
Can. J. Math. Vol. 49 (4), 1997 pp. 641–652

FINE SPECTRA AND LIMIT LAWS, II
FIRST-ORDER 0–1 LAWS

STANLEY BURRIS, KEVIN COMPTON,
ANDREW ODLYZKO, BRUCE RICHMOND

ABSTRACT. Using Feferman-Vaught techniques a condition on the fine spectrum
of an admissible class of structures is found which leads to a first-order 0–1 law. The
condition presented is best possible in the sense that if it is violated then one can find
an admissible class with the same fine spectrum which does not have a first-order 0–1
law.

If the condition is satisfied (and hence we have a first-order 0–1 law) we give a
natural model of the limit law theory; and show that the limit law theory is decidable
if the theory of the directly indecomposables is decidable. Using asymptotic methods
from the partition calculus a useful test is derived to show several admissible classes
have a first-order 0–1 law.

1. Front-loaded classes.
We will continue using the notation of Part I, the first paper [1] of this sequel. First

we study, in an abstract setting, the key property of fine spectra which suffices to prove
0–1 laws exist. In this section a subscripted lower case letter is used for members of a
series, e.g., (an), and the corresponding upper case letter for the partial sum function,
e.g., A(x) ≥ P

n�x an.

LEMMA 1.1. For (an) a sequence of non-negative integers the following are equiv-
alent:

(a) limt!1
A(tx)
A(t) ≥ 1 for all [some] x Ù 1.

(b) limn!1
A(nx)
A(n) ≥ 1 for all [some] x Ù 1.

(c) limn!1
A(xn+1)
A(xn) ≥ 1 for all [some] x Ù 1.

We also obtain further equivalent statements by replacing tx by tÛx in (a), and nx by
nÛx in (b).

PROOF. Regarding the ‘for all x’ versions one has (a) ) (b), (c). Likewise for the
‘for some x’ versions. Also, in each case the ‘for all x’ version implies the ‘for some
x’ version. Thus for the equivalences (a)–(c) it suffices to show that the ‘for some x’
versions of (b), (c) each imply the ‘for all x’ version of (a).
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First suppose the ‘for some’ version of (b) holds. Choose u Ù 1 such that

lim
n!1

A(nu)
A(n)

≥ 1.

For n sufficiently large we have un Ù n + 1, and consequently

1 � A(n + 1)
A(n)

� A(nu)
A(n)

.

Thus

lim
n!1

A(n + 1)
A(n)

≥ 1.

Then

1 � A(tu)
A(t)

�
A
�
(btc + 1)u

�
A(btc) ≥

A
�
(btc + 1)u

�
A(btc + 1)

Ð A(btc + 1)
A(btc) .

So

lim
t!1

A(tu)
A(t)

≥ 1.

Then for any positive integer s we have

lim
t!1

A(tus)
A(t)

≥ 1.

Given any x Ù 1 choose a positive integer s such that 1 Ú x Ú us. Then

1 � A(tx)
A(t)

� A(tus)
A(t)

implies

lim
t!1

A(tx)
A(t)

≥ 1.

Next suppose the ‘for some’ version of (c) holds. Choose u Ù 1 such that

lim
n!1

A(un+1)
A(un)

≥ 1.

Then, for un � t � un+1, we have un+1 � tu � un+2, and then

A(un+2)
A(un)

½ A(tu)
A(t)

½ 1,

so

lim
t!1

A(tu)
A(t)

≥ 1.

Now, as in the previous case, we have, for any x Ù 1,

lim
t!1

A(tx)
A(t)

≥ 1.

https://doi.org/10.4153/CJM-1997-030-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-030-6


FINE SPECTRA AND LIMIT LAWS, II. FIRST-ORDER 0–1 LAWS 643

To see that one can replace nx by nÛx in (b) it suffices to note the following:

A(2bnxc)
A
�

1
2x (2bnxc)

� ½ A(nx)
A(n)

½ 1,

and for n Ù x
A(bnÛxc)

A(2xbnÛxc) �
A(nÛx)

A(n)
� 1.

The same argument shows that one can replace tx by tÛx in (a).

DEFINITION 1.2. A sequence of non-negative integers (an) is said to be front-loaded
if A(x) is slowly varying, i.e., for all x Ù 0,

lim
t!1

A(tx)
A(t)

≥ 1.

A class K of finite structures is front-loaded if its fine spectrum is front-loaded.

THEOREM 1.3. The Dirichlet convolution product of finitely many front-loaded se-
quences is front-loaded.

PROOF. It suffices to consider two front-loaded sequences, say (an) and (bn). We
want to show that the sequence (cn) defined by cn ≥

P
mjn ambnÛm is front-loaded. Now

C(x) ≥
X
k�x

ak Ð B(xÛk).

We have to prove, for x Ù 1 and é Ù 0, that there is a t0(x, é) such that

C(tx) � (1 + é) Ð C(t) for t Ù t0(x, é).

Since the b-sequence is front-loaded,

B(tx) � (1 + éÛ2) Ð B(t) for t Ù t1(x, é),

and we assume t1 Ù x. Then

C(tx) ≥
X
k�tx

ak Ð B(txÛk)

�
� X

k�tÛt1

ak Ð B(txÛk)
�

+ B(t1x) Ð
�
A(tx) � A(tÛt1)

�

� (1 + éÛ2) Ð
�X

k�t
(ak Ð B(tÛk)

�
+ B(t1x) Ð

�
A(tx) � A(tÛt1)

�

≥ (1 + éÛ2) Ð C(t) + o
�
A(t)

�

since the a-sequence is front-loaded, which completes the proof.
Using this result one can slightly simplify the proof of Theorem 5.15 in Part I, namely

it suffices to prove the theorem for the case that the bound U on the multiplicities is 1.
The next item is closely related to Corollary 4.4 of Part I.
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LEMMA 1.4. Let K be an admissible class. Then the following are equivalent:
(a) K is front-loaded.
(b) ProbK( is divisible by A) ≥ 1 for all A 2 K.
(c) ProbK( is divisible by A) ≥ 1 for some nontrivial A 2 K.

PROOF. Observe that

ProbK (is divisible by A) ≥ lim
n!1

úK(n j is divisible by A)
úK(n)

≥ lim
n!1

úK(nÛd)
úK(n)

where d is the size of A. Then apply Lemma 1.1.

LEMMA 1.5. An admissible front-loaded class K is loaded.

PROOF. Let F1, . . . , Fk be a partition of F, and let r1, . . . , rk be a sequence of non-
negative integers. Choose any algebra A with at least ri factors from each Fi. Then

úK(n j is divisible by A)
úK(n)

� úK(n j is in F½r1
1 Ð Ð Ð F½rk

k )

úK(n)
� 1.

Thus, by Lemma 1.4, ProbK( is in F½r1
1 Ð Ð Ð F½rk

k ) ≥ 1, so K is loaded.

2. Logical Aspects.

THEOREM 2.1. Suppose that K is admissible. If K is front-loaded then we have the
following:

(a) K has a first-order 0–1 law.
(b) Let R be a selection of representatives from the isomorphism equivalence classes

of F, and let T ≥ (
Q

R)°. Then, for û a first-order sentence, ProbK(û) ≥ 1 iff
T j≥ û.

(c) If the first-order theory of F is decidable then so is the limit law theory of K, i.e,
the set of first-order û with ProbK(û) ≥ 1.

If, on the other hand, K is not front-loaded, then there is an admissible K0 with the same
fine spectrum as K, and K0 does not have a first-order 0–1 law.

PROOF. (a) Examining the proof of part (a) of Theorem 3.4 in Part I we see in the
front-loaded case that pj0,...,j‡�1 ≥ 0 if any ji Ú c. Thus at most one nonzero term survives
in the formula for the cumulative probability of û, namely pc,...,c, and this term has the
value 1.

(b) Given a first-order sentenceû let Feferman-Vaught sequences be determined as in
the proof of part (a) of Theorem 3.4 in Part I, and also the Fi. By regrouping the factors
of T by ‘members of the same Fi’, we have

T ¾≥ T0 ð Ð Ð Ð ð T‡�1,
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where Ti ≥
�Q

(R\Fi)
�°

. T will satisfy û iff the structures from K with at least c factors
from each Fi satisfy û (by Lemma 3.1 in Part I), and the latter holds iff û is in the limit
law theory.

(c) Suppose Th(F), the first order theory of F, is decidable. Given a first-order sen-
tence û we now show how to effectively determine if T j≥ û, i.e., how to determine
if û is in the limit law theory. First we use [3] to effectively find the Feferman-Vaught
sequences hΦ,û1, . . . ,ûki, hΦi,ûi,1, . . . ,ûi,kii (1 � i � k) in the proof of part (a). Now
we define a constituent of û to be any conjunction ç of the ûi,j’s and their negations such
that for each (i, j) precisely one of ûi,j and :ûi,j appears in the conjunction.

Suppose ç is such a constituent. Then either ç has no model in F or ç defines one of
the classes Fi, i.e., Fi ≥ fD 2 F : D j≥ çg. Note that, up to ordering of the conjuncts,
each Fi is determined by a unique constituent, say by çi.

Thus we can determine the ‡ in the proof of part (a) by determining the constituents
which have models in F. And we can do this by using the decidability of Th(F), namely
a constituent ç has a model in F iff :ç Û2 Th(F).

Now that we have ‡, we want to determine the [[ûi]] in 2‡. This is because T j≥ û iff
2‡ j≥ Φ([[û1]], . . . , [[ûk]]). To determine [[ûi]] we will find the set Si of j such that Tj j≥ ûi.
[[ûi]] is just the characteristic function of Si (in the set ‡ ≥ f0, . . . , ‡ � 1g). So we look
at the Feferman-Vaught sequence for ûi, namely hΦi,ûi,1, . . . ,ûi,kii. As Tj is a countably
infinite product of members of Fi, say Tj ≥ Q

nÚ° Dn, we have
Y

nÚ°
Dn j≥ ûi iff 2° j≥ Φ([[ûi,1]], . . . , [[ûi,ki ]]).

As the Dn j≥ çj, and each ûi,r or its negation appears as a conjunct of çj, we know that

[[ûi,r]] ≥ 1 if ûi,r appears in çj

[[ûi,r]] ≥ 0 if :ûi,r appears in çj.

Thus we can effectively find the [[ûi,r]]’s. Having determined Φi([[ûi,1]], . . . , ([[ûi,ki ]]),
a sentence in the language of Boolean algebras, we use Skolem’s result that Th(2°) is
decidable to determine if Φi([[ûi,1]], . . . , [[ûi,ki ]]) 2 Th(2°), and thus if Tj j≥ ûi.

Now we have all the information needed to determine the Si’s, and hence
the [[ûi]]’s, so we can effectively find Φ([[û1]], . . . , [[ûk]]). Finally we determine if 2‡ j≥
Φ([[û1]], . . . , [[ûk]]); this is clearly decidable as 2‡ is a finite algebra. This finishes the
proof of (c).

Now let us suppose that K is not front-loaded. Let F be the class of K-indecomposables.
Let F t be the expansion of F by the ternary discriminator t, as in Part I. Let F0 be an ex-
pansion of F t by two constants a, b, i.e., for each member D of F t we create one structure
D0 by interpreting the constant symbols a, b.

CASE 1. ProbK0(ûind ) does not exist. In this case K0 does not have a first-order law.

CASE 2. ProbK0(ûind ) ≥ c Ù 0. In this case we have an infinite number of indecom-
posables. Choose positive integers n1 Ú n2 Ú Ð Ð Ð such that

úF0 (nk) Ú 1
6
úF0(nk+1).
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and þþþþþ
úF0(nk)
úK0 (nk)

� c

þþþþþ Ú
c
5

.

We now assume the interpretation of the constants a, b in each member D of F t is as
follows: if the size of D is in (nk�1, nk) with k even, put a ≥ b; otherwise put a Â≥ b. Then

úK0(n2k j a ≥ b ^ ûind)
úK0(n2k)

Ù 2
3

c

and
úK0(n2k+1 j a ≥ b ^ ûind)

úK0(n2k+1)
Ú 1

3
c.

Thus Prob K0( a ≥ b ^ ûind) does not exist, so K0 does not have a first-order law.

CASE 3. Prob K0(ûind ) ≥ 0. Without loss of generality regarding the fine spectrum
being considered we can assume that

(Ê)
for every relation symbol r of the language there is a corresponding
function symbol fr such that for each nontrivial A 2 K0 we have
r(a1, . . . , an) holds iff fr(a1, . . . , an) ≥ a1 holds, where ai 2 A.

Given a member A of K0 one can use the ternary discriminator to find a first-order
sentence ûA which, for members of K0, says “A is a factor”.

If for some A 2 K0 the cumulative probability Prob K0(ûA) is not defined then K0 does
not have a first-order law, and we are finished. So we assume that ProbK0 (ûA) exists for
all A 2 K0.

CASE 3A. Prob K0(ûA) ≥ 0 for every nontrivial A 2 K0. The number of structures,
up to isomorphism, in F0 must be infinite; for otherwise we could use Theorem 1.3 to
show K is front-loaded.

For k a positive integer let ûÚk be a first-order sentence which, for members of K0,
says “there is a non-trivial factor of size less than k”. From our assumptions follows
Prob K(ûÚk) ≥ 0. Choose positive integers n1 Ú n2 Ú Ð Ð Ð such that

úK0 (nk+1 j ûÚnk ) Ú
1
3
úK0(nk+1).

We again assume the interpretation of the constants a, b in each member D of F t is as
follows: if the size of D is in (nk�1, nk] with k even, put a ≥ b; otherwise put a Â≥ b. Let
ûa,b be a sentence expressing ‘has a nontrivial factor in which a ≥ b’. Then

úK0(n2k j ûa,b)
úK0(n2k)

Ù 2
3

and
úK0(n2k+1 j ûa,b)
úK0(n2k+1)

Ú 1
3

.

Thus Prob K0(ûa,b) does not exist, and again K0 does not have a first-order law.
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CASE 3B. Prob K0(ûA ) Ù 0 for some nontrivial A 2 K0. Prob K0(ûA ) Ú 1 for every
nontrivial A 2 K0 by Lemma 1.4 as K0 is not front-loaded. But then K0 does not have a
0–1 law.

Thus we see that, among the admissible classes K, those for which knowledge of
the fine spectrum alone is sufficient to conclude a first-order 0–1 law are precisely those
which are front-loaded. An example of an admissible K where more information is needed
is the class of finite sets. We already mentioned that it is loaded, and thus has a first-order
law; however it is well-known that it has a first-order 0–1 law. This K is clearly not front-
loaded, so more information than that given by the fine spectrum is required to deduce
the 0–1 law.

PROPOSITION 2.2. Suppose Ki is admissible and front-loaded, for 1 � i � m. Let Fi

be the Ki-indecomposables. Suppose the Fi are pairwise disjoint. Let K ≥ K1 Ð Ð ÐKm. If
K has unique factorization then K has a first-order 0–1 law.

PROOF. The hypotheses ensure that K is admissible, and that the Dirichlet convolu-
tion product of the fine spectra õK1

, . . . ,õKm
is the fine spectrum õK. Now apply Theo-

rems 1.3 and 2.1.

REMARK 2.3. We can apply the above to show

KÊ ≥
[

S�f1,...,mg

Y
i2S

Ki

has a 0–1 law if it has unique factorization by observing that

ž
adding/deleting one-element structures that act as multiplicative units
with respect to direct products from a class K does not affect either the
admissibility of K or the fact that K is front-loaded.

COROLLARY 2.4. Suppose K is admissible, and that the set F of K-indecomposables
is the disjoint union of F1, . . . , Fm, where each Fi is closed under isomorphism. Let Ki ≥
IPfin(Fi). If each Ki is front-loaded then K has a first-order 0–1 law.

PROOF. Each Ki is admissible, and K ≥ KÊ where KÊ is as in Remark 2.3. Thus by
Proposition 2.2 and Remark 2.3 we arrive at the desired conclusion.

3. Asymptotics. Let K be admissible, and let F be the class of K-indecomposables.
To estimate ú(n jP) and ú(n) we shall consider Dirichlet generating functions. Chap-
ter XVII of [4] contains an excellent introduction for our purposes to Dirichlet generating
functions. Perhaps noting that K and F correspond to the integers and primes respectively
and that

1X
n≥1

n�s ≥Y
p

(1 � p�s)�1, p a prime,

will motivate what follows. If m runs through the integers which are not divisible by the
prime q then

1X
m≥1

m�s ≥
Y
pÂ≥q

(1 � p�s)�1, p a prime.
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Now suppose we are given a fixed positive integer M. Let bn ≥ õK(n). Let D1, D2, . . .
be a listing, up to isomorphism, of the members of F, and let ån be the size of Dn. Let
an denote the number of structures of size n in K which have no copies of DM in their
F-factorization. Then it is not difficult to see that

X
bnn�s ≥

1Y
m≥1

(1 � å�s
m )�1,

and X
ann�s ≥

1Y
m≥1
mÂ≥M

(1 � å�s
m )�1.

Furthermore

Prob K(is not divisible by DM) ≥ lim
n!1

a1 + a2 + Ð Ð Ð + an

b1 + b2 + Ð Ð Ð + bn
,

provided this limit exists.

THEOREM 3.1. Let (åm), 0 Ú å1 Ú å2 Ú Ð Ð Ð, be a sequence of real numbers and

X
bnn�s ≥

1Y
m≥1

(1 � å�s
m )�1

X
ann�s ≥ å�s

M

1Y
m≥1
mÂ≥M

(1 � å�s
m )�1

where M is a positive integer. If

logåm ¾ cm, c Ù 0 a constant,

then
a1 + a2 + Ð Ð Ð + an

b1 + b2 + Ð Ð Ð + bn
≥ O

�
(log n)�

1
2

�
.

PROOF. We will use Theorem 2.2 of [5] to derive our result. We begin with some
notation and definitions used in [5]. Let Λ ≥ (ïm), 0 Ú ï1 Ú ï2 Ú Ð Ð Ð, be an infinite
sequence of real numbers without a finite limit point. Let N(u) be defined by

N(u) ≥
X
ïm�u

1

and suppose that for each è Ù 0 there exists a constant C ≥ C(è) such that

N(u) � C(è) exp(èu).

Then the infinite product

g(s) ≥
1Y

m≥1

�
1 � exp(�ïms)

��1
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converges for all complex s with Re s Ù 0. Let ‡m run through the monotone increasing
sequence of linear combinations of the ïm with non-negative integral coefficients; then

g(s) ≥
X
m

p(‡m)e�‡ms,

where p(‡m) is the number of partitions of ‡m into summands from fïmg. Let

P(u) ≥
X
‡Úu

p(‡).

REMARK 3.2. If ïm ≥ logåm then

X
m�n

bm ≥
X

‡Úlog n
p(‡) ≥ P(log n).

Now let ã ≥ ã(u) be determined (uniquely for large u as demonstrated in [5]) from

u ≥
X
m
ïm(eãïm � 1)�1 � 2ã�1

and define B2 ≥ B2(u) by

B2 ≥
X
m

ï2
meãïm

(eãïm � 1)2
� 4ã�2.

Of course u is defined by a very complicated equation; however Roth and Szekeres [6]
show that if ïm ¾ cm then

ã ¾ ôp
6cu

B2(ã) ¾ ô2

3c
ã�3 ¾ 2

p
6c
ô u

3
2 .

If ïm ¾ cm then Λ has properties I and II of Theorem 2.2 of [5] (see conditions (ii) on
page 375 of [5]). Finally, for any positive constants C1, C2 and é (é Ú 1

6 ) there is a ïN

such that

C1ã�
1
3 � ïN � C2ã�

1
3�é

for all sufficiently small ã (or large u) since this is equivalent to there being a ïN such
that

C3u
1
6 � ïN � C4u

1
6 +é,

and this is true since ïN ¾ cN. Finally

ã 8
3�éB

1
2
2 ≥ O(ã 8

3�
3
2�é) ≥ O(ã 7

6�é) ≥ o(1)

and

ã 5
3�éB

1
2
2 ≥ O(ã 1

6�é) ≥ o(1)
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Hence all the hypotheses of Theorem 2.2, part 6, of [5] are satisfied (note that ã 1
3�éB

1
2
2 ≥

o(1) should read ã 8
3�éB

1
2
2 ≥ o(1); see Lemma 2.4), and

(1) P(u) ¾ (2ôB2)�
1
2ã�1 expfãu �

1X
m≥1

log(1 � e�ãïm)g.

REMARK 3.3. We cannot express the asymptotic behaviour of the exp term in (1) in
terms of elementary functions, but as Roth and Szekeres [6] showed, this is not necessary
for the proof of Theorem 3.1.

Roth and Szekeres were interested in proving that certain partition functions are mono-
tonic. They did this by working out the asymptotic behaviour of a partition function anal-
ogous to our P(u+1)�P(u), noting that this corresponded to multiplying their generating
function by 1 � e�ãs. They showed that this alteration in the generating function alters
ã by so little that the asymptotic behaviour of their function can be obtained by adding
the term log(1 � e�ã) to the exp term in (1). Their arguments can be seen to apply here.

The generating function for the ai is 1 � å�s
M times the generating function for the bi

(here we denote åi by ïi). Thus, in the notation just above, the coefficient of exp(�‡ms)
when ïM is not used is p(‡m)�p(‡m�ïM). That is, p(‡m�ïM) counts the representations
of ‡m as linear combinations using ïM. Lemma 2.2 of [5] gives that ∆ã, the change in ã,
is O(B�1

2 ) ≥ O(ã3) when ïm ¾ cm as we have seen. In [5] and [6] it is shown that when
ã is changed by ∆ã in a sum involving ã the sum changes by its derivative times ∆ã.
Thus ã�1 will change by O(ã�2∆ã) ≥ O(ã) and å�1Û2

2 will change by O(ã�5Û2∆ã) ≥
O(ã1Û2). Finally the sum in the definition ofã just after Remark 3.2 is, by [6], asymptotic
to ô2ã�2Û6 so

∆
X

log(1 � e�ãïm) ¾ ∆ã
X

ïmeãïm(eãïm � 1)�2 ¾ ∆ãô2ã�2Û6 ≥ O(ã).

Thus we can obtain the asymptotic behaviour of
P

ai simply by omitting the ïM term or
by multiplying that of

P
bi by 1 � exp(�ãïM) ≥ O(ã). Remembering Remark 3.2 we

therefore have

X
‡�n

a‡ ¾
ô logåMp

6c
(log n)�

1
2
X
‡�n

b‡ ≥ O
�
(log n)�

1
2
X
‡�n

b‡
�
,

so we have Theorem 3.1.
Note that we do not have to estimate the difference of functions asymptotically equal,

so we have a simpler problem than Roth and Szekeres did. Next we summarize the cases
for which our methods are known to apply and give a 0–1 law.

DEFINITION 3.4. A class F of finite structures has approximately exponential growth
if one can, up to isomorphism, enumerate the structures Dn of F by strictly increasing
size, and there is a constant c such that

log(dn) ¾ cn,

where dn is the size of Dn.
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THEOREM 3.5. Suppose K is admissible, and F is the set of K-indecomposables. If
F is the disjoint union of finitely many Fi, where each Fi is closed under isomorphism
and is either finite or has approximately exponential growth, then K has a first-order 0–1
law.

PROOF. Let Ki be the closure of Fi under finite direct products and isomorphism. (1)
If Fi has, up to isomorphism, only one member then clearly Ki is front-loaded. (2) If the
members of Fi show approximately exponential growth then one can apply Theorem 3.1
and Lemma 1.4 to show that Ki is front-loaded.

Now, in the general case of the theorem we have subclasses Ki of K that belong to
these two cases, so Corollary 2.4 gives the conclusion.

EXAMPLE 3.6. Let V be the variety of monadic algebras (B,_,^, c,0 , 0, 1) studied in
algebraic logic, namely, one has Boolean algebras (B,_,^,0 , 0, 1) augmented by a suit-
able closure operator c (see, e.g., [2]). This is a congruence distributive variety, so unique
factorization holds. Let K be the finite members of V. The directly indecomposables of
V are precisely the Boolean algebras which satisfy x Ù 0 ! c(x) ≥ 1. Thus the sizes of
the finite directly indecomposables of V form the sequence (2n). By Theorem 3.5, K has
a first-order 0–1 law.

From Skolem’s work we know that the theory of finite Boolean algebras is decidable;
and using this one can give a straightforward proof that the theory of the finite directly
indecomposables of V is decidable. Thus, by Theorem 2.1(c), the limit law theory of K
is decidable.

EXAMPLE 3.7. Let V be the variety of Heyting algebras generated by the three ele-
ment chain. Again we have a congruence distributive variety, and thus unique factoriza-
tion. Let K be the finite members of V. The directly indecomposables of V are precisely
Boolean algebras with a new 0 adjoined. Thus the sizes of the finite directly indecom-
posables of V form the sequence (2n + 1). By Theorem 3.5, K has a first-order 0–1 law.

Again Skolem’s work leads to a straightforward proof that the theory of the finite
directly indecomposables of V is decidable. By Theorem 2.1(c) the limit law theory of
K is decidable.

EXAMPLE 3.8. Let p1, . . . , p‡ be a set of prime numbers. Let K be the set of finite
abelian groups whose exponent divides some power of p1 Ð Ð Ð p‡. Then the directly inde-
composables fall into ‡ classes with the growth of the i-th class being the exponential
sequence (pn

i ). Consequently K has a first-order 0–1 law by Theorem 3.5.
By Theorem 2.1(b) one has Prob K(û) ≥ 1 iff û is true of the abelian group

G ≥
‡Y

i≥1

1Y
n≥1

(Zpn
i
)°.

Referring to the work of Szmielew [7] we see that (i) the exponent of G is 1, (ii) all
elementary invariants of G which involve p1, . . . , p‡ are 1, and (iii) all elementary in-
variants of G which involve other primes are 0. Thus the set of basic sentences which are
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true of G is recursive, and consequently the first-order theory of G is decidable. Conse-
quently the limit law theory of K is decidable.
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