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Abstract

Objective: Early-life adversity (ELA) is one of the strongest predictors of childhood depression
that may be exacerbated by a genetic predisposition to develop depression. We therefore
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First published online: 18 August 2023 investigated the bio-behavioural effects of an early-life stressor in an accepted rodent model of
depression. Methods: The Flinders sensitive line (FSL) and resistant line (FRL) rats were subjected
Key words: to an early-life stressor, whereafter their bio-behavioural response during pubertal onset was

Adolescence; early weaning; Flinders sensitive

line; maternal separation: oxidative stress evaluated. Male and female pups were maternally separated for 3 h per day from postnatal day 02

(PNDO02) to 17, when they were also weaned. Control animals were left undisturbed, until
Corresponding author: weaning on PND21. Depressive-like behaviour was analysed on PND21 and reassessed on
Stephan F Steyn; PND36. Hippocampal monoamine levels, markers of oxidative stress and metabolic markers
Email: Stephan.steyn@nwu.ac za implicating mitochondrial function were also measured. Results: On PND21, the non-maternal
separation and early weaning (non-MSEW) ESL rats spent 10% more time mobile than their FRL
controls in the tail suspension test (TST) yet displayed increased depressive-like behaviour in the
forced swim test (FST) on PND36. This depressive-like behaviour coincided with increased
hippocampal norepinephrine levels, serotonin turnover and a dysfunctional redox state. Maternal
separation and early weaning (MSEW) appeared to initially reduce early-life (PND21) depressive-
like behaviour in the TST but then induced depressive-like behaviour on PND36 and increased
norepinephrine levels more profoundly in the FRL rats. Conclusion: These findings highlight the
need to further investigate the stress response pathway in these animals and that the absence or
presence of genetic susceptibility may influence the presentation of ELA effects.

Significant outcomes

o Juvenile FSL rats (irrespective of sex) may be a useful model to further investigate
adolescent depression constructs.

o MSEW is effective in inducing depressogenic bio-behavioural effects.

o The bio-behavioural response of FRL offspring to MSEW was more significant.

Limitations

 No neurochemical analyses were performed on PND21, limiting the understanding
of the observed behaviour at this age.
L o o Secondly, the current study did not measure any HPA-related markers, such as
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Introduction
| Childhood is a developmental period characterised by extensive neuroplasticity that renders the
\ / developing brain vulnerable to environmental insults and experiences (Heim et al., 2010). Such a
\\,,, ~ disruption may contribute to the aetiology of various psychiatric disorders, including major
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depressive disorder (Andersen & Teicher, 2008; Marco et al.,
2011), which is one of the most commonly diagnosed mental
disorders in school-aged children (Centers for disease control and
prevention, 2020). In fact, it is the fourth leading cause of global
illness and disability amongst adolescents (15-19 years) and the
fifteenth in those younger than 14 years of age (World Health
Organization, 2022). Although mental health statistics in the South
African paediatric population is limited, an estimated 13-21% of
adolescents (14-26 vyears) experience depressive symptoms
(Nduna et al., 2013; Barhafumwa et al., 2016). In the USA, almost
two million children (3-17 years) have been diagnosed with
depression (Centers for disease control and prevention, 2020;
Ghandour et al., 2019), of which 17% of children (2-8 years), 5% of
12-year-olds and 17% of 17-year-olds have at least experienced a
major depressive episode in the year before (Centers for disease
control and prevention, 2020; Cree et al, 2018; Selph &
McDonagh, 2019). In 2016, 62 000 adolescents died because of
self-harm (World Health Organization, 2022), making it the third
leading global cause of death in this age group (World Health
Organization, 2022).

Early-life adversity (ELA) refers to traumatic experiences, such
asloss of a parent, abuse or neglect that can cause detrimental long-
term effects. In this regard, a survey of 21 countries found that
childhood adversities (i.e. neglect, abuse and parental mental
illness) were accountable for 29.8% of debilitating juvenile
disorders, including but not limited to mood, anxiety, behavioural
and substance disorders (Kessler et al., 2010), making early-life
adversities one of the strongest contributing factors (LeMoult et al.,
2020) and important antecedent to depression (Dube et al., 2001;
Heim & Nemeroff, 2001; Vibhakar et al., 2019). Adding to this,
being born into a family with a history of depression can increase a
child’s risk of developing depression (Fihrer ef al., 2009; Thompson
et al., 2018; Tirumalaraju et al., 2020). In addition, perinatal and
postnatal depression increases the offspring’s risk of developing
depression later in life by as much as 70% (Tirumalaraju et al,
2020). Although the exact mechanism for this increase remains
unclear, persistent maternal depression could lead to neglected
parental engagement and an impaired ability to meet the child’s
social and developmental needs (Dietz et al., 2008). Pathways that
have been implicated in the bio-behavioural alterations associated
with ELA include the redox, bio-energetic (i.e. mitochondrial
function) (de Souza et al., 2020), serotonergic (Lee et al., 2007; de
Souza et al., 2020) and inflammatory (Wang et al., 2017) pathways.
Maternal separation is therefore a useful intervention, often used in
animal studies to model maternal neglect (de Kloet et al., 2005) and
investigate the neurodevelopmental aspects of neuropsychiatric
conditions (Tractenberg et al., 2016; Alves et al., 2020).

The Flinders sensitive line (FSL) rat is an accepted animal
model of depression (Overstreet & Wegener, 2013), sensitive to the
lasting effects of maternal separation (El Khoury et al., 2006;
Wortwein et al., 2006; Ellenbroek et al., 2016) and social isolation
(Mncube et al., 2021). Importantly, the effects of ELA or neglect are
generally limited to long-lasting effects (i.e. into adulthood). For
instance, male adult FSL rats, maternally separated for 3 h per day
between postnatal day 02 (PNDO02) and 14, display increased
depressive-like behaviour (El Khoury et al, 2006), altered
inflammatory markers (Carboni et al, 2010) and levels of
neuropeptides associated with depression (Wortwein et al.,
2006; Ellenbroek et al, 2016). Expanding on the maternal
separation model, George et al. (2010) developed an early-life
neglect model, adding early weaning to the maternal separation
protocol to exacerbate the lasting effects. Early weaning has been
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shown to alter hippocampal glucocorticoid receptor levels (Kikusui
et al, 2006) and induce anxiogenic and aggressive behaviour
(Kikusui et al., 2004). Based on the findings of George et al. (2010),
maternal separation and early weaning (MSEW) induced long-
lasting behavioural changes akin to anxiety, despair and hyper-
activity, without adversely impacting metabolic functions. In
addition to the lack of short-term (i.e. pubertal) bio-behavioural
data of maternal separation in the Flinders line rats, this MSEW
protocol has to the best of our knowledge not been investigated in
the offspring of this specific strain. Therefore, considering that the
FSL rat is accepted to also accurately model childhood depression
(Malkesman & Weller, 2009), specifically genetically predisposed
individuals, and that information regarding the short-term (i.e.
pubertal) effects of ELA is limited, research into this topic is
warranted. We therefore hypothesised that ELA (ie. MSEW)
would induce depressive-like behaviour in the Flinders resistant
line (FRL) rat, while exacerbating the depressive-like phenotype of
the FSL rat. Finally, we further expect these behavioural alterations
to be supported by decreased hippocampal monoamine levels and
mitochondrial function and increased markers of oxidative stress.

Materials and methods
Study design

As summarised in Fig. 1, male and female FSL (n =32) and FRL
(n=33) offspring were randomly and equally divided into the
different intervention groups. Those undergoing MSEW were
separated from the dam for 3 h every day from PNDO02 and weaned
on PNDI17, instead of PND21, when the pups from the non-
MSEW groups were weaned (George et al, 2010). Early-life
depressive-like behaviour was analysed on PND21 and then
reassessed on PND36 and 37, whereafter animals were euthanised
by decapitation, hippocampi removed, and stored at -80°C for
neuro- and biochemical analyses.

Animals

Animals were bred, supplied and housed at the Vivarium (SAVC
no. FR15/13458; AAALAC accreditation international file #1717)
of the Pre-Clinical Drug Development Platform, NWU, RSA. The
study consisted of four experimental groups (16 rats/group; 50:50
female: male; Fig. 1). Male and female rats were grouped together
as sex differences are not expected in prepubertal animals. Still,
results were visually inspected to identify any obvious sex
differences. Group sizes were calculated with a predicted effect
size F of 0.40 (npz =0.14), o error of 5 and 80% power. Rats were
housed 3-4 rats/cage, according to sex, with corncob bedding
changed weekly and the environmental temperatures maintained
at 22+ 1 °C in a relative humidity of 55 + 10%. A 12-h light/dark
cycle was followed with food and water provided ad libitum.

Maternal separation and early weaning

The MSEW model was used as described previously (George et al.,
2010). Briefly, from PNDO2 to 16, pups in the MSEW groups were
left in their home cages, while the dams were relocated to separate
cages with ad libitum access to food and water for 3 h per day
during their wake cycle. The non-MSEW animals were left
undisturbed. MSEW animals were also weaned on PNDI17, as
opposed to the standard PND21, when the non-MSEW animals
were weaned.
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Figure 1. Graphical representation of the study layout. Pink rat icon: female rats. Blue rat icon: male rats. EPM: elevated plus maze. FRL: Flinders resistant Line. FSL: Flinders
sensitive Line. FST: forced swim test. MSEW: maternal separation with early weaning. OFT: open field test. PND: postnatal day. TST: tail suspension test.

Behavioural analyses

On PND21, animals were subjected to the open field test (OFT)
and tail suspension test (TST) to determine the immediate effects
of MSEW on depressive-like behaviour. To investigate the long-
term effects of MSEW, animals were subjected to the OFT and
forced swim test (FST) on PND36, followed by the elevated plus
maze (EPM) on PND37. The sequence of the behavioural analysis,
specifically in terms of performing the FST before the EPM, was
done to increase the chance of observing induced anxiety-like
behaviour in FSL rats (Neumann et al., 2011; Rea et al., 2014; Bay-
Richter et al., 2019). To ensure normal initial foraging and activity
of nocturnal animals, testing only commenced 1 h after the start of
the dark cycle. Behavioural parameters of the OFT and EPM were
analysed with automated software (Ethovision XT14; Noldus
Information Technology BV, Wageningen, NLD), whereas that of
the TST and FST were manually scored with a continuous timer
(FST scoreboard 2.0, NWU, RSA) by a researcher blinded to the
experimental groups.

Tail suspension test

The TST is used to identify antidepressant-like behaviour (Cryan,
Mombereau, ef al., 2005). Although the test is best known for its
use in mice, it has been successfully used in rats as well (Izumi et al.,
1997; Zhang et al, 2013; Shinde et al, 2015). The test was
performed during the dark cycle under red light. As before
(Castagné et al., 2010; Cryan, Mombereau, ef al., 2005), on the day
of testing, each rat was suspended by the tail with adhesive tape,
positioned three-quarters of the distance from the base of the tail
from a suspension hook for 6 min. To avoid injury, the suspension
hook went through the adhesive tape as close as possible to the tail
to ensure the animal hangs with its tail in a straight line (Castagné
et al, 2010). The total time spent immobile was recorded and
interpreted as an indication of depressive-like behaviour.

Open field test

The OFT apparatus consisted of a 1 m? test arena, surrounded by
opaque black, vertical walls. As previously described (Steyn et al.,
2020), each rat was placed in the centre of the arena and allowed to
freely explore for 5min under red light. Total distance moved
during the session was interpreted as a measure of general activity.

Forced swim test
The FST is widely used to screen for depressive-like behaviour and
antidepressant activity in rodents (Cryan et al., 2002). The test was
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performed on PND36, as previously described in our laboratories.
As the FSL rat is a validated animal model of depression that
displays depressive-like behaviour (increased immobility), no pre-
conditioning swim trial 24 h prior to the testing swim trial was
conducted (Overstreet et al., 2005; Overstreet & Wegener, 2013).
During the dark cycle, under white light, animals were placed in an
inescapable Perspex® cylinder [60 cm (k) X 24 cm (o)], filled with
30 cm of water at a temperature of 25 + 1°C for 6 min. During this
time, behaviour was recorded by a camera mounted in front of the
cylinders. The first minute of the test was discarded because
animals generally engage in rapid bouts of active behaviour, during
the first minute (Cryan, Mombereau, et al., 2005). Behavioural
analyses included immobility (floating with no active movements
made, except those necessary to keep the rat’s head above water),
swimming (horizontal movements throughout the cylinder that
included crossing into another quadrant) and struggling (upward-
directed movements of the forepaws along the inside of the swim
cylinder) (Cryan et al, 2002; Cryan, Valentino, et al, 2005).
Increased immobility was considered an indication of learned
helplessness or despair (depressive-like behaviour).

Elevated plus maze

The EPM is used to measure anxiety-like behaviour in rodents. The
plus-shaped platform of the maze consisted of two closed [50 cm
(1) X 20 cm (w) X 10 cm (k)] and two open arms [50 cm ([) X 20 cm
(w) X 10 cm (h)], with a 1-cm transparent plexiglas border around
the latter, to prevent animals from falling (Regenass et al., 2018).
The maze, constructed from black Perspex, is elevated 50 cm from
the floor. On the day of testing, each rat was placed in the centre
zone of the maze, facing the open arm opposite the investigator,
and allowed to freely explore for 5 min under red light. Increased
time spent in the closed arms was interpreted as anxiety-like
behaviour. Entrance into an arm was deemed when the centre
point, as defined by the automated scoring program, entered the
arm zone.

Bio-analyses

Tissue collection and storage

On PND38, animals were euthanised by decapitation, whereafter
brain and heart samples were harvested and weighed. Following
the decapitation, right and left hippocampi were dissected on an
ice-cooled dissection slab and stored separately. The right
hippocampi were used for neurochemical analysis via LC-MS
and snap-frozen in liquid nitrogen and stored at —80°C until the
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day of analysis and were analysed according to the methods
described below. The left hippocampi were removed and
immediately placed into an isolation buffer (mannitol 200 mM,
sucrose 50 mM, potassium phosphate 5 mM, EGTA 1 mM, 3-(N-
morpholino)propanesulfonic acid 5mM and bovine serum
albumin 0.10% pH 7.2) (Kim et al, 2016), whereafter it was
stored at —80°C until metabolic profiling was performed.

Quantitative analyses of hippocampal monoamines, GSH and
GSSG

Each brain tissue sample was individually weighed prior to analyses.
Hereafter, 250 pL of the internal standard solution was added to
brain sample. The mixtures were homogenised by sonication (twice
for 12 s, at an amplitude of 14 yu; MSE ultrasonic disintegrator,
Nuaillé, FRA) and left on ice for 20 min to complete protein
precipitation and centrifuged at 20 817 rcf for 20 min at 4 °C. The
supernatant was transferred to a High-Performance Liquid
Chromatography (HPLC) sample vail. The analytical HPLC column
used was a Venusil ASB C18 (purchased from Agela Technologies,
Torrance, CA, USA), 2.1 X 150 mm, a particle size 3 pm. Ultivo
Triple Quadrupole LC/MS System is controlled by the MassHunter
software from Agilent Technologies®, Inc. (Santa Clara, CA 95051
US). A gradient mobile phase consisting of 0.1% formic acid/HPLC
grade water and 0.1% formic acid/methanol were prepared.
Serotonin turnover was expressed as the ratio between the
metabolite, 5-hydroxindoleacetic acid (5-HIAA) and serotonin (5-
HT) levels, while the redox state was calculated as glutathione (GSH)
over glutathione disulphide (GSSG).

Metabolic profiling

Untargeted gas chromatography time-of-flight mass spectrometry
(GC-TOEF-MS) was performed as previously described (Lindeque
et al., 2013; Terburgh et al., 2019) on the left hippocampi of FSL
rats. Of note, the storage buffer was used for the intended
mitochondrial respiration assay, yet due to logistical reasons could
not be performed and therefore influenced the metabolic results
(i.e. reduced n-values).

A stepwise Bligh-Dyer extraction method (Wu et al., 2008) was
performed resulting in biphasic separation. Briefly, 400 pl of
methanol, 75 pl of water and 50 pl of internal standard (50 ppm
3-phenylbutyric acid) were added to each hippocampus in safe-lock
microcentrifuge tubes, together with a single steel bead (3 mm @).
Thereafter, the brain tissue was homogenised for 2 min at 20 Hz
using the Retch M400 vibration mill. Following the homogenisation
of each tissue sample, 400 pl chloroform together with an additional
200 pl water was added to each sample and vortexed for 30 s. The
samples were then centrifuged at 2000 X g for 5 min at 4°C to induce
phase separation. Four hundred microlitre of the top polar phase
and 300 pl of the bottom apolar phase of were transferred to glass
vials and dried under nitrogen. The samples were stored at —80°C
until derivatisation. In addition to this, quality control samples were
also prepared from pooled aliquots of all sample extracts.

Prior to their analysis via GC-TOF-MS, all samples were
derivatised via oximation and silylation as previously performed
(Lindeque et al., 2013; Terburgh et al., 2019). For oximation, 50 pl
of methoxyamine solution (200 mg methoxyamine dissolved in
10 ml of pyridine) was added to each glass vial containing the dried
sample extract. Thereafter, each sample was vortexed for 30 s to
dissolve the dried extract and incubated for 1 h at 60°C. After
allowing the samples to cool to room temperature, silylation was
performed by adding 50 pl of O-bis(trimethylsilyl)-trifluoro-
acetamide, containing 1% trimethylchlorosilane to the oximated
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samples and vortexed for 30 s. The samples were then incubated for
40 min at 40°C. All liquids from each sample were individually
transferred into a flat bottom insert and placed inside the same vial
that was used for derivatisation. Each vial was then loaded onto an
Agilent 7693 auto sampler for GC-TOF-MS analysis.

GC-TOF-MS analysis. The GC-TOF-MS system used comprises of
an Agilent 7890A series gas chromatograph with Agilent 7693 auto
sampler coupled to a LECO Pegasus HT time-of-flight mass
analyser with an electron impact ionisation source. One microlitre
of each sample was injected (using a 1:10 split ratio) into the front
inlet which remained at a constant temperature of 250°C. Helium
was used as the carrier gas at constant flow of 1.4 ml/min.
Metabolites were separate in a Restek RXi-1MS column (30 m X
0.18mm X 0.18 um) using the following oven temperature
gradient: the oven remained at 50°C for 1min after injection
and then increased 5°C/min until it reached 100°C. The temper-
ature ramp then increased to 10°C/min until 160°C, where after the
temperature increased further until 230°C at a rate of 13°C/min.
During the final phase, the oven temperature increased 20°C/min
until it reached 300°C, where it remained for 2 min before cooling
for the next run. The transfer line and ion source temperature were
kept constant at 225 and 200°C, respectively. The data were
obtained at an acquisition rate of 20 spectra/s (50-800 m/z).

For data acquisition and extraction, the LECO Corporation
ChromaTOF® software (version 4.5x) was utilised. Microsoft
Office Excel was used for the pre-processing of the data. The NIST
MS search program (version 0.2) using AMDIS (National Institute
of Standards and Technology) was used to compare measured
spectra to the NIST 11 mass spectral library to identify all the
detected components and validate relevant metabolites. The
sample sizes (indicated in Table 3) differ from that of the other
analyses and may be due to the storage buffer used.

Statistical analyses

The Grubb’s test (@ = 0.05) was performed to identify outliers with
group sizes described in figure legends. Normality of distribution
and homogeneity of variances were determined via the Shapiro-
Whilk and Levene’s tests, respectively, and only reported where
these assumptions were violated. Two-way ANOVAs (analysis of
variances) and ANCOV As (analysis of covariances) were used for
analyses, with the latter correcting for locomotor activity.
Groupwise comparisons are reported as Bonferroni-adjusted
values (p < 0.05 accepted as significant). Partial eta squared
(n,”) and the unbiased Cohen’s d (d,,,,;) values (Cumming, 2014)
were used to calculate effect magnitude, with large effect sizes
defined as ’7p2 > 0.14 (Ellis, 2010) and d > 0.8 (Sullivan &
Feinn, 2012).

GC-MS data were pre-processed as before (Lindeque ef al.,
2013) and normalised using the MSTUS normalisation method
(Warrack et al., 2009). The data were log-transformed prior to
ANOVA analyses, to ensure normal distribution of all variables.
Statistical analysis was performed in MetaboAnalyst (version 5;
www.metaboanalyst.ca).

All other statistical analyses were performed in IBM® SPSS®
Statistics (version 28), assisted by Laerd Statistics® (https://
statisticslaerd.com) and the NWU statistical consultation services.
Effect magnitude indicators were calculated in Exploratory
Software for Confidence Intervals (Cumming, 2014). All graphical
representations were created in GraphPad Prism® (version 9), with
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the initial power analysis performed in G*Power (version 3;
Universitat Kiel, GER).

Results
Immediate effects of ELA

Body weight, distance moved in the OFT and immobility in the
TST

Only strain affected body weight (Fig. 2A; F; 6; = 80.06, p < 0.001,
npz =0.57) and distance moved (Fig. 2B; F; 5; = 19.63, p < 0.001,
npz =0.24) on PND21 so that FSL rats (irrespective of ELA)
weighed 11 g [9; 14 g] more and covered 817 cm [448; 1186 g] more
than FRL controls. Although distance moved in the OFT did not
affect time spent immobile in the TST (Table 1; F,¢o=0.16,
p=0.69, 1,7=0.003), the strain*ELA interaction (F;gq = 4.03,
p=0.049, 1, =0.06) and ELA alone (F;4 = 10.83, p=0.002,
;7p2 =0.15) influenced TST behaviour (Fig. 2C). After correcting
for distance moved, non-MSEW FSL rats spent less time immobile
that their non-MSEW FRL controls (p =0.036, d,,,;,=0.9 [0.2;
1.6]). Although ELA (regardless of strain) decreased TST
immobility, this was only significant for FRL (p < 0.001,
dunp =12 [0.5; 2.0]), and not FSL (p=0.37, d,,;,=0.3 [—0.4;
1.0]) pups.

Delayed effects of ELA

Distance moved in the OFT and swimming behaviour in the
FST

In Fig. 3A, the strain*ELA interaction (F, ¢, =7.88, p=0.007,
1,° =0.11) was significant for distanced moved on PND36. FSL
rats (regardless of ELA) covered 870 cm [582; 1158 cm] more in
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A
; Figure 2. The immediate effects of maternal separation and
° early weaning on FRL and FSL rats on PND21. (A) Weight?, (B)
H distance moved (over 5min) in the OFT®" and (C) time spent
immobile in the TST? on PND21. Data points represent the mean
A +95% Cl, with male and female indicated in blue and pink,
L] respectively. Statistical analyses are reported in the text with ***
e = p <0.001 vs. indicated group; * p < 0.05 vs. non-MSEW FRL rats,
A and d > 0.8 (significant large effect) vs. indicated group (or non-
A MSEW FRL when presented with no line). 2 Heterogeneity of
variances. ? Not all data sets were normally distributed. FRL:
Flinders resistant line. FSL: Flinders sensitive line. MSEW:
maternal separation and early weaning. TST: Tail suspension

T
FSL test.

the OFT than FRL controls (p < 0.001, 11P2=0.07). However,
MSEW only increased distance moved in the FSL (p=0.001,
dynp=1.1 [0.4; 1.9]) and not FRL (p=0.61, d,,,,=0.2 [-0.9;
0.5]) rats.

FST behaviour was unaffected by distance moved in the OFT
(p > 0.05 in all instances; Table 1). After correcting for distance
moved, only immobility (Fig. 3B) was influenced by the
strain*ELA interaction (F;¢y = 4.73, p=0.03, np2=0.07). of
note, both strain (F ¢ = 40.76, p < 0.001, 1,°=0.41) and ELA
(F160 =25.36,p < 0.001, r]pz =0.30) independently also influenced
immobility time so that FSL rats (regardless of ELA) were 88 s [60;
115 s] more immobile than FRL controls and that MSEW
(regardless of strain) increased time spent immobile by 57 s [34; 79
s]. Interestingly, statistical significance between non-MSEW and
MSEW was only reached in the FRL rats (p < 0.001, d,,,,,, = 1.5 [0.7;
2.3]), while a similar trend existed in the FSL rats (p=0.07,
dp=1.0[0.2; 1.7]).

Time spent swimming and struggling was independently
influenced by both strain (Fig. 3C; Fj0=12.90, p < 0.001,
1,°=0.18 and Fig. 3D; Fy 40 =19.39, p < 0.001, 77,° =0.24) and
ELA (Fig. 3C; Fy=13.07, p < 0.001, 7,7=0.18 and Fig. 3D;
Fi60=9.31, p=0.003, r]pz =0.13). After correcting for distance
moved, FSL rats (regardless of ELA) swam 26 s [11; 40 s] less than
FRL controls as did MSEW animals in relation to non-MSEW
controls (Fig. 3C). For time spent struggling (Fig. 3D), FSL rats
(regardless of ELA) struggled 62 s [34; 90 s] less than FRL controls,
while MSEW animals struggled 35 s [12; 58 s] less than non-
MSEW controls. Interestingly, this effect was only significant in
FRL (p < 0.001, d,,,,=1.0 [0.3; 1.8]) and not FSL (p=0.49,
dy = 0.3 [—0.4; 1.0]) rats.
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FRL no 220.2+38.9 (17) 219.2+13.1 (17) 103.8+65.1 (17) 102.0+11.2 (17)
yes 151.4+69.4 (16) 149.5 + 14.0 (16) 185.8 +38.7 (16) 183.6+11.9 (16)
FSL no 176.1+55.6 (16) 177.5+13.7 (16) 214.2 +33.4 (16) 214.6 +11.0 (16)
yes 159.1+41.1 (16) 160.7 + 13.8 (16) 242.4+23.1 (16) 246.1+13.3 (16)
Swimming in the FST (s) Struggling in the FST (s)
FRL no 87.3+35.1 (17) 87.1+5.9 (17) 108. 5+68.7 (17) 110.5+11.4 (17)
yes 64.3+11.5 (16) 64.0£6.2 (16) 50.0 +£40.2 (16) 52.6+12.1 (16)
FSL no 59.4 +20.4 (16) 59.5+5.8 (16) 26.4+33.2 (16) 25.9+11.2 (16)
yes 39.5+15.7 (16) 39.9+7.0 (16) 18.3+15.8 (16) 13.9+13.6 (16)

Values adjusted with the mean distance moved in the OFT on PND21 (for TST) and OFT on PND36 (for FST). All statistical findings are reported in text, with these values presented here for
transparency. FRL: Flinders resistant line; FSL: Flinders sensitive line; FST: forced swim test; MSEW: maternal separation and early weaning; TST: tail suspension test.

¢ non-MSEW
4+ MSEW
(A) il (8)
5000 ld
_ M L
£ 4000 e o
3 e L .. :E
k-] % o
@ | A o £
g 30001 s dn E
R S
8 2000~ I . &
= - =3
] ® n
et ° A Iy
21000 . £
=
0 | T
FRL FSL
© (D)
*hkkk
al Y
— —
2 A 2
Figure 3. The delayed effects of maternal separation g" 150 o E
and early weaning. (A) Distance moved in the OFT?. (B) E ° )
Time spent immobile*®, (C) swimming®® and (D) strug- £ I g’
gling °<in the FST. Data points represent the mean95% ; A =
Cl, with male and female indicated in blue and pink, n 100 P '.. 2
respectively. Statistical analyses are reported in the text 'E by A c
with *** p<0.001 vs. indicated group; " p<0.05, 8, s "% ssftd A a
AN p <0.05 and MA p <0.001 vs. indicated group, and d O 50 e A ea®e ]
> 0.8 (significant large effect).  Not all data sets were E ° °. :%; E
normally distributed. ' Heterogeneity of variances. = e 'y i
9 Outlier identified but not excluded. FRL: Flinders 0
resistant line. FSL: Flinders sensitive line. FST: forced T !
swim test. MSEW: maternal separation and early weaning. FRL FSL

Anxiety-like behaviour in the EPM

There was no significant interaction (F;¢; =0.01, p=091,
1,> <0.0005) or any main effects identified for the percentage
time spent in open arms of the EPM (data not shown).
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Brain and heart weight
Brain weight (Fig. 4A) was influenced by strain (F; g9 = 78.07, p <
0.001, 1,°=0.57) and ELA (F; ¢ = 1341, p < 0.001, 7,°=0.18)
independently so that the brain weight of FSL rats (regardless of
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ELA) was 0.29% [0.2; 0.4%] lower than FRL controls. Similarly, the
brain weight of MSEW animals (regardless of strain) weighed
0.12% [0.5; 0.2%] less than non-MSEW counterparts. Heart weight
(Fig. 4B), however, was influenced only by strain (F; 6o = 18.09, p <
0.001, npz =0.23) so that those of FSL rats (regardless of ELA)
weighed 0.07% [0.03; 0.1%] less than that of FRL controls.

Hippocampal monoamine levels, metabolic markers and redox
state

In Fig. 5A, significant main effects of strain (F; 5, = 41.37, p <
0.001, 77,°=0.45) and ELA (F;5, = 11.12, p=0.002, 1,°=0.18)
were identified for hippocampal norepinephrine levels. Regardless
of ELA, FSL rats had 231 ng/g [159; 303 ng/g] more hippocampal
norepinephrine than FRL controls. Similarly, hippocampal
norepinephrine levels of MSEW animals (regardless of strain)
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were 120 ng/g [48; 192 ng/g] higher than that of their non-MSEW
counterparts.

Hippocampal serotonin turnover (5-HIAA/5-HT) and redox
state (GSH/GSSG) (Table 2) were only influenced by strain
(Fig. 5B; Fy 56 = 6.63, p = 0.01, 7,2 = 0.11 and Fig. 5C; F, 5 = 15.25,
p < 0.001, n,°=0.21) so that FSL rats (regardless of ELA) had
higher serotonin turnover and lower GSH/GSSG values than FRL
controls.

Of the metabolic markers detected (palmitic acid, stearic acid,
oleic acid, 1-monopalmitin, 1-monostearin and nicotinic acid),
only 1-monopalmitin acid and nicotinic acid were significantly
influenced by the investigated factors (Table 3). For 1-monop-
almitin, there was a significant strain*ELA interaction
(F13,=4.33, p=0.046, ,°=0.12) so that MSEW decreased
hippocampal levels only in FSL rats relative to non-MSEW strain
controls (p =0.002; d,,,, = 1.6 [0.5; 2.9]). Secondly, hippocampal
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Table 2. Hippocampal serotonin levels and redox state markers

FRL no 25.2+9.4 (16) 226.2+73.5 (16) 51.7+7.3 (17) 6.2+22 (17)
yes 27.0£10.7 (14) 226.7+107.2 (14) 47.8+11.4 (14) 7.5+3.7 (14)
FSL no 19.8+7.9 (15) 242.5+101.3 (15) 42.4+7.3 (15) 8.4+2.8 (15)
yes 19.0+7.5 (15) 288.1+262.3 (15) 41.8+21.8 (14) 9.7+4.4 (14)

Because of the significant influence of main effects, all statistical findings are reported in text. 5-HT: 5-hydroxytryptamine (serotonin); 5-HIAA: 5-hydroxyindoleacetic acid; FRL: Flinders resistant

line; FSL: Flinders sensitive line; GSH: glutathione; GSSG: glutathione disulphide; MSEW: maternal separation and early weaning.

Table 3. Significant hippocampal metabolomic markers

FRL no 0.35+0.16 (10) 5.92+4.02 (6)
yes 0.32£0.14 (7) 29.86 +27.04 (5)

FSL no 0.49 +0.15 (5) 58.09 +54.06 (3)
yes 0.22+0.16 (14) 46.99 +41.44 (13)

The values presented here are all log-transformed and therefore contain no Sl unit. Group
sizes differ from behavioural analyses and could be explained by the storage buffer used.
Because of the significant influence of main effects, all statistical findings are reported in
text. FRL: Flinders resistant line. FSL: Flinders sensitive line. MSEW: maternal separation
and early weaning.

nicotinic levels were only affected by strain (F; 53 = 4.83, p = 0.038,
n,°=0.17) so that FSL rats (regardless of ELA) had 98% higher
levels than FRL controls.

Discussion
Juvenile strain differences

The FSL rat is a validated rodent model of depression (Overstreet &
Wegener, 2013), yet bio-behavioural data during the juvenile
developmental period is limited. Based on the findings of
Malkesman and Weller (2009), the FSL rat can be used to model
childhood depression, as it already displays its characteristic
depressive-like phenotype between PND31 and 40 (Malkesman,
Braw, et al., 2006), despite having comparable monoaminergic
levels across different brain regions at PND34 (Malkesman et al.,
2007; Malkesman et al., 2008). Importantly, these findings were in
reference to Sprague-Dawley rats and not FRL controls and were
also measured during the pubertal onset period (i.e. PND35-45)
(Murrin et al., 2007; Drzewiecki et al., 2020). Here, we screened
behaviour in these animals at weaning age (i.e. prepubertal), which
is useful to further validate this model as an appropriate rodent
model for childhood depression. At PND21, FSL rats (regardless of
sex) were heavier, displayed hyperlocomotor activity in the OFT
and spent less time immobile in the TST (Fig. 2). These findings
would therefore suggest that prepubertal male and female FSL rats
do not display increased ‘behavioural despair’ or depressive-like
behaviour, as measured in the TST on PND21. To the best of our
knowledge, the TST has not yet been used to investigate the
depressive-like phenotype of the FSL rat, and our findings
therefore require confirmation, especially because body weight
has been suggested to influence mobility (Bogdanova et al., 2013).
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This may be especially relevant here, as the larger body weight of
the FSL rats on PND21 could have allowed for greater physical
mobility in the TST (Fig. 2C), even after correcting for locomotor
differences. Importantly, others have noted that the neuronal
mechanisms involved in the TST differ from those in the FST
(Renard et al., 2003). Adrenergic neurotransmission has been
found to influence TST behaviour more than the escape-directed
behaviour in the FST (Hascoét et al, 1991). In this regard, we
observed increased hippocampal norepinephrine levels in the FSL
rats on PND38 (Fig. 5A) that may explain the decreased
immobility in the TST relative to age-matched FRL controls
(Fig. 2C). Importantly, that we did not measure monoamine levels
at PND21 is a limitation that must be confirmed in prospective
studies. Interestingly, ‘irritable mood’ and ‘psychomotor agitation’
are key diagnostic symptoms of juvenile depression (American
Psychiatric Association, 2013) that may have presented here as
increased locomotor activity in the OFT and TST on PND2I. In
fact, Mitchell et al. (2013) reported PND21 mice to be more mobile
in the TST than PND28 or adult (PND62-90) controls. Still, this
early-life hyperlocomotor activity was also present on PND36
(Fig. 3A) and therefore aligns our findings with that of others
(George et al., 2010) and motivates for further investigation into
the proposed psychomotor agitation-like behaviour. Importantly,
this increased locomotor activity is not likely to be indicative of
anxiety-like behaviour as no strain differences were observed for
time spent in the open arms of the EPM, even following the FST.
This is in line with the literature, describing the FSL rat as ‘a model
of depression without comorbid anxiety’ (Overstreet & Wegener,
2013), even at a juvenile age (Malkesman & Weller, 2009). Still, on
PND36, FSL rats displayed increased depressive-like (i.e. time
spent immobile; Fig. 3B) and decreased coping (i.e. swimming and
struggling) behaviours (Figs. 3C and D) in the FST. Considered
together, although the TST data may, on face value, be interpreted
as representing antidepressive-like behaviour, it could in fact
represent a psychomotor agitation phenotype that warrants further
investigation. In contrast to this, the depressive-like behaviour
observed in the FST (Fig. 3) may accurately represent behavioural
despair at a young (pubertal onset) age. Although no significant sex
differences were observed in the current study, it is important to
note that pubertal onset in rats takes place between PND35
(females) and PND43 (males) (Murrin et al., 2007; Drzewiecki
et al., 2020) and may therefore have influenced the outcome of the
behavioural tests (Goodwill et al., 2019) and therefore warrants
further investigation.

Still, to corroborate these behavioural findings, we measured
hippocampal neurochemical markers because of the region’s
recognised role in depression (Campbell & MacQueen, 2004). In
line with clinical findings (Barton et al., 2008; Zhuo et al., 2017),
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juvenile FSL rats, regardless of sex or ELA, had lower brain weights
(Fig. 4A) and increased hippocampal serotonin turnover (Fig. 5B)
and an altered redox state (Fig. 5C). The GSH/GSSG ratio is a
valuable biomarker of cellular redox state (Enns & Cowan, 2017),
with lower levels indicating increased oxidative stress (Chai et al.,
1994). GSH is a highly abundant and potent intra- and
extracellular antioxidant (Zitka et al, 2012) that when oxidised
to GSSG reduces antioxidant protection. Therefore, that the redox
state in juvenile FSL rats appears dysfunctional suggests increased
oxidative stress damage, specifically in the hippocampus that could
have contributed to the observed brain atrophy (Fig. 4A). This
finding supports increasing evidence suggesting depression to be a
bio-energetic disorder, resulting from increased free radical
production and an altered redox state, caused by dysfunctional
mitochondria. To this end, clinical and preclinical evidence
suggests mitochondrial function and numbers to be adversely
affected by early-life stress (Hoffmann & Spengler, 2018; Ridout
et al., 2018; Zitkovsky et al., 2021). Here, we unfortunately did not
analyse any direct markers of mitochondrial function, such as
respiration, yet still identified strain differences in terms of
hippocampal nicotinic acid concentrations (Table 3). Nicotinic
acid is a precursor for the mitochondrial electron carrier NAD™
that contributes to energy production and the redox state of the
mitochondria (Crowley et al., 2000). That FSL rats (irrespective of
sex and ELA) had significantly higher nicotinic levels may point
towards a dysfunctional bio-energetic system in that FSL rats may
have impaired nicotinic acid to NAD" conversion pathways. This
is at least somewhat supported by available literature reporting
hippocampal synapse and mitochondria numbers of the FSL rat to
be reduced (Chen et al., 2018).

Next, that we observed increased serotonin turnover in FSL rats
mirrors clinical findings (Barton et al., 2008) and further
strengthens the validity of the FSL rat as a model for paediatric
depression. Despite the limited neurochemical data on depressed
children, Dahlstrom et al. (2000) reported elevated serotonin
transport activity in depressed juveniles (aged 7-17 years),
proposing a compensatory mechanism for the hyposerotonergic
state to be at play. That similar findings were observed in adult FSL
rat (Hvilsom et al., 2019; Harvey et al., 2021) supports this idea and
our current findings. As for norepinephrine levels, although others
have reported comparable (Harvey et al, 2021) and reduced
(Brand & Harvey, 2017) hippocampal levels in adult FSL rats, our
findings (Fig. 5A) are supported by others (Zangen et al., 1999;
Roets et al., 2023) and could be explained by lower o, receptor
expression in the FSL rat (Landau et al, 2015). Finally, a
dysfunctional adrenergic system is implicated in depression and
associated with comorbid impaired cardiovascular function
(Alvares et al., 2016). In this regard, it is interesting that juvenile
FSL rats (regardless of sex or ELA) also had lower heart weights
than their FRL controls (Fig. 4B), as the cardiovascular system is
strongly regulated by the sympathetic nervous system, which has
been shown to be impaired or dysfunctional in depressed patients
(Maaittanen et al., 2019). These results, however, invite
confirmation.

The effect of an early-life stressor on bio-behavioural
parameters

Because ELA is a significant contributor to the development of
mood disorders later in life, we also investigated the effects of
MSEW in the Flinders line rats to determine whether
genetic susceptibility would exacerbate the effects of ELA on
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depressive-like behaviour. Here, MSEW did not affect the weight of
either strain on PND21 (Fig. 2A), which is similar to the findings of
George et al. (2010). It should also be noted here that to the best of
our knowledge, MSEW has not been investigated in the offspring
FSL rat strain. Interestingly, we recently reported that MSEW
unexpectedly induced antidepressant-like effects in the FSL
postpartum dam (Roets et al, 2023). As for the offspring,
MSEW in the current study did not affect the locomotor activity
(Fig. 2B) of PND21 pups yet had an overall decreasing effect on
time spent immobile in the TST (Fig. 2C). Surprisingly, this effect
was more significant in the FRL rats. Although the exact reason for
this is unknown, it may involve the animal’s response to a stressor.
In this regard, it is worth noting that prolonged interference with
maternal-offspring relationship is reported to induce a hypotha-
lamic-pituitary—adrenal (HPA) axis hyper-responsiveness, evi-
dent by increased stress hormones (Pfeffer et al, 2007). The
corticosterone response of early weaned C57BL/6 mice was
prolonged in animals maternally separated for 3 h/day, whilst a
blunted response was observed in animals separated for only 10
min/day (Parfitt et al., 2004; Kikusui et al., 2006). This hypothesis is
further supported by the findings of Malkesman, Maayan, et al.
(2006) who concluded that the FSL rat may present with chronic
HPA axis up-regulation following chronic stress, which may not be
the case for the FRL strain. These reports, together with the
increased mobility observed here, underlines the importance of
investigating the corticosterone response of both strains at PND21.

Although the immediate effects of MSEW did not affect
locomotor activity on PND21, our findings show that MSEW had a
delayed effect on locomotor activity on PND36 (Fig. 3A), with a
more prominent effect in FSL rats. Similar increased locomotor
activity following maternal separation has been observed by others
(George et al., 2010; Wang et al., 2015; Jin et al., 2018) and suggest
that MSEW may result in or even worsen psychomotor agitation-
like behaviour (Grenli et al., 2005; Linge et al., 2013). Specifically,
Sanders and Anticevic (2007) reported similar findings in Wistar-
Kyoto rats, following maternal separation from PNDO01-14, and
noted that these pups also exhibited tachycardia during the stress
period. This, together with the different norepinephrine levels
reported here (Fig. 5A), again highlights the need for further
investigation into the stress response and psychomotor agitation-
like behaviour of these animals following an early-life stressor.
That anxiety-like behaviour was unaffected by MSEW strengthens
our hypothesis that the mentioned behaviour might be indicative
of a psychomotor agitation-like behaviour rather than anxiety-like
behaviour. After correcting for distance moved in the OFT, MSEW
(regardless of strain) increased time spent immobile in the FST
(Fig. 3B), thereby enforcing the hypothesis that ELA can result in
depressive-like behaviour - even in non-susceptible individuals. It
must however be highlighted that time spent immobile and
struggling were more prominently affected in the FRL rats (Fig. 3B
and D), suggesting the need to further explore the adverse effects of
ELA in a population without a genetic susceptibility for depression.
That only time spent swimming was adversely affected by MSEW
(Fig. 3C) suggests that the depressive-like phenotype of the FSL rat
may not be exaggerated by MSEW. Still, whether it affected their
response to antidepressant treatment (i.e. treatment resistant
depression) remains unknown and is worth investigating. Still, our
findings are in line with clinical reports, showing ELA to have
negative neurodevelopmental implications (Bick & Nelson, 2016).
MSEW did however not influence cardiac weight in either strain,
but further studies should investigate whether this (and other
cardiovascular functions) is also the case at a later age, as maternal
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separation has the potential to influence autonomic outflow (Card
et al., 2005), which influences the cardiovascular system. To this
point, childhood adversity is also strongly linked to increased risk
for cardiovascular diseases, probably via an inflammatory-
mediated mechanism (Obi et al., 2019). Regardless, that MSEW
increased hippocampal norepinephrine levels in both FSL and FRL
rats points to an activated stress response and supports the notion
of MSEW indeed being a stressor. That MSEW appeared to induce
a more robust behavioural effect in FRL rats may again highlight
different stress responses at play, which is in line with the clinical
setting (Zorn et al., 2017). That hippocampal serotonin turnover
and redox state (Fig. 5B and C) was unaffected by MSEW could
point towards a different mechanism through which ELA induces
depressive-like behaviour and should be explored in future studies.
To this end, MSEW did cause a significant reduction in
1-monopalmitin hippocampal levels in FSL rats (Table 3).
1-Monopalmitin is a lipid responsible for amongst others, storing
energy and acting as a structural component of cell membranes
(Qin et al., 2021). Consequently, that MSEW induced a reduction
in hippocampal 1-monopalmitin of FSL rats (Table 3) could
suggest a negative effect on mitochondrial function and is strongly
supported by the robust preoteomics analysis of Mallei et al. (2015)
on the Flinders strain and recent findings linking stress-related
pathways, stress reactivity and the effects on mitochondrial
function (Rappeneau et al., 2023). Nevertheless, it is worth noting
that despite their not being any statistical strain differences in
hippocampal 1-monopalmitin levels, O’Gorman et al. (2017)
reported plasma 1-monopalmitin levels to be reduced in children
and adolescents suffering from psychotic disorders. It must
however be noted here that prospective studies should measure
mitochondrial function to confirm our findings, specifically
because the samples collected here were kept in a storage buffer
used for respiration analyses (i.e. Seahorse assay). Taken together,
the bio-behavioural effects caused by MSEW hints at a central role
that the adrenergic nervous system, and perhaps mitochondrial
function, may play in the long-term effects of early-life insults.

Conclusion

Our findings firstly support available literature, motivating the FSL
rat as a suitable rodent model for juvenile depression, more
specifically adolescent depression as it presents with altered early-
life locomotor activity and increased depressive-like behaviour on
PND35. These behavioural differences may be due to increased
hippocampal norepinephrine levels and serotonin turnover, and a
dysfunctional redox state, possibly caused by mitochondrial
dysfunction. Next, our findings show that an early-life stressor,
in the form of MSEW, is depressogenic and appears to be more
prominent in the FRL rat. That MSEW also increased hippocampal
norepinephrine levels and reduced rather than increased early-life
immobility in the TST may point towards a central role of the stress
response pathway in the behavioural alterations caused by early-
life stress. Overall, our findings confirm that ELA can induce
neuropsychiatric alterations but may follow a different course or
mechanism in the presence or absence of genetic susceptibility.
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