that the stable holonomy on the horospheres is conjugate to the
stable holonomy defined on the strong stable leaves of the geodesic flow.

A.1. Strong 1/4-pinching and bunching. Under the assumption −4(1 − τ) ≤ K ≤ −1,
the strong stable bundle P : Ess → T 1M is C1 (see [16, p. 226]). We choose a C1-metric
on T 1M such that the splitting T T 1M = Ess ⊕ R Z ⊕ Esu is orthogonal, the generator
Z of the geodesic flow satisfies |Z| = 1, and the metric on Ess and Esu are obtained
by pulling back the metric of M by the projection p : T 1M → M . We consider now
the diffeomorphism f := g1 : T 1M → T 1M . The linear stable cocycle over f defined as
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F := (Dg1)|Ess is also C1 and satisfies

‖F(v)‖ ≤ e−1 and ‖(F (v))−1‖ ≤ e2(1−τ)1/2
. (A.1)

With the notation of [17, §2], denoting ν(v) := e−1, ν̂(v) := e−1, we then have
‖Df (v)‖ ≤ ν(v), ‖(Df (v))−1‖ ≥ (ν̂(v))−1, and |Df (Z)| = 1, and hence

‖F(v)‖‖(F (v))−1‖ν(v) ≤ e−1 e2(1−τ)1/2
e−1 < 1. (A.2)

This inequality ‖F(v)‖‖(F (v))−1‖ν(v) < 1 coincides with the bunching condition of [17,
equation (3.1)] since we can take the Hölder coefficient β = 1 since the strong stable
bundle is C1.

A.2. Conjugation of stable holonomies. Recall that the map � : T 1M̃ → M̃ × ∂M̃

is defined by �(ṽ) = (x, ξ), where x = π(ṽ) and ξ = cṽ(+∞) is a homeomorphism.
By abuse of notation, we will write ṽ = (x, ξ). Given ṽ = (x, ξ), the projection p̃ :
T 1M̃ → M̃ induces a diffeomorphism between the strong stable leaf Wss(ṽ) of ṽ and
the horosphere Hξ(x) centered at ξ and passing through x. In particular, Dp̃(ṽ) induces
an isomorphism between Ess(ṽ) = TṽW

ss(ṽ) and TxHξ (x).

LEMMA A.1. Let ṽ = (x, ξ) and w̃ = (y, ξ) be on a same strong stable leaf Wss(ṽ) ⊂
T 1M̃ , and Hξ(x) the horosphere centered at ξ and passing through x and y. Then the
stable holonomy H(ṽ, w̃) on Wss(ṽ) (respectively �ξ(x, y) on Hξ(x)) is conjugate,

H(ṽ, w̃) = (Dp̃(w̃))−1 ◦ �ξ(x, y) ◦ Dp̃(ṽ).

Proof. Define H(ṽ, w̃) = (Dp̃(w̃))−1 ◦ �ξ(x, y) ◦ Dp̃(ṽ). The properties (1), (2), and
(3) of Definition 3.1 for H(ṽ, w̃) are consequences of the corresponding properties
of �ξ(x, y) stated in Proposition 3.5. As stated in [17, Proposition 4.2(c)], the stable
holonomy H is uniquely determined by the property that

‖H(ṽ, w̃) − I (ṽ, w̃)‖ ≤ Cd(ṽ, w̃), (A.3)

where I (ṽ, w̃) is a local identification between Ess(ṽ) and Ess(w̃). However, as noticed
at the bottom of [17, p. 173], holonomies do not depend on the choice of the local
identifications. By defining

I (ṽ, w̃) := (Dp̃(w̃))−1 ◦ P(x, y) ◦ Dp̃(ṽ),

where P(x, y) is the parallel transport along Hξ(x, y), we see that property (ii) of
Proposition 3.5 implies equation (A.3). Therefore, properties (a), (b), and (c) of [17,
Proposition 4.2] are satisfied, which concludes the proof of this lemma.
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