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ABSTRACT

We study the distribution of the time to ruin in the classical risk model. We
consider some methods of calculating this distribution, in particular by using
algorithms to calculate finite time ruin probabilities. We also discuss calculation
of the moments of this distribution.

1. INTRODUCTION

In recent years, research in ruin theory has focussed on moments of the time
to ruin, particularly in the classical risk model. Lin and Willmot (1999 and
2000) develop ideas given in Gerber and Shiu (1998). They present methods
from which explicit solutions for moments of the time to ruin can be found
recursively for this model provided that an explicit solution exists for the ulti-
mate ruin probability. Egidio dos Reis (2000) presents a recursion scheme to
find the moments of the time to ruin for a discrete time risk model, and uses
this to approximate moments of the time to ruin in the classical risk model,
while Picard and Lefevre (1998) consider the classical risk model with a discrete
individual claim amount distribution. Cheng et al (2000) consider a discrete
time risk model and find expressions for the moments of the time to ruin for
this model. Cardoso and Egidio dos Reis (2002) study the shape of the density
of the time to ruin. Further references can be found in these papers.

Our objective in this paper is to study aspects of the time to ruin in the
classical risk model. In particular, we focus on the actual distribution of the
time to ruin. By calculating values of both finite and infinite time ruin prob-
abilities, we can construct numerically the conditional distribution of the time
to ruin, and use this to create density functions. We also show how Lin and Will-
mot's (2000) results can be used to calculate approximate values for moments
of the time to ruin when explicit solutions for the probability of ultimate ruin
do not exist.
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The layout of this paper is as follows. In Section 2 we introduce notation.
In Section 3 we summarise methods of approximating both finite and infinite
time ruin probabilities, and of approximating the distribution of the time to
ruin in the classical risk model. In Section 4 we illustrate how moments of the
time to ruin can be calculated, and in Section 5 we give some illustrations of
densities of the time to ruin, given that ruin occurs.

2. NOTATION

In the classical risk model, the insurer's surplus at time t, given an initial sur-
plus u, is U(t) where

ct-S(t).

The aggregate claims process {5(f)}/>o is a compound Poisson process, with
Poisson parameter X. We denote by P the distribution function of individual
claim amounts, and assume that P(0) = 0. Let pk denote the kth moment of
this distribution. We assume that the insurer's premium income is received
continuously at rate c per unit time, where c = (1 + 8)Xpx and 6 is the premium
loading factor. Without loss of generality we can set both X and px to be 1 and
these values will be assumed in all numerical illustrations in this paper.

The time to ruin is denoted T and defined by

J(
~ {oo if U(i) > 0 for all t > 0.

The probability of ultimate ruin from initial surplus u is denoted y/{u) and
defined by y/(u) = Pr(7"< oo). We write d(u) = 1 - y/(u) and denote by Tc the
random variable T\T<°°. The aggregate loss process {L(t)},>0 is defined by
L(t) - S(t) - ct. We denote by L the maximum of the aggregate loss process
so that y/(u) = Pr(L > u). It is straightforward to show that:

(2.1)

)2 (2.2)

See, for example, Gerber (1979).
The probability of ruin by time t from initial surplus u is denoted y/(u, t)

and given by y/(u, t) = Pr(T< t) so that

rc <t) = PT(T< 11 T< oo) = y/(u, t)ly/(u)

is the distribution function of the time to ruin given that ruin occurs.
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3. ALGORITHMS, APPROXIMATIONS AND ASYMPTOTIC RESULTS

In this section we give a brief description of some approaches to approximating
the distribution of the time to ruin.

3.1. Algorithms

Our calculations in Sections 4 and 5 are based on calculated values of y/(u) and
y/(u, t). Values of y/(u) have been calculated using the stable recursive algo-
rithm described in Dickson et al (1995). Values of y/(u, t) have been calculated
using the algorithm described in Dickson and Waters (1991, Section 8).

Each of these algorithms is based on a rescaling and a discretisation of the
classical surplus process described in Section 2. Values of ruin probabilities are
calculated in a recursive manner for a discrete time risk model, and are used to
approximate probabilities for the classical model. In general, the scaling fac-
tor, denoted /? in these papers, determines the quality of the approximations.
The larger the value of /?, the better the approximations are.

3.2. Segerdahl's asymptotic result

Segerdahl (1955) showed that asymptotically a s w ^ » , the distribution of Tc
is normal provided that the moment generating function of the individual
claim amount distribution is finite for some positive value of the argument.
Asmussen (1984) suggests conditions under which Segerdahl's result gives a
reasonable approximation to the distribution of Tc. We mention this result as it
is well known in the literature. However, we will not apply it in our examples
in Section 5. It will be apparent from our calculation of the coefficient of
skewness of Tc in Section 4 and our graphical illustrations in Section 5 that it
would be unreasonable to approximate the densities we plot there by normal
densities.

3.3. Diffusion and Inverse Gaussian approximations

We can approximate the surplus process {U(t)} by a diffusion process. Letting
U(t) = u + W{t) where W(t) ~ N(6Xpxt, kp2i) for all t > 0, we have the well known
result that for u > 0 the conditional distribution of the time to ruin, given that
ruin occurs, for the process {U(t)} is Inverse Gaussian with density

See, for example, Klugman et al (1998). The moments of this distribution can
be regarded as approximations to the moments of Tc; we illustrate this idea in
Section 4. In Section 5, we use / a s an approximation to the density of Tc.
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Based on this exact result for the diffusion surplus process, we also test the
idea in Section 5 that the distribution of Tc can be approximated by an Inverse
Gaussian distribution, with parameters determined by the first two moments
of Tc.

3.4. Translated gamma approximation

Dickson and Waters (1993) show that y/(u, t) for a classical surplus process
for which the premium loading factor is 6 can be approximated by the ruin
probability y/sG(/?w, at) for a standardised gamma process for which the premium
loading factor is 9=8(1 + kflla) where the parameters a,{S and k are given by

a = 4 Xp\ lp\ P = 2p2 /p3 k = X (px - 2p\ /p3).

Formulae to calculate values of y/SG(u, t) are given by Dickson and Waters (1993,
Section 2). Dufresne et al (1991) explain how values of

y/SG(u)= lim^SG(w,0
/ -* oo

can be calculated. Thus, we can use the methods of these papers to compute
y/SG(flu, at) I y/SG(fiu) as an approximation to the distribution of Tc.

The numerical illustrations in Dickson and Waters (1993) suggest that this
approach should give reasonably good approximations, except for small values
of u (relative to px). The main advantage of this approach is that, for large
values of t, the calculation of a finite time ruin probability is fairly quick as it
involves numerical integration rather than a recursive calculation.

3.5. Other approaches

Seal (1978) describes methods for calculating or approximating finite time
ruin probabilities. In particular, when the individual claim amount distribution
is exponential, a formula exists from which values of y/(u, i) can be calculated.
(See also Asmussen (2000).) As the algorithms described in Section 3.1 give
excellent approximations to both finite and infinite time ruin probabilities, we
will not employ the techniques described by Seal, although we acknowledge
that these provide alternative methods of approximation.

Similarly, in the case when u = 0, a formula exists from which finite time
ruin probabilities can be calculated:

y,(0,t)=l-±fCtG(x,t)dx

where, for a fixed value of t, G(x, t) = Pr(5(0 < x). In this special case, given
that ruin occurs, the distribution of the time to ruin is the same as the distri-
bution of the time to recovery to surplus level 0, and Dickson and Egidio dos
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Reis (1996, Figure 1) illustrate this density in the case of exponential individual
claim amounts. In this case, the distribution of Tc has a strong positive skew,
a feature that will be evident in the examples in Sections 4 and 5.

4. MOMENTS OF THE TIME TO RUIN

In this section we illustrate how the first three moments of Tc can be calculated
and approximated. We note that Delbaen (1988) proved that the kth. moment
of Tc exists only if the {k + l)th moment of the individual claim amount dis-
tribution exists. In the following subsection we assume that p4 exists and that
we can calculate values of y/{x) for x = 0, h, 2h,..., u, where u is an integer
multiple of the constant h, using the algorithm described in Section 3.1. The
ideas presented here can be extended to higher moments.

4.1. Formulae for moments

Lin and Willmot (2000, formula (6.21)) show that E(TC) = y/x(u)l y/(u) where

Using (2.1), we can rewrite (4.1) as

V\(") = TiTft / V(u-x)v(x)dx + E(L)d(u) - / y/(x)dx

E(L)d(u) -/Q" y,(x)d(u - x)^

so that we can evaluate y/\{u) using numerical integration.
Similarly, Lin and Willmot (2000, Theorem 6.3 and formula (6.29)) show that

where

= JpB(fo
(4.3)

This formula involves integration over an infinite range and so cannot in gen-
eral be used directly to calculate y/2(u) and y/3(u).

For k = 2 the first and third terms on the right hand side of formula (4.3)
can be combined and evaluated by numerical integration. To evaluate the mid-
dle term, we proceed as follows:
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vi(x)dx= r(fX^(x-y)y/(y)dy+fy/(y)dy-E(L)y/(x))dx

= r r¥(x-y)dxy (y)dy + f° fydxy (y)dy - E(L)2

JO J y JO JO

= E(Lf+fo
Xyy/(y)dy-E(Lf

using (2.2). Thus, we can write y/2(u) as

2 (E(L2)S(u)
(4.4)

Similarly, we can write t//3(u) as

The second integral on the right hand side can be evaluated by numerical inte-
gration. Consider the first integral. Using (4.3), we can write this as:

rrx> roc

Vi (x)dxdu
JO •> u

We consider the evaluation of this expression term by term below. First:

«= ru E[L]E\L2]

Jo Jo V(X-xM<x)dxdu=Jo Jo
Next:

/ / \ffl{x)dxdu= fuy/,{u)du
JO Ju Jo

Finally:

roo ,„ E\L2] E[L]E\L2]
u)jQ ¥l(x)dxdu=JQ w(u)JWdu= 2Xpj
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Putting all these pieces together, we have:

3d(u)E[L]E\L2

4.2. Approximate moments

In Section 3.3 we noted that the time to ruin, given that ruin occurs, for a dif-
fusion process has an Inverse Gaussian distribution. By choosing the para-
meters of the diffusion process appropriately, as in Section 3.3, we can regard
the moments of the Inverse Gaussian distribution as approximations to the
moments of Tc for values of u greater than 0. Hence, we can write for u > 0:

^f, Sk[T,] « ifof (4.6)

where Sk(Tc) denotes the coefficient of skewness of Tc.
Note that these approximations do not depend on any moments of the

individual claim size distribution above the second. This is because the sur-
plus process is being approximated by a diffusion process matched through
the first two moments. However, it should be remembered that if, for example,
p4 does not exist, then the third moment, and hence the coefficient of skewness,
of Tc does not exist. The advantage of these formulae is that they are simple
and depend on the various parameters in a transparent way.

4.3. Numerical illustrations

In Examples 4.1 and 4.3 below, approximate values of E{T^) for k= 1,2,3
were calculated using (4.2), (4.4) and (4.5) respectively, with numerical inte-
gration by the trapezoidal rule. These values are labelled "App" in Tables 4.1
to 4.6. Values of S were calculated using the stable recursive algorithm of
Dickson et al (1995), with a scaling factor of 1000. This means that (approxi-
mate) values of y/{w) were calculated for w - 0,0.001,0.002,..., so that each
trapezium had a base of 0.001. Similarly, values of y/\{w) and y/2{w) were
calculated for the same values of w, using exactly the same method of numer-
ical integration. A second set of approximate values for the first three
moments of Tc was calculated using (4.6). These values are labelled "Dif" in
the Tables below. In Example 4.2, only the first two moments of Tc are shown
since the fourth moment of the individual claim amount distribution does not
exist.

Example 4.1 Let the individual claim amount distribution be exponential (with
mean 1). Tables 4.1 and 4.2 show exact and approximate values of the mean,
standard deviation and coefficient of skewness of Tc when 9 - 10% and when
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TABLE 4.1

MEAN, STANDARD DEVIATION AND COEFFICIENT OF SKEWNESS OF TL, EXPONENTIAL CLAIMS, 8 = 10%.

u

0
10
20
30
40
50

Exact

10.00
100.91
191.82
282.73
373.64
464.55

Mean

App

10.00
100.91
191.82
282.73
373.64
464.55

Dif

—

100
200
300
400
500

Exact

45.83
148.66
205.18
249.20
286.53
319.53

St. Dev.

App

45.83
148.66
205.18
249.20
286.53
319.53

Dif

—

141.42
200.00
244.95
282.84
316.23

Exact

17.737
4.238
3.070
2.528
2.199
1.972

Skewness

App

17.737
4.238
3.070
2.528
2.199
1.972

Dif

—

4.243
3.000
2.449
2.121
1.897

TABLE 4.2

MEAN, STANDARD DEVIATION AND COEFFICIENT OF SKEWNESS OF TC, EXPONENTIAL CLAIMS, 0 = 25%.

u

0
10
20
30
40
50

Exact

4
36
68

100
132
164

Mean

App

4
36
68

100
132

163.98

Dif

40
80
120
160
200

Exact

12.00
37.74
52.00
63.12
72.55
80.90

St. Dev.

App

12.00
37.74
52.00
63.12
72.57
81.01

Dif

-

35.78
50.60
61.97
71.55
80.00

Exact

8.963
2.861
2.076
1.711
1.488
1.335

Skewness

App

8.963
2.861
2.076
1.711
1.486
1.313

Dif

_

2.683
1.897
1.549
1.342
1.200

5 = 25%, respectively. The exact values are calculated from formulae (4.2), (4.4)
and (4.5). When 9 = 10%, over the range of values of u in Table 4.1, the small-
est value of y/{u) is 0.0097 (when u — 50).

Example 4.2 Let the individual claim amount distribution be Pareto with distri-
bution function P(x) = 1 - (3/(3 + x))A. Table 4.3 shows approximate values of the
mean and standard deviation of Tc when 9 = 10% and when 9 = 25%. In this case
it is not possible to compare these approximations with exact values. When
9 = 10%, over the range of values of u in Table 4.3, the smallest calculated value
of y/{u) is 0.0102 (when u = SO).

Example 4.3 We now extend the previous example by introducing excess of loss
reinsurance, with retention level M. In this case all moments of the individual
claim size distribution, and hence of Tc exist. Tables 4.4, 4.5 and 4.6 show approx-
imate values of the mean, standard deviation and coefficient of skewness of Tc
when 9 = 10% and when the reinsurance premium is calculated by the expected
value principle with a loading i; = 25%, for three different values of M.
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TABLE 4.3

MEAN AND STANDARD DEVIATION OF TC, PARETO CLAIMS.

u

0
20
40
60
80

0 =

Mean

App Dif

15.00
203.77 200
372.13 400
531.90 600
681.88 800

10%

St.

App

71.94
271.39
373.14
456.49
535.33

Dev.

Dif

_

244.95
346.41
424.26
489.90

0 = 25%

Mean

App Dif

6.00
70.49 80

119.00 160
155.88 240
186.27 320

St.

App

19.90
75.50

113.74
164.94
233.05

Dev.

Dif

—

61.97
87.64

107.33
123.94

TABLE 4.4

MEAN, STANDARD DEVIATION AND COEFFICIENT OF SKEWNESS OF TC,
PARETO CLAIMS AND EXCESS OF LOSS REINSURANCE, M = 2.

u

0
20
40
60
80

Mean

App

14.64
426.94
842.32

1257.70
1673.07

Dif

-
434.78
869.57

1304.35
1739.13

St.

App

86.25
472.16
663.27
810.51
934.89

Dev.

Dif

-

465.81
658.76
806.81
931.62

Skewness

App

17.765
3.246
2.311
1.891
1.639

Dif

-
3.214
2.273
1.856
1.607

Comments

In each of the above examples, we have taken a fairly large scaling factor in
our algorithm to calculate 5. With the smaller scaling factor of 100, approxi-
mations in Example 4.1 are poorer than those given by Egidio dos Reis (2000)
who also considered this example. As his algorithms are based on the same
model we use to calculate values of d, the role of the scaling factor is identi-
cal in each method. Our method is perhaps a little more transparent than his,
and does not appear to suffer from problems of numerical stability. Interest-
ingly, choosing a more sophisticated method of numerical integration such as
Simpson's rule does not materially improve the quality of our approximations
in Example 4.1 with a scaling factor of 100. In Example 4.1 at least we can
see that the integrand in formula (4.2) is an exponentially decreasing function
(using the well known formula y/(u) = exp{-#w/ (1 + 9)} / (1 + 6)) whereas our
numerical integration technique effectively assumes it is a linearly decreasing
function. In each of the above examples, the choice of a large scaling factor
did not result in lengthy computer run times.
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TABLE 4.5

MEAN, STANDARD DEVIATION AND COEFFICIENT OF SKEWNESS OF TC,
PARETO CLAIMS AND EXCESS OF LOSS REINSURANCE, M = 4.

u

0
20
40
60
80

u

0
20
40
60
80

App

12.29
241.73
472.32
702.90
933.48

App

12.72
213.93
414.91
615.89
816.87

Mean

Dif

—

249.00
498.00
747.01
996.01

St. Dev.

App

59.98
271.16
379.14
462.56
533.10

TABLE 4.6

Dif

—

264.98
374.74
458.97
529.97

Skewness

App

14.666
3.247
2.322
1.903
1.651

MEAN, STANDARD DEVIATION AND COEFFICIENT OF SKEWNESS OF TC,
PARETO CLAIMS AND EXCESS OF LOSS

Mean

Dif

—

220.41
440.82
661.22
881.63

St. Dev.

App

60.05
251.36
350.24
426.80
491.57

REINSURANCE, M= 6.

Dif

—

243.90
344.92
422.44
487.79

Skewness

App

14.128
3.379
2.425
1.990
1.727

Dif

—

3.193
2.257
1.843
1.596

Dif

—

3.320
2.347
1.917
1.660

Given that a diffusion process has continuous sample paths, we would
expect a diffusion approximation to give better results if claim sizes are small
relative to the initial surplus. It can be seen that the diffusion approximations
are better in Tables 4.1 and 4.2 (exponential claims) than in Table 4.3 (Pareto
claims) and that the approximations improve as the excess loss retention level,
M, decreases (cf. Tables 4.4 to 4.6).

A feature of Examples 4.1 and 4.3 is the large positive value for each of
the coefficients of skewness. This indicates that in each case the distributions
of Tc are far from normal. This feature will be illustrated in the examples in
Section 5. Formula (4.6) indicates that

as Segerdahl's (1955) asymptotic result shows it must for these examples since
in the limit the distribution of Tc is normal. We can use formula (4.6) for the
coefficient of skewness of Tc to gain some insight into when the distribution
of Tc is approximately normal. For example, consider Example 4.1, for which
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pl = l,p2 = 2 and 9 - 10%. Formula (4.6) indicates that to obtain a coefficient
of skewness as low as 0.5, u must be about 720 and for the coefficient to be as
low as 0.25, u should be about 2880. However for these two values of u, the
probabilities of ultimate ruin are 3.4 x 10~29 and 1.34 x 10~114, respectively, way
beyond any area of practical interest. (We note that for these two values of u
the exact values of the coefficient of skewness are 0.525 and 0.262 respectively.)

We remark that the quality of the approximations denoted "App" in Exam-
ple 4.1 is excellent.

5. THE DENSITY OF Trc

5.1 Calculation methods

In this section our aim is to illustrate the shape of the density of Tc. In
each of the examples in this section, four different methods of calculating/
approximating this density were used. The following methods were used to
produce graphs of density functions.
1. Algorithms: For a given value of u and a fixed value of t, the algorithm to

approximate finite time ruin probabilities described in Section 3.1 provided
approximate values of y/(u, x) for x = /7[(l + 8)P\,j= 1,2,..., (1 + 9)fit. Divid-
ing these by the value of y/(u) calculated from the infinite time algorithm of
Section 3.1 provides values of the distribution function, say H(x) = Pr(rc<f).
From these, we estimated the density at x =jl [(1 + 9)p] as

(1 + 0) jff H{ ( 1 + V ) H [(1 + 9)0
fory= 1,2,3,...,
We regard this as the "true" density and measure the three approximations
below against it. In the calculations in Examples 5.1, 5.2 and 5.3 we have
set p = 20. Illustrations in Dickson and Waters (1991) suggest this value is
sufficient to calculate accurate approximations to both finite and infinite
time ruin probabilities. A larger value of /? will give better approximations,
but such extra accuracy is of limited value to us in what follows as our aim
is to illustrate the shape of the density of Tc.

2. Diffusion approximation: We have calculated this approximation directly
from formula (3.1) given the Poisson parameter k, the moments px(= 1)
and p2, the initial surplus u, and the loading 9.

3. Inverse Gaussian approximation: We have calculated the first two moments
of Tc using formulae (4.2) and (4.4). We then matched the first two moments
of an Inverse Gaussian distribution to these, and calculated values of the
density directly, using the formulation in Klugman et al (1998, p. 583).

4. Translated gamma approximation: For the same x values as under Method 1
above, we approximated values of y/(u, x) and, having divided these by our
approximation to y/(u) under this method, we estimated the density in the
same way as under Method 1.
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5.2. Illustrations

Example 5.1 Let the individual claim amount distribution be exponential. Fig-
ure 1 shows densities calculated by each method for 9 = 10% and u = 40. We
have chosen this value of u as it provides an ultimate ruin probability in the range
of practical interest. (In fact ^(40) = 0.024 J Using the exact values of the mean
and standard deviation from Table 4.1, we can calculate the parameters of our
approximating Inverse Gaussian density as 373.64 and 635.36 (in the parame-
terisation used by Klugman et al (1998)). In Figure 1, the densities calculated
by Methods 1 and 4 are virtually indistinguishable from each other, whilst the
approximations under Methods 2 and 3 are reasonably close to the true density.
A clear feature of Figure 1 is that the distribution is positively skewed, as indi-
cated by the value of the coefficient of skewness in Table 4.1. Figure 2 shows the
densities when 9 = 25% and u = 20 (so that y/(u) = 0.015). It has exactly the same
features as Figure 1.

Example 5.2 Let the individual claim amount distribution be Pareto as in Exam-
ple 4.2, let u = 80 and let 9 = 10% (so that ^(80) = 0.010/ Figure 3 shows the
same densities as Figures 1 and2. In this example, we have used the App" values
from Table 4.3 to find the parameters of the approximating Inverse Gaussian
density. We observe that Method 4 again provides the best approximation to the
true density and that Method 3 provides a better approximation than Method 2.

Example 5.3 We extend the previous example to include the effect of excess of
loss reinsurance. Figure 4 shows the density of Tc when the retention level is 6,
10 and 14, and when the reinsurance premium is calculated with a loading of

• inverse Gaussian

Translated gamma and True

Diffusion approximation

200 400 600 800

Figure 1: Exponential claims, w = 40, 10% loading
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Inverse Gaussian

Translated gamma and True

100 150 200

Figure 2: Exponential claims, u = 20, 25% loading

Inverse Gaussian

Figure 3: Pareto(4,3) claims, u = 80, 10% loading

50%. These densities have been calculated using Method 1. We observe that the
common feature of each of these densities is a strong positive skew.

It is clear from Figures 1 to 3 that the translated gamma approximation per-
forms better than both the other two approximations and performs particu-
larly well for the lighter-tailed exponential claims distribution (Figures 1 and 2)
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0 500 1000 1500 2000 2500 3000

Figure 4: Pareto claims and excess of loss reinsurance

compared to the heavier-tailed Pareto claims distribution (Figure 3). It is not
surprising that the translated gamma approximation, which is based on match-
ing three moments, performs better than methods based on matching just two
moments.

In each of the above examples, the consistent feature is that the true den-
sity is positively skewed, and this feature was even more apparent in other
densities that we plotted for the same individual claim amount distributions,
but for smaller values of u. This is consistent with the numerical examples in
Cardoso and Egidio dos Reis (2002). Based on the numerical illustrations in
Dickson and Waters (1993), we are not surprised by the fact that Method 4
produces good approximations to the density of Tc.

One feature that is apparent from our figures is that for the range of para-
meter values and individual claim amount distributions that we considered, the
distribution of Tc is not normal. The straightforward approach of Methods 2
and 3 provides much better approximations than a normal distribution does,
particularly in Example 5.2.

6. CONCLUDING REMARKS

Our aim has been to calculate moments of Tc, and to investigate the shape of
its density. A simple numerical integration procedure suffices for the former
provided we can accurately calculate values of the ultimate ruin probability.
Our examples in Sections 4 and 5 indicate that the distribution of Tc is posi-
tively skewed, and that simple approximations based on Inverse Gaussian den-
sities can give reasonable results, whereas a normal approximation would be
inappropriate.
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