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HOPF ALGEBRAS OF COMBINATORIAL STRUCTURES 

WILLIAM R. SCHMITT 

ABSTRACT. A generalization of the definition of combinatorial species is given by 
considering functors whose domains are categories of finite sets, with various classes 
of relations as moronisms. Two cases in particular correspond to species for which one 
has notions of restriction and quotient of structures. Coalgebras and/or Hopf algebras 
can be associated to such species, the duals of which provide an algebraic framework 
for studying invariants of structures. 

1. Introduction. The theory of species, first developed by André Joy al in 1981 
(see [5]), has provided a pliable language for combinatorial enumeration which has 
since been extensively used (see e.g. [2], [6], [7], [8], [9], [10]). The purpose of the 
present work is twofold. First, Joyal's notion of species is extended in such a way 
that combinatorial structures are classified according to their functorial properties. In 
particular, the existence of substructures and quotient structures can be expressed in 
much the same way that the notion of species renders the concept of a combinatorial 
structure generally. We do this by a slight change in the definition of a species. Instead 
of taking the category of finite sets and bijections as our starting point, as Joyal does, we 
consider some notable subcategories of the category of finite sets and all relations. Of 
particular importance are the categories having partially defined bijections and partially 
defined surjections as morphisms. Functors from these two categories to the category of 
sets provide the definition of species for which "restriction" and "quotient" of structures 
are defined, respectively. 

Second, we reexamine the objective of Joyal's machinery from the point of view of 
Hopf algebras. Joyal's notion of species is, roughly speaking, a set-theoretic analog of 
the concept of generating function, and algebraic properties of generating functions find 
pleasing—and, we believe, definitive—equivalent renderings in species-theoretic terms. 
Thus, in theory, one might altogether dispense with the use of generating functions in 
enumeration, and deal directly with the objects themselves. Such an approach, however, 
puts greater focus than ever on the problem of determining the "natural" algebraic 
operations to be used in studying a given family of combinatorial structures, operations 
which should be dictated by the structures themselves, rather than via numerical devices, 
such as generating functions. 

We approach this problem from the point of view of the theory of Hopf algebras. It 
has long been noticed that various decompositions of combinatorial objects can be most 
clearly expressed using the concept of coproduct in a coalgebra. When a suitable product 
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of objects under consideration is defined, usually corresponding to disjoint union, the 
associated coalgebra inherits a bialgebra, or Hopf algebra, structure. The question thus 
arises as to what is the minimum of additional structure that is to be imposed on a species, 
in order that a coalgebra and/or Hopf algebra can be naturally associated. 

Remarkably, it turns out that the generalizations we propose in order to speak the 
language of "substructure" and "quotient structure" are just such minimal requirements. 
The Hopf algebras thus obtained are generalizations of two classical examples of Hopf 
algebras, namely, the Hopf algebra of polynomials in one variable, and the Faà di Bruno 
Hopf algebra (see [4]). We thereby obtain a large variety of new examples of Hopf 
algebras. Furthermore, the correspondences established between species, on one hand, 
and coalgebras and Hopf algebras, on the other, are functorial. 

The Hopf algebras associated with species may be viewed as sophisticated counting 
schemes which supplement, or perhaps even replace, the naive use of generating functions 
in enumeration. 

2. Relational categories and species. A relation f:U —> V from a set U to a set 
V is a subset of the cartesian product U x V. The domain and the range off: U —* V 
are the sets D(f) = {x G U : (JC, y) G / , for some y G V} and R(f) = {y G V : (JC, y) G 
/ , for somei G U}, respectively. Iff: U —* V and g: V —> W are relations, then the 
composition gof:U^Wis the set {(«, w) : (w, v) G / and (v, w) G g, for some v G V}. 
The converse of a relation/: U —» V is the relation/-1: V —•» U given b y / - 1 = {(v, u) : 
( K , V ) G / } . 

Let Rel denote the category having all finite sets as objects and all relations as 
morphisms. A relational category is a subcategory of Rel which contains all bijections 
in its class of morphisms. Since all relational categories have the same class of objects, 
we refer to them just by naming their morphisms. 

The set of all relational categories forms a partially ordered set C, ordered by inclusion 
of morphism classes. This partially ordered set is actually a lattice, for if Ci and C2 are 
relational categories, then their least upper bound, or join, C\ V C2 is generated by taking 
all compositions in Rel of morphisms from the categories Ci and C2, and the greatest 
lower bound, or meet, C\ A C2 is obtained by intersecting the classes of morphisms of 
Ci and C2. The maximal element of C is Rel, and the minimal element is the category 
B of bijections. 

The following relational categories are of basic importance: I, injections; lop, coin-
jections (converses of injections); S, surjections; and Sop, cosurjections (converses of 
surjections). In fact, we have the following result. 

PROPOSITION 2.1. The category Rel is equal to the join IV lop V S V Sop in the lattice 
C of all relational categories. 

PROOF. Let f:U —• V be any morphism in Rel. Define f:U —» D(f) to be the 
coinjection {(*,*) : JC G D(f)}, and let/2:/)(/) —> / be the cosurjection {(*, (x,y)) : 
(x,y) G / } . Let / 3 : / —• R(f) be the surjection {((x,y),y) : (x,y) G / } , and define 
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fy. R(f) —» V to be the injection {{y,y) : y G R(f)}\ then the relation/ is equal to the 
composition/4 0/30/2 ofx. m 

The various joins of the categories I, Iop, S, and Sop are fundamental. For example, 
the category F of functions is equal to S V I, because any function factors as an injection 
composed with a surjection. The join S V lop is the category Sp of partially defined 
surjections. A morphism/: U —-> V in S^ consists of a pair (W,/), where W Ç U, and/ 
is a surjection from W onto V. We also have the categories ¥p = IV lop V S, of partially 
defined functions, and lp = I V I0/\ of partially defined injections. 

There are many other relational categories besides B and the joins that can be formed 
from the set {I, lop, S, Sop}. For example, if k is some fixed positive integer, one has 
the relational category of all surjections/ such that each block of the kernel of/ has kr 

elements, for some r > 0 which depends on the choice of/. It should be interesting to 
classify all relational categories, and thus attempt to determine the structure of the lattice 
C 

DEFINITION 2.2. A species is a functor from some relational category to the category 
F of functions. 

Usually it is important to specify on which category a species is defined. Thus a 
species having a relational category C as its domain is called a C-species. 

The above is a refinement of the definition of species given in [5], as a functor from 
the category of bijections to itself. Such species can be identified with B-species in the 
obvious manner. 

Suppose C is a relational category and F is a C-species. An F-structure on a set V 
is an ordered pair (G, V), where G G F(V). In general, we assume the underlying set 
V is understood and refer to the elements of F(V) themselves as F-structures on V. If 
G G F(V), H e F(U), and H = F[p](G) for some bijection y: V —> U, then G and H are 
said to be isomorphic, denoted by G ^ H. Isomorphism is an equivalence relation on 
the class of all F-structures. The equivalence class containing an F-structure G, denoted 
by [G], is called the isomorphism class or the type of G. 

Two F-structures G and H are weakly isomorphic, denoted G ^ //, if there is a 
relation a: V —• U in C with converse a~l also in C, such that F[a](G) - H and 
F[a~l](H) = G. Weak isomorphism is also an equivalence relation on F-structures. The 
weak isomorphism class of an F-structure G will be denoted by (G). For any species F, 
the collections F of all isomorphism classes and F of all weak isomorphism classes of 
F-structures form countably infinite or, in some cases, finite sets. 

For any relational category C, the category of C-species is the category having all C-
species as objects and natural transformations as morphisms. Thus a morphism a: F—+ E 
between C-species F and E consists of maps ay: F(V) —> E(V) for all finite sets V, such 
that whenever g: V —* U is a relation in C, the diagram 

F(V) - % E(V) 
(2.1) F[g][ [E[g] 

F(U) -^U E(U) 
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commutes. If ay is a bijection for all V, then a:F—>E is an isomorphism of species. We 
usually write F = E, if F and E are isomorphic species. 

3. Species with restrictions. 

3.1. Definition and examples. Let lop be the category of coinjections. A species with 
restrictions, or R-species, for short, is an I0/7-species F which satisfies |F(0)| = 1. Let V 
be a finite set, U a non-empty subset of V, and let py^: V —-> £/ be the converse of the 
inclusion map from (7 into V. The relation pv ^ is a coinjection, called the coinclusion 
from V to £/. Suppose F is an /?-species and G G F(V) is an F-structure on V. The 
F-structure F[pVyU](G) on U is called the restriction of G to £/, and denoted by G\U. If 
£/ is the empty-set, then G\ U is equal to the one-element set F(0). If W is a subset of U, 
then the functoriality of F together with the fact that py,w = Pu,w ° PVM implies that 

(3.1) (G\U)\W=G\W. 

EXAMPLE 3.1 (R-SPECIES). 1) The uniform species U is defined by U(V) = {V} for 
all sets V. Since there is only one (/-structure on any set, restrictions can be defined in 
only one way, thus U is an /^-species. 

2) A graph is simple if it has no loops or multiple edges. Thus, a simple graph can be 
defined as a pair ( V, £), where V is a finite set and £ is a set of pairs of elements of V. 
Let GS(V) be the set of all simple graphs with vertex-set V.lfHe GS(V) and U Ç V, 
let // | £/ be the induced subgraph of //, with vertex-set U and edge-set consisting of all 
edges of H which are contained in U. Thus Gs is an 7?-species. 

3) Let M(V) denote the set of all matroids having point set V. M is an /^-species in two 
different ways: Given N G M(V) and U Ç V, one can define N| £/ as either the matroid 
restriction or contraction of M to U. 

4) Let L(V) be the set of all linear orderings of the set V. Given a linear order on V, 
any subset of V naturally inherits a linear ordering. Thus L is an /^-species. 

5) Let C(V) denote the set of all cyclic orderings of the set V. Any cyclic ordering of 
V naturally induces cyclic orderings on all subsets of V. Thus C is an /^-species. 

6) Let 5(V) be the set of all simplicial complexes on the set V. If G G S(V)mdU Ç V, 
then G\ U is the simplicial complex {W HU : W e G} = {W e G : W Ç U}. 

7) Let Ç be any family of graphs which is closed under the formation of vertex-
induced subgraphs, and let Fg(V) be the set of all graphs with vertex-set V which are 
isomorphic to some element of Ç. Then F g is an /^-species. Some examples are: forests; 
planar graphs; complete graphs; all /:-colorable graphs, for some fixed k; all graphs 
having some fixed excluded set of minors; and all vertex-induced subgraphs of some 
fixed graph H. 

8) Let Fr(V) be the set of all forests G having vertex-set V, such that each tree in 
G has a distinguished "root" vertex. If G is a forest on V and U Ç V then the induced 
subgraph G\ U is clearly a forest. For each tree T in G\ U, let T' be the tree in G having T 
as a subtree. Define the root of T to be the (unique) vertex of T which is closest (in T') 
to the root of T'. Hence Fr is an 7?-species. 
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EXAMPLE 3.2 (MORPHISMS OF/?-SPECIES). 1) For any fl-species F with F(V) 4 0> 
for ail V, there is a natural transformation /x, from F to the uniform species U, where /xy 
is the unique map from F(V) to the one-element set U(V), for each set V. 

2) Given any linear order on the set V one can construct a cyclic order on V by letting 
the minimal element of Vbe the immediate successor of the maximal element of V. This 
defines a morphism of/^-species L—+C. 

3) A morphism \: Gs —•> S from the R-species of graphs to the 7?-species of simplicial 
complexes is given by letting Xv(G) be the collection of independent subsets of the 
vertex set V of the graph G. 

4) Let Mr and Mc be the /^-species of matroids with restriction to subsets given by 
matroid restriction and contraction respectively. For any set V, define dy : Mr(V) —-> Mc( V) 
by dy(N) = N*, the dual matroid of N. The maps dy define a isomorphism of R-species 
d\Mr-^Mc. 

3.2. Cocommutative coalgebras of R-species. From now on, K will be some fixed 
commutative ring with identity. Given an /?-species F, let % be the free AT-module 
having the set F of isomorphism types of F-structures as a basis. Define linear maps 
A: % —> #/r ® <BF and v.thf?-+K by 

(3.2) A[G]= X : [ G | £ / ] ^ [ G | V - t / ] , 
ucv 

and 
f 1 ifV = 0 
I 0 otherwise, 

for any F- structure G on a set V. 

PROPOSITION 3.1. For any R-species F, the K-module % is a cocommutative K-
coalgebra, with comultiplication A and counit e defined as above. 

PROOF. First we need to show that A is well-defined by 3.2. In order to do this, 
suppose that [G] = [H] for some G G F(V) and H G F(W). Then there is a bijection 
<p: V —• W such that F[ip](G) = H. Using the bijection </?, we can write A[H] as 

A[H] = X; [H\<p(U)] 0 [H |^ (V- U)]. 
t/cv 

It follows from the functoriality of F that G\U ~ H\<p(U) for any subset U of V; thus, 
comparing the above expression for A[H] with equation (3.2), we see that A[G] = A[H], 
and so A is well-defined. If A is applied either to all of the terms on the left, or all of 
the terms on the right side of the tensor product in equation (3.2), then in either case we 
obtain (again, using the functoriality of F) the sum 

J2 [G\Ui]®[G\U2]®[G\U3], 
UuU2M3 
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taken over all all ordered triples L î, (72, U3 of pairwise disjoint subsets of V whose union 
is equal to V. Thus À is coassociative. It is easy to see that e is well-defined and has the 
counitary property 

£ e[G\U] • [G\V- U] = £ [G\U] • e[G\V- U] = [G]. 
ucv ucv 

Thus <BF is a coalgebra. The cocommutativity of fif is obvious. • 

Suppose F and F are /^-species and a: F —• F is a natural transformation. Then there 
is a linear map a: % —• % defined by 

&[G] = [av(G)l 

for any F-structure G on a set V. 

PROPOSITION 3.2. If a: F —> E is a morphism of R-species, then the corresponding 
map à: % —> <BE is a coalgebra map. 

PROOF. Let G be an F structure on a set V. Then 

Aod[G]= J2tev(G)\U]®[av(G)\V-U]-
ucv 

Since a is a natural transformation, this can be written as 

£ [au(G\U)] 0 [aV-iKG|V- £/)], 

which is equal to ( à 0 à ) o A[G]. Also, a preserves the counit e, because e[G] depends 
only on the size of V, Therefore a is a coalgebra map. • 

We thus have the following theorem. 

THEOREM 3.3. The correspondence F \—• (Bf is a functor from the category of R-
species and natural transformations to the category of cocommutative coalgebras and 
coalgebra maps. 

3.3. Cocommutative Hopf algebras of exponential R-species. Suppose F is a species. 
An assembly of F-structures is a finite set of F-structures whose underlying sets are 
nonempty and mutually disjoint. If F satisfies F(0) = 0, then the exponential of F is 
the B-species E - expF whose structures are assemblies of F-structures. Thus an E-
structure G on a set V has the form G = {G# : B G 7TG}, where 7TG is a partition of V 
and GB G F(#), for each block B G TTG. The structures GB are the components, and the 
partition TTG is the underlying partition, of the F-structure G. The unique F-structure on 
the empty-set is the empty assembly 0. The sum G + H of two assemblies of F-structures 
G and H is the disjoint union of G and H. Any assembly G = {Gg : B G ne} can thus be 
written as G = £#G7rG{Gfi}. 
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If F is any species then the species of non-empty F-structures is the B-species FQ 
defined by 

F(V) if V 7^0 
*b(V)=i f t [fV: 

If F happens to be an R- species, then the exponential E = exp Fo becomes an R- species 
as follows: if G = {GB : B £ TTG} is an E-structure on V and U QV, the restriction of G 
to £/ is defined by 

(3.3) G\U={GB \BnU\B£7rGmdBnU^V)}. 

In other words, the restriction G\ U of G is obtained by taking the assembly of restrictions 
of the individual components of G. 

Any ^-species E which coincides with an exponential exp F on the subcategory B is 
called an exponential R-species, and in this case we write E = exp F. 

EXAMPLE 3.3 (EXPONENTIAL ^-SPECIES). 1) The species of partitions n is equal to 
exp Uo, where U is the uniform species. Since U is an /^-species, it follows that n is also 
an i?-species. 

2) The species of permutations £ is equal to exp Co, where C is the species of cyclic 
orders. Since C is an /^-species, it follows that I is also an /^-species. 

3) The species Gs of simple graphs is equal to exp Gc, where Gc denotes the species 
of non-empty connected simple graphs. We have already seen that Gs is an /^-species. 
The situation here is different from the previous examples, for even if | Gc(0)| were equal 
to one, Gc would not be an R-species. 

Suppose E = exp F is an exponential /^-species. E is coherent if, for any F-structure 
G = {GB : B G 7TG} on a set V, the following condition holds: 

(3.4) G\U= £ {GB}\BnU, 
BeirG 

Bni/yt® 

for all subsets U of V. In particular, if F is an 7?-species, then F = exp F0 is a coherent 
/^-species whenever restriction of F-structures is defined by equation (3.3). The species 
of simple graphs Gs is an example of a coherent exponential 7?-species which is not of 
this form. 

If F = exp F is an exponential species, then the set of types F is a commutative 
monoid, with product given by 

(3.5) [G][H] = [G + H], 

for assemblies G and H. The identity element of F is [0], the type of the empty assembly. 
If F = exp F is an ^-species, then the coalgebra % is also an algebra; that is, the 

monoid algebra of F. The mapping [G] —> [{G}], for all F-structures G, defines an 
algebra isomorphism from the polynomial algebra K[F], having types of F-structures as 
indeterminates, onto #£. 
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PROPOSITION 3.4. Suppose E = expF is a coherent, exponential R-species. Then 
(BE — K[F] is a commutative, cocommutative K-Hopf algebra, with antipode S'.ÏÏE —• *BE 

given by 

W 

(3.6) S[G] = Y, E (-lf[G\Ui-Uo][G\U2-Ui]'"[G\Uk-U^l 
k=0 Q)=UoÇ-ÇUk=V 

for any E-structure G on a set V. 

PROOF. First, we must show that (BE is a bialgebra, i.e. that A: % —> 2fe ® % and 
e: <BE —> K are algebra maps. If G\ G E(V\) and G2 G E(V2) and Vi and V2 are disjoint, 
then 

A([G{][G2])= £ [ G i + G 2 | y ] ® [ G i + G 2 | ( V 1 U V 2 ) - ^ , 

which is equal to 

E E [Gl+G2\UlUU2]®[Gl+G2\(VlUV2)-(UlUU2)]. 
UiÇV{ U2QV2 

Using the coherence of E, equation (3.4), and the définition of product, equation (3.5), 
this can be written as 

£ J2 [Gl\Ul][G2\U2]®[Gl\Vl-Ul][G2\V2-U2l 
t / jÇV, U2QV2 

which is equal to A[Gj ]A[G2]. Hence A is multiplicative. It is trivial to check that e also 
is multiplicative. 

To see that % is a Hopf algebra, we must show that the map S defined by equation (3.6) 
satisfies the following identity, and is thus an antipode. 

0.7) xmui• icw-ui-£iG\wmv-w = {T^sf 

for any G G E(V). Equation (3.7) is obvious for [G] = [0]. If G is not empty, the first 
sum in equation (3.7) can be written as S[G] plus the sum 

(3.8) £ S[G\U] - [G\V- U], 
ucv 

taken over all subsets U of V with U ̂  V. Using equation (3.6) for S, the sum (3.8) can 
be written as 

W 

E E E (-D*[G|tfi - U0] • • • [G\Uk - Uk-{][G\V- U], 
UCVk=0$=U()ç...ÇUk=U 

which equals —S[G], according to formula (3.6). Thus the first sum in equation (3.7) 
vanishes. The second sum in equation (3.7) vanishes, similarly. • 
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Note that formula (3.6) for the antipode S of (BE can be written more compactly as 

S{G]= £ (-l)W|7r|!n[G|B], 
7reri(V) Beir 

where |TT| denotes the number of blocks of a partition n G Yl(V). 
If F and £ are exponential species, a natural transformation a: F —• £ is additive if 

ttt/uv(G + //) = au(G) + ocy{H), whenever G and / / are assemblies of F-structures on 
disjoint sets (7 and V respectively. If a: F —> £ is additive, where F = exp Fi, then it is 
uniquely defined by its restriction cc\\ F\ —-> E. A morphism of exponential species is an 
additive natural transformation. 

If a: F —> F is a morphism of coherent exponential /^-species then the coalgebra map 
à: <BF —-+ (BE is in fact a Hopf algebra map. Thus we have the following theorem. 

THEOREM 3.5. The correspondence F »—> (BE is a functor from the category of coher
ent exponential R-species to the category of commutative, cocommutative Hopf algebras. 

EXAMPLE 3.4 (THE BINOMIAL HOPF ALGEBRA). The uniform species U (which is a 
coherent R-species) is equal to expX, where X is the singleton species, given by X(V) = 
{V} if | V| = 1, and X(V) = 0, otherwise. Letting x be the unique type of X-structure, we 
see that (Bv is isomorphic to the binomial Hopf algebra K[x], where Ax = 1 (g) x + x 0 1, 
(see [4], [12] ). 

EXAMPLE 3.5 (PARTITIONS). The species of partitions n = exp (70 is a coherent R-
species. Let xn be the type of the unique (/-structure on a set with n > 1 elements, and 
let XQ = 1 be the type of the empty partition. The Hopf algebra (Bu is isomorphic to the 
polynomial algebra K[x\, xi,...], where 

*>o KKJ 

for all n > 0. 

If F = exp F is a coherent /^-species, with F(V) 4 0. for all non-empty sets V, then the 
unique morphism F —• £/ defines a morphism of exponential species F —•> n . Therefore 
we have a (surjective) Hopf algebra map (BE —> #n, for all coherent exponential R-
species F. 

3.4. Connected structures and lattices of contractions. Suppose F = exp F is a coherent 
/^-species. An F-structure G is connected if it is an assembly consisting of exactly one 
F-structure. In particular, the empty F-structure is not connected, and any F-structure on 
a one element set is connected. 

The following proposition justifies the use of the term "connected" in this general 
context by showing that, when two such structures intersect non-trivially, then their union 
is connected. This is a basic property of connected objects in any category. 

PROPOSITION 3.6. Let G G E(V), where E - exp F is a coherent R-species. IfG\U\ 
and G\ Uj. are connected, for U\, U^ Ç V, and U\nU2 ^ 0, then G\U\UU2 is connected. 
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PROOF. Let TTG\U{UU2 be the underlying partition of the assembly G\ U\UU2. By the 
functoriality of F, G\ Ut = (G\ U\ U U2)\ Ut for / = 1,2, and by hypothesis, the underlying 
partition TTQ^. of G\ Ut is equal to {£/;}, for / = 1,2. By equation (3.4), there must exist 
blocks Bt G ^G\U1UU2

 s u c n m a t ^ ^ ^ ' » ': = ^ 2. But then the 5/ must have non-empty 
intersection, since UiDU2^ 0. This implies that Bx = B2 = UiUU2. Thus G\ U\ U U2 

is connected. • 

If E = exp F is a coherent /^-species and G is an E-structure on a set V, a partition 
7T G n(V0 is called a contraction of G if G|# is connected for all B G 7r. The set of all 
contractions of G, denoted by nc(G), is partially ordered by refinement. 

PROPOSITION 3.7. Let E = exp F be a coherent R-species and G be an E-structure on 
a set V. The set HC(G) of contractions of G is a sup-sublattice of the partition lattice 
n(V). 

PROOF. If a, TT G nc(G) then the join a V TT is equal to the join of a and TT in U(V) 
because, whenever a block B of a and a block C of TT have non-empty intersection, G 
restricted to the union B U C is connected by Proposition 5. Let r be the meet of a and 
7T in n(V). Then in nc(G), cr A TT = U^e- ̂ Glfl' where irG\B is the underlying partition of 
the assembly G\B, for each block Bofr. m 

I1C(G) is thus called the lattice of contractions ofG. In the case that E is the species 
Gs of simple graphs, HC(G) is the usual lattice of contractions of the graph G. 

4. Hereditary species. 

4.1. Definition and examples. A hereditary species (or H-species, for short) is an S^-
species, where S^ is the category of partially defined surjections. Suppose F is an H-
species, and G is an F-structure on a set V. HIT G n(V^ is a partition of V, andpyi7r: V—> TT 
is the canonical surjection, the quotient G/TT is the F-structure on the set TT defined by 
G/TT = F[pv^](G). The restriction G\TT is defined to be the assembly {G\B : B e TT}. 
Now suppose that TT is a subpartition of V, that is, TT is a partition of some nonempty 
subset U of V. Let py,t/: V —• £/ be the coinclusion and let puy. U —> 7r be the canonical 
surjection. The natural morphism from V to 7r is the partial surjection pv7?r = pu^ ° Pv,(/-
The subquotient G/TT is the F-structure on TT defined by G/TT = F[py^](G). 

If / : V —• £/ is a partial surjection, then the ^rn^/ of/, is the subpartition of V 
Kf = \f~x(x) : x G U}. So f can be expressed as the composition g o pv,Kf> where 
g\Kf—+U is the natural bijection. Therefore, in order to show that a species F is 
hereditary, it suffices to describe how subquotients of F-structures are constructed and 
to verify functoriality. 

EXAMPLE 4.1 (//-SPECIES). 1) The uniform species U is an //-species. 
2) The species L of linear orders is an //-species. Suppose G is a linear ordering of 

a set V, and TT is a subpartition of V. The subquotient G/TT is obtained by ordering the 
blocks of TT according to the order of their maximal elements. Of course, this works if 
we use minimal instead of maximal elements. 
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3) The species Gs of simple graphs is an //-species. Let G be a simple graph with 

vertex-set V, and suppose 7r is a subpartition of V. The subquotient G/TT is defined as the 

graph with vertex-set 7r, having an edge between blocks B\ and #2 if and only if there is 

some edge of G which has one endpoint in B\ and the other endpoint in #2 • 

4) The species R of relations is an //-species. Suppose G G R(V) is a relation on V. If 

h: V —> U is a partial surjection, define R[h](G): U —-> U to be the relation h o G o h"l. 

If g: U —» W is another partial surjection then 7?[g o /*](G) = (g o /i) o G o (g o h)~] -

g o (h o G o h~l) o g~~l, which is equal to R[g] o /?[/z](G). Thus R is functorial. Note that 

we don't use here the fact that the relat ions/ and g are partial surjections. Hence, we 

have actually shown that the species of relations is a Rel-species, and thus is a C-species 

for any relational category C. 

4.2. Bialgebras ofH-species. If r and a are partitions of a set V and r < a (i.e. each 

block of a is a union of blocks of r ) , then a/r denotes the partition of the set r induced 

by a. 

Suppose F is an //-species, and G = Y.BZKG{GB} is an assembly of F-structures on a 

set V. For a < irG in 1T(V) and each block B of 7TG, let a\B G H(B) denote the restriction 

of a to B. The restriction of the G to a is the assembly of F-structures on V given by 

G\a = £fl€7rGGB|(cr|#), which has a as underlying partition. The quotient of G by a is 

the assembly on the set a given by G/a = Efle7rG{Gfl/(cr|#)}. The underlying partition 

of G J cris TTG/C. 

PROPOSITION 4.1. Suppose F is an H-species and G is an assembly of F-structure s 

on a set V. Ifr < o are partitions ofV, then the following identities hold: 

[(G\a)\r] = [G|r], 

[(G/r) |(6r/r)] = [(G|cr)/r], 

[(G/T)/(a/r)] = [G/a]. 

PROOF. It clearly suffices to consider the case that G is an assembly consisting of one 

element H G F(V). Suppose C £T and B G a satisfy C Ç.B. We have from equation (3.1) 

that (H\B)\C = H\C. It follows that (G\a)\r and G\r are identical. So, in particular, they 

are isomorphic. 

If B G a, then the restriction r\B is an element of the induced partition a jr. Let 

PVM'- V —+ B and pTiT\s'> r —^r\Bbt the coinclusions and let pyy. V —* r and pB,T\B: B ~~* 

r\B be the canonical surjections. Then pB^B o pv^B = pTT\B o p v T and hence (H/T)\(T\B) = 

*IPT,T|*] ° *Tpv,r]tfO = ^ W r | * ] ° F[pvMH) = (H\B)I(T\B\ by functoriality. Therefore 

( G / r ) | ( a / r ) and (G\a)/r are identical, and thus isomorphic. 

Let pyy. V —> a and pT,CT/T: r —> cr/r be the canonical surjections, and let g: cr —> CT/T 

be the natural bijection. By definition, / / / a = F[pv^](H) and ( / / / r ) / ( a / r ) = F[/or a / r l o 

F[pv,r](/J). Therefore ( / / / r ) / ( a / r ) = F[g] ( / / / a ) , since g o p V a = p r a / r o p V r . Hence 

the third identity follows. • 
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For any //-species F, define tip to be the free module over K with basis consisting of all 
isomorphism classes of (exp/^-structures. The natural product of types of assemblies, 
equation (3.5), gives Mp an algebra structure, and the correspondence [G] <-> i{G}] 
defines an isomorphism between the polynomial algebra K[F] and Mp. 

Define linear maps A#: ttF —+ HF ® Hp and e: tip —> K by 

(4.1) A*[G] = £ [G|(j](8)[G/(7], 
aencvo 
cr<7rG 

and 
_ f 1 if 7TG consists of singletons or is empty 

} 0 otherwise, 
for any (exp Fo)-structure G on a set V. 

PROPOSITION 4.2. For any H-species F, Dip is a commutative K-bialgebra with co-
product Ax and counit e defined as above. 

PROOF. The proof that A# is well-defined by equation (4.1) is similar to the proof 
that A is well-defined in Proposition 2, and is thus omitted. For coassociativity, suppose 
G is an assembly of F-structures on a set V. Then 

(4.2) (A*<g>/)oA*[G] = Y, [(G\a)\T]®[(G\a)/T]®[G/a]. 
T,a€ïl(V) 
T<<7<7TG 

While 

( /®A^)oA^[G]= £ £ [G|r] <g> [(G/r)|7] ® [(G/r)/7] 
ren(V) 7en(T) 
r<7TG 7 < T T G / T 

= £ [G|r]®[(G/r)|(tT/r)]®[(G/r)/(t7/r)], 
r,(7€n(V0 
r<cr<7rG 

which is equal to the right-hand side of equation (4.2), by Proposition 4.1. Thus A# is 
coassociative. 

To see that A# is an algebra map, suppose G\ and G2 are assemblies of F-structures 
on sets V\ and V2, respectively. Then A^([Gi][G2]) is given by 

Atf [G, + G2] = Y KGi + G2)|a] (8) [(G! + G2)/a] 

= E E [Glkl][G2|ff2]®[Gl/ffl][G2/<T2] 
Cl<7rG, 0"2<7TG2 

= A^[Gi]A^[G2]. 

Hence A^ is an algebra map. It is easy to see that e is also an algebra map. Thus tip is a 
bialgebra. • 

If a: F —> F is a morphism of //-species, then there is a corresponding algebra 
map à\tiF ^ tip defined by &[{G}] = [{ory(G)}], whenever G is an F-structure on a 
non-empty set V. 
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PROPOSITION 4.3. If a: F —» E is a morphism ofH-species, then the corresponding 
map cc.OJf —> .74 is a bialgebra map. 

PROOF. By definition, à is an algebra map. Let G be an F-structure on a non-empty 
set V. Then 

A^o a[{G}]= £ (m{^v(G)\B}])^[{av(G)/a}]. 
a£U(V) KBea J 

Since a is a natural transformation, this can be written as 

E ( IT [ WG|B)}]) ® tK(G/(7)}] 

which is equal to (â(g) a) o A#[{G}]. Also, it is clear that e o à = e, hence a is a bialgebra 
map. • 

Thus we have the following theorem. 

THEOREM 4.4. The correspondence F \—> ttp is a functor from the category of H-
species and natural transformations to the category of commutative hialgebras and 
bialgebra maps. 

4.3. Hopf algebras of simple H-species. A species F is simple, if \F(V)\ = 1 whenever 
I V| = 1. If F is any simple species, then the exponential E = exp Fo is an I-species. For if 
a: U —» V is an injection and G is an assembly of F-structures on U, then the assembly 
E[a](G) on V, called the extension of G to V, can be defined by 

E[a](G) = E[â](G)+ Y, (F(W)}, 
xeV-R(a) 

where â is the bijection defined by a from U onto the range R(a) of a, and {F({JC})} is 
the assembly consisting of the unique F-structure on the set {x}. 

Let F be a simple //-species. Then exp F is an I^-species, where assemblies of F-
structures restrict as usual by equation (3.3) and extensions are given as above. It follows 
that two assembles of F-structures are weakly isomorphic if and only if they are they are 
isomorphic after deleting all of their singleton components. 

Let rtp be the free AT-module having the set of all weak isomorphism classes of non
empty (expFo)-structures as a basis. Defining products of weak isomorphism classes 
by 

(G)(H) = (G + H), 

makes tip an algebra, isomorphic to the polynomial algebra over K having types of 
F-structures on sets of two or more elements as indeterminates. If | V\ = 1 and G is 
the assembly consisting of the unique F-structure on V, then (G) is the multiplicative 
identity of tip. 
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Define linear maps A#: tip —• 9fy 0 0<p and e: ilfc —> £ by 

(4.3) A* <G> = E <G k ) ® (G/a), 
aeU(V) 
a<nG 

and 
/ v ( 1 if 7TG consists of singletons 
^ ' [0 otherwise, 

for any non-empty (exp Fo)-structure G on a set V. 

PROPOSITION 4.5. For any simple H-species F, ttF is a commutative Hopfalgebra 
over K with A^ and e defined as above. The antipode S: ffr —• Oip is given by 

(4.4) S(G) = EE(-Dk((G\<ri)/(To)((G\<T2)/<Ti) • • • <(G|<7*)M-i), 

where the inner sum is over all chains <7o < cr\ • • • < o> in H(V)having a^ - TTQ and <JQ 
the partition of V into singletons. 

The proof that S is an antipode is essentially the same as that given in Proposition 3.4. 
Both antipode formulas are special cases of the general formula for antipodes of incidence 
Hopf algebras given in [12]. 

The following theorem is now apparent. 

THEOREM 4.6. The correspondence F' t—> HFis a functor from the category of simple 
H-species to the category of commutative Hopf algebras. 

EXAMPLE 4.2 (THE FAÀ DI BRUNO HOPF ALGEBRA). The uniform species U is a sim
ple //-species. The corresponding Hopf algebra fly is isomorphic to the Faà di Bruno 
Hopf algebra, investigated in [4], [12] and [3]. In this case, the antipode formula (4.4) 
has been shown (in [3]) to be equivalent to the Lagrange formula for the inverse of a 
formal power series under composition. 

4.4. Comodule coalgebras of H-species. Suppose % and 9{p are, respectively, the 
cocommutative and non-cocommutative Hopf Algebras corresponding to a simple H-
species F. Define a linear map ip: <BF —> Hp ® CBF by t/;(l) = 1 <8> 1 and 

#G] = E (G\a)®[G/al 
aeY[(V) 

whenever G is an F-structure on a set V, where \V\ > 1. 

PROPOSITION 4.7. The pair (<Bf, VO is a left iHf-comodule coalgebra. 
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PROOF. TO see that (BF is a left i^-comodule, one must show that (e ® I) o \jj = I and 
(A# 0 /) o i/̂  = (7 (g) -0) o i/;, where / denotes either the identity map on $/r or that on i ^ , 
depending on where it appears in an expression. The first of these equations is trivial. The 
proof of the second is essentially identical to the verification that A# is coassociative. 

The statement that % is a left ^-comodule coalgebra (see [1], p. 137), means that 
the structure maps A and e of <BF are i/p-colinear. In other words, 

(4.5) ( / ® A ) o ^ = ( / i 0 / ^ / ) o ( / 0 r 0 / ) o ( i / ; 0 i / ) ) o A 

and 
(4.6) ( / ® e ) o ^ = (77®/)oe, 

where /i: $0? ® 9iF —•> 9{F and rj:K —> ̂  are the multiplication and unit of HF, and 
7: £F 0 i £ —». i £ ® % is the twist map, determined by F([G] ® (if)) = (//) 0 [G], for 
all [G] 0 (//) € % 0 ifr. 

Equation 4.6 is trivial. In order to verify equation (4.5), suppose G G F(V), where 
| V\ > 1. Then (/ <g) A) o t/;[G] is given by 

(4.7) E E ( G k ) c ^ ( G / a ) | 7 ] m ( G / * - 7 ) ] . 
CTGI1(V0 7ÇCT 

On the other hand, (ip <g> ip) o A[G] is given by 

E E E <(G|W I <Tl)®l(G\U)/<T{]®((G\(V-U)) I (72)®[(G|(V-^)/t72]. 
f/c v o\ ei\( U) a2 eii( v- U) 

Hence, ( / /®/(g)/)o(/(g):r®/)o(^®V0oA[G] equals 

E E E (G | (aiucT2)) ® [(G|I/)/ai] <g> [(G|(V - I /)) /<T2] , 
C/ÇV aieY\(U) a2eU(V-U) 

which is equal to (4.7), by functoriality. Thus equation 4.5 follows. • 

Suppose ?fr is the bialgebra of the //-species F and ip: <Bf —-> tip <g> <BF is defined by 
#(1) = 1 ® 1 and 

kG\= E [Gk]®[G/(7], 
aeU(V) 

whenever G is an F-structure on a set V, where \V\ > 1. A proof identical to that of 
Proposition 4.7, with square brackets replacing all angle brackets, shows that the pair 
(%, xp) is a left ^r-comodule coalgebra. 

5. Invariants of structures. If H is any Hopf algebra over K then the subset 
Alg(i^, K) of the dual algebra #"*, consisting of all algebra maps from H to the ring K, 
forms a group under the product in #"*, with the counit e as an identity. The inverse of a 
map/ G Alg(^, ZQ is given b y / - 1 =foS, where S is the antipode of M (see [13] for 
details). 
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Let F be a simple //-species, and let tip be the corresponding Hopf algebra. The 
product of elements/ and g in ${£ is given by 

f-g(G)= E f(G\a)g(G/a), 
<ren(V) 
a<7rG 

for any assembly of F-structures G on a set V having underlying partition 7TG. 
The dual Hp is called the algebra of invariants of F-structures. The group of algebra 

maps Alg(i^r, K) is denoted by Mp and called the group of multiplicative invariants 
of F-structures. Any / G fftfr is uniquely determined by the values it takes on weak-
isomorphism classes of F-structures. 

Since (BF is a left i^-comodule, it follows that <BF is a left 9(p -module, where the 
action of/ G ^ on [G] G % is given by 

flG] = E rl(G | TTHG/TT], 
7ren(vo 

for G G F(V) and V ^ 0. If V = 0, then [G] = 1, and/ • 1 = / ( l ) • 1. 
For any/ G f&fr-, let/: % —> #F be the left multiplication map [G] —>/[G]. It is a 

formal consequence of Proposition 4.7 that/ is a coalgebra automorphism of (Bp. Thus 
we have the following proposition. 

PROPOSITION 5.1. For any simple H-species F, the correspondence f —>f defines an 
action of the group of multiplicative invariants Mf on the coalgebra (Bf. 

EXAMPLE 5.1 (SIMPLE GRAPHS). Let Gs be the simple //-species of simple graphs, 
and let K be the ring of integers. Define multiplicative invariants z/, rj, £ G 9AQS by 

lr\ f 1 if O is connected 
^ ' } 0 otherwise, 

lr\ - \ * ^ G has no edges 
^ ' | 0 otherwise, 

and 

C(G) = 1, 

for all graphs G. The inverse [i of £ in 171̂  is given by //(G) = (—l)""1^ — 1)!, whenever 
G has « vertices. The invariant \i is the Môbius function of the lattice of partitions 
(see [11]). 

The product v • // is given by 

*"*?(G>= £ z/(G | a)r/(G/a), 
aen(V) 

for any graph G with vertex-set V. The single non-vanishing term of this sum occurs 
when a is equal to ITG, the partition of G into connected components. Therefore, we have 
the identity v • rj = £, or equivalently, r?-1 = /x • i/ in <MGS. 
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The automorphism of <BGS corresponding to 77 Ms thus given by 

/2oi/[G] = £ [ G M 

where the sum is over all color partitions a (i.e. partitions of the vertex set into in
dependent sets) of G. The automorphism ft o p of <BGs thus generalizes the chromatic 
polynomial of a graph. 
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