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SUMMARY

In this paper we propose a debate on the role of mathematical models in evaluating control
strategies for vector-borne infections. Mathematical models must have their complexity adjusted
to their goals, and we have basically two classes of models. At one extreme we have models that
are intended to check if our intuition about why a certain phenomenon occurs is correct. At the
other extreme, we have models whose goals are to predict future outcomes. These models are
necessarily very complex. There are models in between these classes. Here we examine two
models, one of each class and study the possible pitfalls that may be incurred. We begin by
showing how to simplify the description of a complicated model for a vector-borne infection.
Next, we examine one example found in a recent paper that illustrates the dangers of basing
control strategies on models without considering their limitations. The model in this paper is of
the second class. Following this, we review an interesting paper (a model of the first class) that
contains some biological assumptions that are inappropriate for dengue but may apply to other
vector-borne infections. In conclusion, we list some misgivings about modelling presented in this
paper for debate.
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INTRODUCTION

The purpose of this paper is to examine the role of
mathematical models in evaluating control strategies
for diseases, illuminating their limitations and possible
errors that can occur if these limitations are not care-
fully considered.

For diseases involving vectors, the number of vari-
ables can be large and it is sometimes unnecessary and

misleading to use all the complexities of the real bio-
logical system.

As noted by Mazilu et al. [1], this is far from a triv-
ial matter: ‘Building simple models that capture the
essence of a physical phenomenon is not an easy
task: there is a fine line between an accurate model
that is as simple as possible, and an unrealistic model.’

This paper is arranged in three main sections.
In the following section (General considerations

about modelling vector-borne infections), we show
how, considering the purpose of the model, we can
simplify the description of a complicated system as a
vector-borne disease. We then illustrate how to limit
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the model variables according to our needs. In so
doing, we aim to explain why there are many models
of the same (or similar) systems with different num-
bers of variables [2–4].

The next section (Estimating R0 from the initial
growing phase of an outbreak: several pitfalls), exam-
ines one example found in a recent paper [5] that illus-
trates the dangers of basing control strategies on models
without considering their limitations. We show that the
method used cannot be applied as done by the authors,
and that as a consequence, some of the conclusions
reached are not correct. Unfortunately, the incorrect
results, if taken as true by public health authorities,
would greatly harm the affected populations and the
reputation of the use of models in this field.

Finally, in the ‘Backward bifurcation’ section, we
review an interesting paper by Garba et al. [6] that con-
tains some biological assumptions that are inappropri-
ate for dengue but may apply to other vector-borne
infections. In addition, it contains some algebraic mis-
prints that make it difficult to read. The paper’s con-
clusion is that a backward bifurcation exists in the
system; this is examined in our paper from a different
point of view. Furthermore, the conclusions of Garba
et al., which do not apply to dengue, would make the
control of even those diseases to which Garba’s para-
meters do apply extremely difficult. We argue that the
values of the biological parameters used by Garba
et al. are not realistic for dengue.

We will show in the ‘Estimating R0 . . .’ section that
the variables in the equations of the models are densi-
ties, i.e. vectors/humans per unit area. Therefore, if
these densities are spatially homogeneous and the
area investigated is small, total numbers can be
obtained by multiplying the variables by the area of
the region under consideration. However, when we in-
vestigate the outbreak of an epidemic, we should con-
sider that the initial infection is not distributed
homogeneously throughout the area under consider-
ation. In the literature, this is often disregarded and
epidemics are investigated by assuming that the dis-
ease invades an area homogeneously. In Appendix I,
we show the effects of the initial distribution of the
disease on the size and duration of the epidemic.

GENERAL CONSIDERATIONS ABOUT
MODELLING VECTOR-BORNE
INFECTIONS

We will use dengue as an example of a vector-borne
disease to illustrate points that are also valid for

other vector-borne diseases, such as malaria and yel-
low fever. We do this to simplify the notation and
make the points we want to emphasize simpler to
understand.

In the dengue system, there are several populations
involved: a human population, an adult mosquito
population, at least six aquatic forms and mosquito
eggs. In addition, there is the virus, which in dengue’s
case will be one of four known serotypes.

Our first point is the question of how to choose the
populations that will enter the model. In the seminal
papers by Ross [2] and Macdonald [3] (that address
malaria), only adult mosquitoes, humans and para-
sites were considered. This was because they wanted
to investigate the existence of critical sizes of these
populations, below which the disease would disap-
pear. In the mathematical literature, a model exhibit-
ing this feature is said to have a threshold and, in the
case of diseases, this threshold is given by the well-
known basic reproduction number, R0 [7]. Let us
briefly recall a slightly generalized form of the classical
Ross–Macdonald model [2, 3]. The variables are de-
scribed in Table 1 and are usually denoted as ‘com-
partments’ of the model.

The equations that govern the dynamics of the sys-
tem are given below and explained immediately after-
wards.

dSH

dt
=− ab(IM + ηMLM ) SH

NH
− μHSH + σHRH

+ θHIH +ΛH ,

dLH

dt
= ab(IM + ηMLM ) SH

NH
−(μH + δH)LH ,

dIH
dt

= δHLH −(μH +αH + γH + θH)IH ,
dRH

dt
= γHIH −(μH + σH )RH ,

dSM

dt
=− ac

(IH + ηHLH)
NH

SM − μMSM +ΛM ,

dLM

dt
= ac

(IH + ηHLH)
NH

SM −(μM + γM)LM ,

dIM
dt

= γMLM − μMIM .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

The model parameters and their biological in-
terpretation are given in Table 2.

Let us explain the meaning and limitations of the
above model. First, as explained, the variables are
densities, i.e. the number of humans/vectors per unit
area. Therefore, to use the model as it is written
above, we should consider an area where the popu-
lation is approximately homogenously distributed
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and multiply each variable by this area. A qualitat-
ively comprehensive attempt to discuss the challenge
of calculating parameters taking into account spatial
heterogeneities can be found in [8]. One particularly
important point is raised by the term

ab(IM + ηMLM) SH

NH
. (2)

Let us explain the meaning of this term. The par-
ameter a is a composed quantity. Let a be the area
explored by a mosquito via the joint movement of
humans and mosquitoes. Let ξ be the number of
bites a mosquito inflicts per unit time and per unit
area in the human population. Then, ξAIM is the num-
ber of bites that AIM infected mosquitoes inflict on
NHA people. Hence, the fraction of bites inflicted on

susceptible humans is ξAIM(SHA/NHA) = αIM(SH/
NH), where

a = ξA . (3)
Therefore, the number of susceptible humans that ac-
quire the infection from infected mosquitoes per unit
time is abIM(SH/NH), where b is the probability that
a bite from an infected mosquito results in an infected
(latent) human. Assuming that latent mosquitoes also
transmit the infection, although with a lower prob-
ability, expressed by ηM, we see that equation (2)
represents the density of new infections per unit time
due to mosquito bites.

Analogously, the term ac(IH+ηHLH )
NH

SM represents the
density of new infections per unit time in mosquitoes
due to mosquito bites on infective humans.

The two quantities ΛH and ΛM are the number of
humans and vectors born or otherwise introduced
per unit area per unit time into the susceptible com-
partments. It is usual to assume that ΛH is a logistic
term of the type rHNH(1− NH

KH
), where rH is the

Malthusian parameter and KH is the carrying ca-
pacity. Analogously, ΛM is the quantity of vectors
that are born or otherwise introduced per unit area
per unit time.

The other terms are transition terms between the
compartments as explained, for example, in [9].

From equation (1), we can deduce [4, 9, 10] that the
disease cannot invade the host population if R0 is <1,
where R0 is

R0 =
a2bc fH fM

NM

NH
γMγH

μM μM + γM
( )

μH + γH
( )

μH + γH + αH
( ) . (4)

The terms fH and fM are defined as

fH = 1+ ηH
δH

(μH + γH + αH) and fM = 1+ ηM
γM

μM .

In the limit when ηM= 0 and δH�∞, we obtain the
expression of R0 of the original Macdonald model [3]:

R0 =
a2bcNM

NH
γM

μM (μM + γM )(μH + γH + αH) . (5)

The above result is very important because it indicates
that we do not have to completely eradicate the mos-
quito population to prevent the disease from invading
the host population [2]. Note, however, that the model
is valid only when applied to a region where the popu-
lations involved (mosquitoes and humans) are spa-
tially homogeneous, and in any case, border effects
were neglected. We shall expand on this later in the
paper.

Table 1. Variables of the model and their biological
description

Variable Biological description

SH Density of susceptible humans
LH Density of latent humans
IH Density of infected humans
rH Density of recovered humans
SM Density of susceptible mosquitoes
LM Density of latent mosquitoes
IM Density of infected mosquitoes

Table 2. Model parameters and their biological
interpretation

Parameter Biological meaning

a Average daily rate of biting
b Fraction of bites actually infective to humans
δH Latency rate in humans
μH Human natural mortality rate
αH Dengue mortality in humans
γH Human recovery rate
ηH cηH is the fraction of bites in latent humans that

are infective to mosquitoes
σH Loss of immunity rate
θH Loss of infectiousness in humans
ΛH Human immigration rate density explained in

the text
c Fraction of bites in infected humans that are

infective to mosquitoes
μM Natural mortality rate of mosquitoes
γM Latency rate in mosquitoes
ηM cηM is the fraction of bites of latent mosquitoes

that are infective to humans
ΛM Mosquito immigration rate density explained in

the text

Modelling vector-transmitted infections 1805
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In some regions of the world, seasonality affects the
mosquito population considerably and, in some cases,
the mosquito density falls so much that transmission is
interrupted in the dry season. The disease, however,
overwinters and reappears in the next season. A hy-
pothesis to explain this phenomenon is transovarian
transmission in the mosquitoes [4]. In this case, we
are therefore forced to consider in the model the aqua-
tic stages of the vector. Control measures that aim for
the destruction of breeding places also force us to in-
clude aquatic forms in the model, even if seasonality
is negligible. The model described in equation (1)
has to be modified to include the immature forms.
This can be done by modifying the last three equations
related to the vectors in system (1) as follows:

dSM

dt
=− ac

(IH + ηHLH)
NH

SM − μMSM + ΛM ,

dLM

dt
= ac

(IH + ηHLH)
NH

SM − (μM + γM )LM ,

dIM
dt

= γMLM − μMIM .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6)

First, we introduce two new system variables (com-
partments) representing non-infected and infected
aquatic forms: SE and IE, respectively. For simplicity,
we consider all the aquatic forms, i.e. eggs, larvae and
pupae, as a single compartment (we use a subscript E
to represent eggs). The new system reads

dSM

dt
=−ac

(IH+ηHLH)
NH

SM−μMSM+pcs(t)SE ,

dLM

dt
=ac

(IH+ηHLH)
NH

SM−(μM+γM )LM ,

dIM
dt

=γMLM−μMIM+pcs(t)IE ,
dSE

dt
=[rMSM+(1−g)rM (IM+LM )]

× 1−SE+IE
KE

( )
−μESE−pcs(t)SE ,

dIE
dt

=[grM (IM+LM )] 1−SE+IE
KE

( )
−μEIE

−pcs(t)IE .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

The new parameters in system (7) are described in
Table 3.

Let us now describe the meaning of some terms of
system (7). The term pcs(t)SE represents the number
of non-infected eggs per unit area per unit time that
reach the adult stage. The parameter cs(t) was intro-
duced to mimic seasonality (see [4]). The term pcs(t)
IE represents the number of infected eggs per unit
area per unit time that reach the infected adult

stage. The term [rMSM + (1− g)rM (IM + LM )] ×
1− SE+IE

KE

( )
is a logistic-like term that represents the

rate of mosquito reproduction in the form of non-
infected eggs. Similarly, [grM (IM + LM )] 1− SE+IE

KE

( )
is a logistic-like term that represents the rate of mos-
quito reproduction in the form of infected eggs. KE

is the carrying capacity of the environment. The re-
maining terms are transition rates between the com-
partments. This modified system also predicts a
threshold for the infection to invade the host popu-
lation (for details, see [4]). Note that we assume that
the mortality of infected eggs is the same as the mor-
tality of non-infected eggs. This is easily modified but,
in the spirit of avoiding unnecessary experimentally
unknown facts, we prefer to assume them equal. The
proportional distribution of infected eggs into non-
infected and infected mosquitoes was briefly discussed
in [4]. In this reference, it was shown that this par-
ameter is very important to explain semi-
quantitatively dengue overwintering.

ESTIMATING R0 FROM THE INITIAL
GROWING PHASE OF AN OUTBREAK:
SEVERAL PITFALLS

From the discussion in the previous section, we can
see that calculating R0 for a given population is an im-
portant task. This can be done in several ways. A sim-
ple way first proposed by May & Anderson [11] for
directly transmitted infection was adapted by
Massad et al. [12] and further refined by Favier
et al. [13] for vector-borne infections. The first pitfall
we will discuss was the use made by Pinho et al. [5]
of this method as described below.

In their paper, Pinho et al. [5] analysed the dengue
epidemic in Salvador, Brazil, and concluded that

The value of R0 is greater than 1 for the epidemic in 1995–
1996 for any chosen value of the vector-control parameter,

Table 3. Parameters and their biological meaning in the
model with aquatic forms

Parameter Biological meaning

p Hatching rate of susceptible eggs
cs Climatic factor
g Proportion of infected eggs that develop into

infected mosquitoes
rM Oviposition rate
μE Natural mortality rate of eggs
KE Carrying capacity of eggs
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indicating that other strategies would be necessary besides
the adult vector-control, as such as the control of the mos-
quito’s aquatic phase, to reduce its force of infection and
therefore to control the epidemic.

The aim of this section is to show that this conclusion
cannot be deduced from either the model they used or
from the calculations presented in their paper.

In fact, the equilibrium solutions of the model given
by their equations (2.1) can be deduced analytically
[10]. It is also possible, and easier, to deduce two
thresholds. The first (denoted ‘basic offspring’ or
demographic reproduction number) determines the
permanence or extinction of the mosquito population.
The second is a variant of the classical Macdonald [3]
basic reproduction number (R0) and determines the
establishment or extinction of the infection. From
these results, and also from numerical simulations of
the model, it is easy to see that by increasing the
adult mortality rate, μM, or the aquatic phase mor-
tality rate, μa, we can reach Macdonald’s threshold be-
fore reaching the basic offspring threshold. Therefore,
the disease dies out without eliminating the mosquito
population (see Fig. 1 below from Pinho et al.’s
model). Thus, Macdonald’s threshold is useful. It
would be useless if Pinho et al. [5, pp. 5692] were
correct.

The authors reached their conclusion by using their
equation (3.8)

R2
0 =

(
Λ

θM + μM + cM
+ 1

)(
Λ

θH + μH
+ 1

)
(

Λ
θM + cM

+ 1
)(

Λ
αH + μH

+ 1
)
.

This equation, or rather a simplified version of it, was
obtained in [13–15]. This technique assumes a force of
infection Λ> 0 and, therefore, no value of the control
parameter, cM (which Pinho et al. [5] added to the
adult mortality rate, μM), can reduce R0 below unity.
To investigate the case in which Λ< 0 and, therefore,
R0 < 1, another method must be used, as described in
[15]. Therefore, Pinho et al.’s conclusion that ‘other
strategies would be necessary besides the adult vector-
control [. . .] to reduce the force of infection’ cannot be
deduced from their equation (3.8) and is, in fact,
wrong. Again, we stress that Macdonald’s threshold
would be useless if Pinho et al.’s [5] conclusionwere true.

When R0 < 1, as explained in [15, 16], although an
outbreak can occur, it will naturally fade away.

We shall return to the abovemethod of estimatingR0.
Here we only mention that this method is correct if the
disease is introduced in a small portion of the region,
as it usually is, that is going to be invaded. This is be-
cause the exponential growth is deduced by assuming
that the disease is introduced in a uniform region.
However, as we shall see in Appendix I, when intro-
duced in just a small portion of the region, the develop-
ment of the disease proceeds as a wave. Since what is
usually reported is the number of cases per unit time
(epidemiological week, for instance) this method can
only be used if the disease propagates slowly in space be-
cause (see Appendix I) the entire epidemic curve is not
exponential but is so only in the very first initial phase.

Finally, to end this section, we note that the sensi-
tivity of the mortality rates of mosquito phases was
investigated in [10, 17, 18]. From these papers, we
conclude that the adult mosquito mortality rate is
the parameter to which R0 (and also the force of infec-
tion) is, by far, most sensitive. Compared with the
aquatic phase mortality rate, this is rather intuitive be-
cause, in equilibrium, killing one mosquito prevents
the appearance of hundreds of eggs and other aquatic
phases, whereas killing one egg prevents the appear-
ance of just one mosquito. Orders of magnitude of
the relative effect between control measures directed
against mosquitoes vs. control measures directed
against eggs were given in [10]. In this paper, we com-
pared the sensitivity of R0, the force of infection and

Fig. 1. The values of cM such that the disease dies out but
the mosquito population is still present.
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the steady-state prevalence to the control parameters.
In general, the sensitivity to control measures (in-
crease of mortality rates) directed against mosquitoes
is more efficient by 2–3 orders of magnitude.
However, these calculations did not take into account
the logistic and financial costs of any of the above-
mentioned strategies.

BACKWARD BIFURCATIONS

In an influential and interesting paper, Garba et al. [6]
claim that a model very similar to the one given by
equation (1) exhibits so-called backward bifurcation
(subcritical bifurcation). In this section, we find the
stationary solutions of system (1) and prefer not to
call the observed phenomena backward bifurcation.
We examine this very interesting system from a differ-
ent point of view and also discuss the possible origin
of the phenomena exhibited by Garba et al.’s model [6].

The stationary solution for the prevalence of the in-
fection in humans, IH/NH, is obtained by replacing the
derivatives on the right side of the system (1) equations
and solving the resulting nonlinear system of equations.
The results (see [10, 19] for more details) are:

IH
NH

= (γM + gμM )a2bcNM
NH

−Q μM + γM
( )

μM (1− g)
(γM + gμM )a2bcNM

NH
Z + acQ μM + γM

( ) ,

(9)
which is the equilibrium prevalence of the infection in
humans, where

Z = (μH + σH)(μH + γH + αH + δH + θH) + γHδH
δH(μH + σH) ,

(10)
Q = (μH + δH)(μH + γH + αH + σH )

δH
(11)

and

NM = pcs
μM

KE 1− μM μE + pcs
( )
rMpcs

[ ]
. (12)

To obtain equation (9), we assumed a logistic birth (or
immigration) rate for ΛH

ΛH = rHNH 1−NH

KH

( )
, (13)

where rH is the per capita birth (or immigration) rate of
humans and KH is the carrying capacity of humans.

The stationary solution for the total human popu-
lation, NH, is

NH = −B+
������������
B2 − 4AC

√

2A
, (14)

where

A = acrHΩ,

B =− acΩKH rH − μH
( )+ ΓZrH

− ΩμM 1− g
( )

αHKH ,

C =− ΓKH rH − μH
( )

Z + ΓαHKH .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(15)

and

Ω =Q γM + μM
( )

,

Γ = γM + gμM
( )

a2bcδHNM .

}
(16)

The stationary solution for the specific case of dengue
prevalence in humans, IH/NH, is obtained by making
δH � ∞ and θH = σH = 0 in equation (9)

IH
NH

=

(γM + gμM )a2bcNM
NH

− μH + γH + αH
( )

μM + γM
( )

μM (1− g)
(γM + gμM )a2bcNM

NH
1+ γH

μH

( )
+ ac μH + γH + αH

( )
μM + γM
( )

. (17)

The basic reproduction number can be deduced by
making the numerator of the previous equation
equal to zero, resulting in equation (5).

In the specific case of dengue, the value of NH

reduces to:

NH, d =
−Bd +

��������������
B2
d − 4AdCd

√
2Ad

, (18)

where

Ad = acrHΩd ,

Bd =− acΩdKH rH − μH
( )+ ΓZdrH

− ΩdμM 1− g
( )

αHKH ,

Cd =− ΓKH rH − μH
( )

Zd + ΓαHKH .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(19)

and

Ωd = μH + γH + αH
( )

γM + μM
( )

,

Zd = 1+ γH
μH

( )
.

⎫⎪⎬
⎪⎭ (20)

Equation (17) does not show any backward
bifurcation.

A possible misprint in Garba et al.’s [6] paper
results from writing ΛH [their equation (1)] as

λH = ab
NM

(IM + ηMLM ).

The correct equation shouldhaveNH insteadofNM in the
denominator because, as can be noted in system (1), the
total number of bites inflicted by infected mosquitoes is
a(IM+ηMLM), a fraction of which, SH/NH, are on suscep-
tible humans, of which a fraction b is actually infective.
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Garba et al.’s [6] assumption that the total number of
bites that mosquitoes inflict in people is, of course, equal
to the total number of bites that people receive is cor-
rect. However, the force of infection from mosquito to
human, ab/NH(IM+ ηMLM), depends on b, whereas
the force of infection from human to mosquito, ac/
NH(IH+ ηHLH), depends on c. Therefore, equation (4)
in Garba et al.’s [6] paper is correct only in the particu-
lar case when b= c. In addition, Garba et al. [6]
assumed that susceptible and infected mosquitoes bite
with different rates, although this is not explicitly used
in their model. The points mentioned in the above
remarks on Garba et al.’s [6] paper have no influence
on the existence of backward bifurcation. We mention
these facts for completeness and to describe the Garba
et al. [6] paper fairly, i.e. describing all the biological
realities that they introduce in their model.

To compare our model with that in the paper by
Garba et al. [6], in more detail, we take, ΛH= const.,
instead of the one given by equation (13), and make
ΛM also constant. The system can be solved, and the
stationary state value of IH/NH (the translation to
Garba et al.’s [6] notation is shown in Appendix II) is:

IH
NH

=
−Bg +

��������������
B2
g − 4AgCg

√
2Ag

, (21)

where

Ag = C2
HM f1
μV

QB∗(B∗ − αM)

+CMHC2
HMf 21 f2

NM

NH
B∗

(Q− αH)
μH

,

Bg = CHM f1QB2
∗ +CMHCHM f1 f2

NM

NH

B∗
μM
μH

(Q− αH) −CMHC2
HMf 21 f2

NM

NH
B∗

+QB∗CHM f1(B∗ − αM ),
Cg = −CMHCHM f1 f2

NM

NH
B∗μM +QB2

∗μM ,

B∗ =
μM + γM
( )

μM + αM
( )

γM
,

Q = μH + δH
( )

μH + γH + αH
( )
δH

,

f1 = 1+ ηH
δH

μH + γH + αH
( )

,

f2 = 1+ ηM
γM

μM + αM
( )

,

CMH = ab,

CHM = ac.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(22)

It is easy to demonstrate that one of the roots of equa-
tion (21) is negative. Making the positive solution equal
to zero, we can deduce the threshold. In fact, the
threshold (and therefore R0) can be deduced by making

−Bg +
��������������
B2
g − 4AgCg

√
= 0, i.e. Cg = 0. The result is

R0 =
CMHCHM f1 f2NM

NH
γMδH

μM + γM
( )

μM + αM
( )

μH + δH
( )

μH + γH + αH
( ) .

(23)
This value of R0 can also be deduced by linearizing the
system (1), using Garba et al.’s [6] notation, around the
trivial solution (no disease). The value ofNM/NH is cru-
cial. Garba et al. [6] use ΛMμH/ΛHμM (see [6, p. 14]).
However, to obtain the other points in their figure 2,
it is necessary to increase the initial value of NM with
respect to NH. This is what we think Garba et al. [6]
did: they varied the parameters and calculated R0

using NM/NH=ΛMμH/ΛHμM, but introduced infected
mosquitoes into the initial condition. Introducing
infected mosquitoes into the initial condition changes
R0 by increasing NM/NH. Therefore, the values given
by R0 in Figure 2 are actually greater than 1.

Consider the value of R0 [equation (23)]. Because
the disease affects both populations involved, we
must note that, if NM/NH calculated at time t= 0
makes R0 > 1, then the disease will invade the popu-
lation in the sense that immediately after 0 the values
of IM and IH will be greater than their values at t= 0.

If the disease invades the population, two things
can happen. If the value NM(t)/NH(t) is such that, at
some value of t, the value of R0 falls below 1, the dis-
ease will disappear. If this does not happen, the dis-
ease will go to the steady state. This depends on the
initial condition. For the values given by Garba

Fig. 2. The three behaviours of the system described in the
text.
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et al. [6], who do not use densities, the transition
occurs for SV(0) = 2717.8445, EV(0) = 0, IV(0) = 100,
SH(0) = 511.82, EH(0) = 0, IH(0) = 1, RH(0) = 0. Note
that without disease, the equilibrium values are
NV= 1875 and NH = 512.82. The resulting figure is
shown below.

A summary of the above results will now be given.
First, we define a function of t, R(t), as

R(t)= CMHCHM f1 f2
NM (t)
NH (t)γMδH

μM + γM
( )

μM +αM
( )

μH + δH
( )

μH + γH +αH
( ) .

(24)
We can understand the behaviour of this system by
using this function as explained below.

(1) If R(t= 0) (which happens to be R0) is less than 1,
then the disease will not invade (see the two lowest
curves in Fig. 2);

(2) If R(t= 0) is greater than 1, the disease will invade
the population, but we have to distinguish be-
tween two cases:
(2.1) If, for some t, R(t) drops below 1, then the

disease disappears (see curves 3–7 in
Figure 2)

(2.2) If R(t) is greater than 1 for all t, then the dis-
ease goes to a steady state different from
zero (see curves 8–15 in Fig. 2)

(3) There is a threshold value for NM(0)/NH(0), below
which case (2.1) occurs and above which case (2.2)
occurs. We found this threshold numerically but
we suspect that, by using Garba et al.’s [6]
method, this can be obtained analytically.

In Appendix II, we show in detail why we prefer not to
call the phenomena described above and in Garba
et al.’s [6] paper a backward bifurcation, as is sug-
gested by Garba et al. [6].

CONCLUSIONS

Mathematical models in sciences must have their com-
plexity adjusted to their goals, and, as we have seen,
we have basically two classes of models. At one ex-
treme we have models that are intended to check if
our intuition about why a certain phenomenon occurs
is correct. This model must be as simple as possible,
otherwise it may fail. An example of such a model is
a model designed to test dengue overwintering [4].
At the other extreme, we have models whose goals
are to predict future outcomes. These models are
necessarily very complex. An example of such a

model (for dengue vaccination) is given by [20]. Of
course there are models in between these classes.

In this paper, the model belonging to the second
class of models (to estimate the basic reproduction
number from the initial phase of the infection) fails
by not including sufficient complexities that are
necessary to deal with the data.

We have seen in Appendix I why the effects of the
spatial distribution of a vector-borne infection should
be taken into account when estimating the basic repro-
duction number from the initial size of the epidemics.
Another crucial effect that has to be taken into ac-
count is that the size and duration of the epidemic de-
pend on the initial distribution of the invasion of the
infection, i.e. where and how it was introduced in a
given region previously free of the infection.

The model belonging to the first class that is exam-
ined in this paper is one that tries to clarify the role of
the so-called backward bifurcation. In the ‘Backward
bifurcations’ section, we examined in detail the paper
by Garba et al. [6] which analyses this possible role of
the so-called backward bifurcation in dengue.

To summarize the above considerations, we list
some recommendations, using vector-borne diseases
models, to avoid some of our misgivings about the
use of models:

(1) Complicated models of vector-borne infections
should be used when attempting to make predic-
tions about future events. They are error-prone if
not all necessary biological realities are included
otherwise their predictions may be unreliable.
Many models of vector-borne diseases are
designed to estimate parameters that are import-
ant to plan control measures. In the example we
use in this paper, the estimation of the basic repro-
duction number from the initial phase of an epi-
demic is examined and examples of biological
realities that should be included are given.
Alternatively, we suggested another method to
collect data: ideally a uniform region should be
chosen with both populations uniformly distribu-
ted and only count cases from this region, from
the beginning of the outbreak. Because people
commute into and out this region, the above
method underestimates the basic reproduction
number. This error depends on the size of the re-
gion that should be carefully estimated. The re-
gion cannot be too large because of the
propagation of epidemic waves as explained
above. On the other hand, it cannot be too small
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to minimize the effect of people commuting into
and out of the region. We plan to publish details
of how to choose such a region in another
paper. We should stress that most published calcu-
lations of the basic reproduction number are not
bad approximations of R0, but should be carefully
interpreted to account for error bounds.

(2) Models that have as a goal examination of the
mechanism behind certain phenomenon should be
as simply as possible. The model of this type exam-
ined in this paper deals with the existence of back-
ward bifurcation. The model has, perhaps, too
many variables. For instance, differential mortality
in humans by dengue is known to be small and in
the model studied is perhaps the cause of the
so-called backward bifurcation. We conclude that
this additional mortality should have not been
introduced in the model for dengue. Of course the
model may be useful for other diseases.

APPENDIX I. The initial condition

As explained before, most models of vector-borne
infections assume (sometimes without saying so) that
the variables are population densities and usually
homogeneously distributed over a sufficiently large
area. This approach has two problems: the first, solved
in this Appendix, is that modifications of this model
are needed before it can be applied to situations
where inhomogeneous populations occur; the second
problem is that authors usually assume that the dis-
ease is also introduced into the region in a uniformly
distributed manner. In fact, the disease is introduced
in a small area of the region and the disease propa-
gates through the region as a wave [21]. Let us explain
the latter statement in detail.

When the disease is introduced in a virgin area (vil-
lage, city, etc.), it is introduced in a small geographical
area of this region and then propagates as a wave to
other places of the region. Since what is usually
reported is the number of cases per unit time (epide-
miological week, for instance) the method discussed
in the ‘Estimating R0 . . .’ section can only be used if
the disease propagates slowly in space. This is the rea-
son why only a few points of the epidemic curve can
be used. When not used properly, the method can
fail to produce a good measure of the basic repro-
duction number and in any case the number so de-
rived applies only to the small region where the
infection was introduced. Of course if the region is

uniform this number is valid for the whole region.
In this Appendix we show how to model the propa-
gation of the infection although in this paper this is
done in a very sketchy manner; however, this is im-
portant as explained above. However, the propagation
of an epidemic throughout a region is of central im-
portance in understanding the infection dynamics
and in interpreting the available data. It is extremely
difficult to include the mobility of humans and vector
populations and we suspect that in some cases no gen-
eral statements can be made. This section, however, is
important in highlighting that some general conse-
quences can already be deduced without investigating
in detail some points, namely, land use, population
density, overlay, etc.

In this Appendix, we compare the outcomes of two
epidemics, one of which assumes that the disease is
introduced uniformly in the region and the second
which assumes the disease is introduced in just a
small area and then propagates. Thus, by comparing
the two results we can estimate the effect of the fact
that epidemics usually start in small regions.

We begin estimating this effect on a one-
dimensional road of length D. In the case in which
we assume that the disease is introduced uniformly,
the system of equations (1) can be numerically inte-
grated, and the resulting epidemic compared. To cal-
culate the effect of introducing the disease in just
small regions, the system of equations (1) has to be
modified to consider the spatial dimension. Let
SH(x,t)dx be the number of susceptible humans living
between x and x + dx at time t. The other variables
are defined similarly.

∂SH(x,t)
∂t

=−λH(x,t)SH (x,t)−μHSH (x,t)
+ΛH (x,t),

∂LH(x,t)
∂t

=λH(x,t)SH (x,t)−(μH+γH )LH (x,t),
∂IH(x,t)

∂t
=γHLH (x,t)−(μH+αH+δH)IH(x,t),

∂RH(x,t)
∂t

=δHIH(x,t)−μHRH(x,t),
∂SM (x,t)

∂t
=−λM (x,t)SM (x,t)−μMSM (x,t)
+ΛM (x,t),

∂LM (x,t)
∂t

=λM (x,t)SM (x,t)−(μM+γM )LM (x,t),
∂IM (x,t)

∂t
=γMLM (x,t)−μMIM(x,t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)
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where

λH(x, t) = 1
NH

∫D
0
dx′abβH (x, x′)IM(x′, t), (26)

and

λM(x, t) = 1
NH

∫D
0
dx′acβM (x, x′)IH(x′, t). (27)

In equation (26), aβH(x,x′) is the number of bites per
unit time that IM(x′,t)dx′ infected mosquitoes inflict
in SH(x,t)dx susceptible humans (note that infected
mosquitoes are in position x′ and susceptible humans
are in position x). Similarly, in equation (aβM(x,x′) is
the number of bites per unit time that SM(x′,t)dx′ sus-
ceptible mosquitoes inflict in IH(x,t)dx infected hu-
mans (susceptible mosquitoes are in position x′ and
infected humans are in position x). As a first approxi-
mation, we may assume that βH(x,x′) and βM(x,x′) are
the same functions. For simplicity, we also assume
that βH(x,x′) = βH(|x−x′|) and βM(x,x′) = βM(|x−x′|)
are functions of the distance |x−x′ only.

The standard way to solve system (25) is by choos-
ing one of its variables [say, IH(x,t) and writing an in-
tegral equation for it. The result in this case is an
integral equation with 16 terms that will be analysed
in a future publication.

We can, however, estimate the phenomena we are
investigating by selecting a less complicated system
[21] that describes a simple SIR model, given by equa-
tion (3) of the above reference.

As mentioned by Postnikov & Sokolov [22, pp. 209],
equations (3), (4) and (10) of [21] are more general than
the equations most commonly seen in the literature.

In a two-dimensional region, which, for simplicity,
will be considered circular, the system of equations
(25) is modified by replacing x with r, the distance
from an arbitrary point to the centre, and adding an
angular variable θ. Thus, SH(r,θ,t)ds is the number
of susceptible humans living in a small area ds = r dr
dθ around the point (r, θ) at time t. This unfolds simi-
larly for the other variables.

On the other hand, equations (26) and (27) become

λH(r, θ, t) = 1
NH

∫D
0
r′dr′

∫2π
0
dθ′abβH

×
���������������������������
r2 + r′2 − 2rr′ cos(θ− θ′)

√( )
IM (r′, θ′, t), (28)

and

λM (r, θ, t) = 1
NH

∫D
0
r′dr′

∫2π
0
dθ′acβM

×
���������������������������
r2 + r′2 − 2rr′ cos(θ− θ′)

√( )
IH(r′, θ′, t). (29)

Returning to the one-dimensional case, we obtain, by
solving numerically equation (10) of reference [21], the
results reproduced in Figure 3a for the case where the
initial condition covers the entire road. The epidemic,
I (t) = �L

0 I (x, t)dx, consists of a huge peak that almost
disappears and later returns after a significantly long
time. This is not what is observed in the real world.

When the disease is introduced only at one end of
the road, Figure 3b shows the epidemic [number of
cases vs. time t, i.e. I (t) = �L

0 I (x, t)dx]. In this case,
we can see that the epidemic rises much slower and
lasts for a very long time, being interrupted only if sea-
sonality is considered. This can be understood in the
following way: the epidemic wave travels from, for
example, the left side of the road to the right side.
The epidemic that started because of the initial con-
dition, at the left side, vanishes, but it is still recorded
by the cases that are happening on the wave front. It
may happen that the disease reappears on the left
side before the wave reaches the right side. We then

Fig. 3. Numerical solution for the one-dimensional case
when: (a) the initial condition covers the entire road; (b)
the disease is introduced on one end of the road. Figures
not to the same scale.
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have the impression that the disease reaches steady
state.

Returning to the case of the calculation of R0 from
the initial phase of the outbreak, we can see that, in
nature, the disease is frequently introduced in a
small part of the environment and that because of
what was stated above, one has to consider only the
very beginning of the outbreak. Alternatively, we
can modify the way data are collected. Ideally one
should choose a uniform region with both populations
uniformly distributed and collect cases only from this
region from the beginning of the outbreak. Because
people commute into and out this region, the above
method underestimates the basic reproduction num-
ber. This error depends on the size of the region that
should be carefully estimated. Other challenges of
introducing spatial heterogeneities in epidemic models
are qualitatively analysed in [8].

APPENDIX II. Further comments on Garba et al.’s
[6] findings

For a more detailed comparison with the paper by
Garba et al. [6], we consider the following system of
differential equations:

dSH

dt
=− ab(IM + ηMLM ) SH

NH
− μHSH +ΛH ,

dLH

dt
= ab(IM + ηMLM ) SH

NH
− (μH + δH)LH ,

dIH
dt

= δHLH − (μH + αH + γH)IH ,
dRH

dt
= γHIH − μHRH ,

dSM

dt
=− ac

(IH + ηHLH)
NH

SM − μMSM +ΛM ,

dLM

dt
= ac

(IH + ηHLH)
NH

SM − (μM + γM )LM ,

dIM
dt

= γMLM − (μM + αM )IM .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(30)

We intend to show that the above system presents a
threshold that has a branch with negative values.

In the case of dengue, the disease-induced mortality
rates in the populations, αM in the vector population
and αH in the human population, are usually assumed
to be zero. In the calculations below, we keep those as
different from zero, for completeness.

The stationary solution for human prevalence is
given by

A1
IH
NH

( )2

+ A2
IH
NH

( )
+ A3 = 0, (31)

where

A1= a2c2f 2H
μM

XY Y−αM( )+a2bcf 2H fM
NM

NH

×Y
(X−αH)

μH
,

A2=acfHXY 2+a2bcfH fM
NM

NH
Y
μM
μH

(X−αH)

−acY fH a2bfH fM
NM

NH
−XY+αMX

( )
,

A3=YμM −a2bcfH fM
NM

NH
+XY

( )
,

X = (μH +δH)(μH +γH +αH)
δH

,

Y = (μM+γM ) μM +αM
( )
γM

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(32)

When A3 = 0, we have

−a2bc fH fM
NM

NH
+ XY = 0, (33)

which is equivalent to

a2bcH fMNM
NH

γMδH

μM (μM + γM)(μH + δH)(μH + γH + αH) = 1, (34)

the threshold condition for the basic reproduction
number is R0 = 1. In this case (A3 = 0), the coefficient
A2 becomes

A2 = ac fHXY 2 + a2bc fH fM
NM

NH
Y
μM
μH

(X − αH)

− acXY fHαM = ac fHXY (Y − αM )
+ a2bc fH fM

NM

NH
Y
μM
μH

(X − αH ). (35)

For A3 = 0, one root of IH/NH is zero and the second
root of equation (31) is

IH
NH

=−A2

A1
. (36)

The expression for X−αH is

X − αH = (μH + δH)(μH + γH) + μHαH
δH

, (37)

and the expression for Y−αM is

Y − αM = μM μM + γM + αM
( )

γM
. (38)

Both X−αH and Y−αM are positive, and, as a conse-
quence, the coefficients A1 and A2 are positive.
Hence, the second root [equation (36)] of IH/NH is nega-
tive. Thus, we prefer not to call the interesting findings
by Garba et al. [6] a backward bifurcation. Our
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interpretation of the phenomena observed by Garba
et al. is described in the present paper in the last four
paragraphs of the section ‘Backward bifurcations’.

The translation from the notation of this paper to
the notation used by Garba et al. [6] is presented in
Tables 4 and 5.

The results obtained by Garba et al. [6] may not be
entirely correct because they come from writing λH
[their equation (1)] as

λH = ab
NM

(IM + ηMLM ).
The correct equation should have NH instead of NM

in the denominator because, as can be noted in system
(1), the total number of bites inflicted by infected mos-
quitoes is a(IM + ηMLM), a fraction SH/NH of which
are on susceptible humans, of which a fraction b is ac-
tually infective. Therefore, as mentioned previously,
equation (4) in Garba et al.’s [6] paper is correct only
if b= c.
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