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Abstract
Negation is a complex linguistic phenomenon present in all human languages. It can be seen as an operator
that transforms an expression into another expression whose meaning is in some way opposed to the orig-
inal expression. In this article, we survey previous work on negation with an emphasis on computational
approaches. We start defining negation and two important concepts: scope and focus of negation. Then,
we survey work in natural language processing that considers negation primarily as a means to improve
the results in some task. We also provide information about corpora containing negation annotations in
English and other languages, which usually include a combination of annotations of negation cues, scopes,
foci, and negated events. We continue the survey with a description of automated approaches to process
negation, ranging from early rule-based systems to systems built with traditional machine learning and
neural networks. Finally, we conclude with some reflections on current progress and future directions.
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1. Introduction
Negation is a complex linguistic phenomenon present in all human languages, allowing for the
uniquely human capacities of denial, contradiction, misrepresentation, lying, and irony (Horn
1989). Broadly speaking, negation “relates an expression e to another expression with a meaning
that is in some way opposed to the meaning of e” (Horn and Wansing 2017). The key chal-
lenge to understanding negation is thus to figure out the meaning that is in some way opposed
to e—a semantic and highly ambiguous undertaking that comes naturally to humans in everyday
communication. As described by Lawler (2010), cognitively, negation “involves some comparison
between a real situation lacking some particular element and an imaginal situation that does not
lack it.”

From a linguistic perspective, it is generally understood that negation has scope and focus.
Scope is “the part of the meaning that is negated” and focus “the part of the scope that is most
prominently or explicitly negated” (Huddleston and Pullum 2002). Consider statement (1). The
falsity of any of the propositions in (1a–1d) makes statement (1) true, thus the scope of the
negation includes all the elements indicated in the right column in (1a–1d):

1. This camera doesn’t take good pictures in low light

1a. Something takes something in some condition. [verb] takes
1b. This camera takes something in some condition. [AGENT of taking, This camera]

c© The Author(s), 2020. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
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1c. Something takes good pictures in some condition. [THEME of taking, good pictures]
1d. Something takes something in low light. [MANNER of knowing, in low light]

Determining the focus consists in pinpointing which parts of the scope are intended to be inter-
preted as true and false given the original statement. Without further context, one may consider
condition (1c) or condition (1d) to be interpreted as false, and conditions (1a, 1b, and 1d) or
conditions (1a–1c) to be interpreted as true, respectively. The first option yields the affirmative
interpretation This camera takes bad pictures in low light, and the second option yields This camera
takes good pictures when there is enough light.

Propositions where a negation is present are generally understood to carry positive meaning,
or in other words, to suggest an affirmative alternative. For example, John didn’t leave the house
implicates that John stayed inside the house. Hasson and Glucksberg (2006) show that compre-
hending negation involves considering the representation of affirmative alternatives. While not
fully understood, there is evidence that negation involves reduced access to the affirmative men-
tal representation (Djokic et al. 2019). Orenes, Beltrán, and Santamaría (2014) provide evidence
that humans switch to the affirmative alternative in binary scenarios (e.g., from not red to green
when processing The figure could be red or green. The figure is not red). In such multi-scenarios,
however, humans keep the negated representation unless the affirmative interpretation is obvious
from context (e.g., humans keep not red when processing The figure is red, green, yellow or blue.
The figure is not red.).

Previous work in computational linguistics has pointed out that processing negation is benefi-
cial for some applications. In particular, sentiment analysis has a long tradition of incorporating
components to process negation (Wiegand et al. 2010), ranging fromhandcrafted rules to sophisti-
cated neural network architectures. For example, like generally carries positive sentiment, but not
when modified by a negation cue (e.g., don’t like). Wilson, Wiebe, and Hoffmann (2005) intro-
duce the idea of contextual polarity, and note that negation may intensify rather than change
polarity (e.g., not good vs. not only good but amazing). Jia, Yu, and Meng (2009) present a set
of heuristic rules to determine sentiment when negation is present, and Councill, McDonald,
and Velikovich (2010) show that information about the scope of negation is beneficial to predict
sentiment. More recently, Socher et al. (2013) present a recursive neural network for sentiment
analysis that captures sentiment polarity changes when negation is present. Reitan et al. (2015)
show that a state-of-the-art Twitter sentiment analysis benefits from incorporating information
about the scope of negation.

Outside sentiment analysis, researchers have pointed out that negation poses unsolved chal-
lenges for, among others, machine translation and natural language inference. Fancellu and
Webber (2015) present a manual error analysis translating negation from Chinese to English,
and Bentivogli et al. (2016) point out that neural machine translation struggles as much as
statistical machine translation when it comes to translating negation. The task of natural lan-
guage inference—determining whether a text entails, contradicts, or is neutral with respect to a
hypothesis—and in particular existing benchmarks (e.g., SNLI (Bowman et al. 2015), MNLI
(Williams, Nangia, and Bowman 2018)), do not properly account for inference in the presence
of negation. A couple of insights from the literature support this claim. First, Gururangan et al.
(2018) point out that negation cues (nobody, never, no, nothing, etc.) are a strong indicator of con-
tradictions in MNLI. Second, creating adversarial examples by adding straightforward negations
make existing systems underperform. For example, Naik et al. (2018) concatenate the tautology
“and false is not true” at the end of hypotheses and conclude that models are not robust to nega-
tion. Similarly, Wallace et al. (2019) introduce universal triggers, that is, sequences of tokens that
fool models when concatenated to any input. They show that concatenating negation cues such as
nobody, never, nothing, and none to hypotheses decreases accuracy to almost zero when the gold
label is entailment or neutral.
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Processing negation is crucial when extracting information from clinical and biomedical texts,
since negation is very frequent and missing negated observations can lead to misleading conclu-
sions that have impact in health care and biomedical research. For example, the medical relevance
of the sentence “shows no symptoms of COVID-19” is quite different from the sentence “shows
symptoms of COVID-19”. Negation detection systems, such as the NegEx algorithm (Chapman et
al. 2001) and its new version (Mehrabi et al. 2015), have shown good performance in clinical text.
However, as Wu et al. (2014) indicate, negation is not solved because “current solutions are easily
optimizable but not necessarily generalizable. Negation detection is still a challenge when con-
sidered from a practical, multi-corpus perspective, that is, one in which an algorithm is deployed
in many clinical institutions and on many sources of text.” The authors conclude that in order
to improve the performance in negation detection, more manually annotated data are needed in
corpora that reflect the distributions of negation in different domains and genres. Cohen et al.
(2017) find out that there are differences in the distribution of negation between clinical reports
and biomedical articles. For example, there is more affixal negation in the clinical texts, whereas
affixal level is more frequent in journal articles.

This special issue is devoted to advances in processing negation from a computational per-
spective. Section 2 provides information about existing corpora where negation is annotated and
shared tasks. Section 3 presents previous work on processing negation, mainly on scope and focus
identification.

2. Annotated corpora and shared tasks
That the interest in processing negation has grown in the last years is reflected in the number
of corpora that have been published. Fancellu et al. (2017b) group corpora that contain some
representation of negation into two types. The first-type corpora represent negation in a logical
form, using quantifiers, predicates, and relations. One of them is the Groningen Meaning Bank
(Basile et al. 2012),a a collection of semantically annotated English texts with formal meaning
representations. It is composed of newswire texts from Voice of America, country descriptions
from the CIA Factbook, a collection of texts from the open ANC, and Aesop’s Fables. Another
corpus is the DeepBank corpus (Flickinger, Zhang, and Kordoni 2012),b which contains rich syn-
tactic and semantic annotations for the 25 Wall Street Journal sections in the Penn Treebank
(Taylor,Marcus, and Santorini 2003). The second-type corpora use string-level annotations, where
negation information (cues, scope, negated event, and focus) are annotated on spans of text (e.g.,
BioScope (Vincze et al. 2008), ConanDoyle-neg (Morante and Daelemans 2012)). Jiménez-Zafra
et al. (2020) recently surveyed corpora annotated with negation focusing on corpora that contain
string-level negation. They describe the main features of the corpora based on the following cri-
teria: the language, year of publication, domain, the availability, size, types of negation taken into
account (syntactic and/or lexical and/ormorphological), negation elements annotated (cue and/or
scope and/or negated event and/or focus), and the way in which each corpus was tokenized, the
annotation guidelines, and annotation scheme used. Information is provided about existing cor-
pora for the following languages: English, Spanish, Swedish, Dutch, Japanese, Chinese, German,
and Italian.

Corpora annotated with negation information usually include at least negation cues and either
scope or focus. Some corpora also include event-level annotations indicating whether an event is
negated. We note, however, that negation is ubiquitous in text. Jiménez-Zafra et al. (2020) report
that the number of sentences with negation in the English corpora is between 9.37% and 32.16%,
while in Spanish corpora it is between 10.67% and 34.22%, depending on the domain. Thus,

aThe Groningen Meaning Bank is available at http://gmb.let.rug.nl.
bDeepBank is available at http://moin.delph-in.net/DeepBank.
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virtually all corpora include examples of negation. For example, parallel corpora for machine
translation, product reviews annotated with sentiment, and corpora annotated with coreference
chains include sentences with negation even though the negations themselves are not explicitly
annotated.

Early work on annotating negation targeted the biomedical domain, for example, explicit
negation of biological relationships (Pyysalo et al. 2007), negated events (Kim, Ohta, and Tsujii
2008), and negation cues and their scope (Vincze et al. 2008). Negation cues and scope have also
been annotated in product reviews (Councill et al. 2010; Konstantinova et al. 2012), short sto-
ries (Morante and Daelemans 2012), and dialogs within intelligent tutoring systems (Banjade and
Rus 2016). Liu, Fancellu, and Webber (2018) present a parallel corpus of English and Chinese
annotated with negation. For Spanish, Sandoval and Salazar (2013) present annotations of nega-
tion cues and scope in news articles. Cruz et al. (2017) present similar annotations in the medical
domain and include syntactic, morphological, and lexical negation. The latest and largest corpus
(9455 sentences) is the SFU corpus by Jiménez-Zafra et al. (2018b), who annotate product reviews
for a variety of product categories with, among others, negation cues and scopes. Negation mark-
ers and either events or scopes have also been annotated in Swedish (Dalianis and Velupillai 2010),
Dutch (Afzal et al. 2014), Chinese (Zou, Zhou, and Zhu 2016), German (Cotik et al. 2016a), and
Italian (Altuna, Minard, and Speranza 2017).

Regarding focus of negation, existing corpora work primarily with English texts. PB-FOC
(Blanco andMoldovan 2011; Morante and Blanco 2012) was the first corpus to annotate the focus
of negation and targets the negations marked with argm-neg semantic role in PropBank (Palmer,
Gildea, and Kingsbury 2005). All negations annotated in PB-FOC are verbal negations, that is,
the negation cues (e.g., not, never) are grammatically associated with a verb. The authors choose
as focus the semantic role of the verbal negation that is most prominently negated. This decision
simplifies the annotation task since usually a few semantic roles span many tokens. Anand and
Martell (2012) reannotate PB-FOC and argue that (a) PB-FOC overannotates foci, and (b) alter-
natives arising from scalar implicatures and neg-raising predicates should be separated from those
arising from focus detection. Other efforts working with English texts also refine the annotations
in PB-FOC. Blanco andMoldovan (2012) define fine-grained focus as the tokens that are intended
to be negated, in contrast to the coarse-grained foci annotated in PB-FOC, which are always all
tokens belonging to a semantic role. They reannotate the foci in PB-FOC whose syntactic con-
stituents are a PP, ADVP, or SBAR and discover that 68% of them can be refined. Blanco and Sarabi
(2016) present an alternative annotation schema. Instead of choosing as focus the semantic role
that is most prominently negated, they consider all roles and rank the likelihood of the under-
lying positive interpretations with a score ranging from 0 to 5. Sarabi and Blanco (2016) move
away from semantic roles and work with syntactic dependencies. By selecting subtrees in depen-
dency trees, they target foci of verbal negations—and the underlying positive interpretations—in
a continuum of granularity. Finally, Sarabi and Blanco (2017) follow a similar approach manip-
ulating syntactic dependencies, but target negation cues that modify nouns or adjectives instead
of verbs.

In addition to PB-FOC and the refinements aforementioned, there are two corpora with focus
annotations. Banjade and Rus (2016) work with dialogs retrieved from interactions between stu-
dents and an intelligent tutoring system. Their corpus, DT-neg, contains annotations of negation
cues as well as their scope and focus. The authors note that the scope and focus are often in a
previous dialog turn. Kolhatkar et al. (2019) work with a collection of news articles and user-
submitted comments online. Their corpus, the SFU Opinion and Comments Corpus (SOCC),
contains annotations of negation cues as well as their scope and focus, among other annotations.
To our knowledge, these two corpora are the only ones that work with user-generated content
in English. Finally, to our knowledge, there is only one corpus annotating the focus of negation
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in languages other than English (Matsuyoshi, Otsuki, and Fukumoto 2014). This corpus includes
news articles and user reviews written in Japanese and targets negation cues and their foci.

Several shared tasks have addressed negation processing in English: in the BioNLP09 Shared
Task 3 (Kim et al. 2009) and in the the i2b2 NLP Challenge (Uzuner et al. 2011), systems had
to detect negated events. The ∗SEM 2012 Shared Task (Morante and Blanco 2012) was devoted
to processing the scope and focus of negation, and in the ShARe/CLEF eHealth Evaluation Lab
2014 Task 2 (Mowery et al. 2014) participants had to detect whether a disorder was negated. For
Spanish, there have been two editions of the NEGES task (Jiménez-Zafra et al. 2018a; 2019), where
systems had to detect negation cues and evaluate the impact of negation in sentiment analysis.

3. Processing negation
The first attempts to process negation in English were mostly rule-based and focused on find-
ing negated terms in clinical texts domain (Chapman et al. 2001; Mutalik, Deshpande, and
Nadkarni 2001; Goldin and Chapman 2003; Auerbuch et al. 2004; Elkin et al. 2005; Boytcheva
et al. 2005; Goryachev et al. 2006; Sanchez-Graillet and Poesio 2007; Huang and Lowe 2007;
Rokach, Romano, and Maimon 2008). Some rule-based systems were developed based on lists
of negations and stop words (Mitchell et al. 2004; Mykowiecka, Marciniak, and Kupść 2009;
Harkema et al. 2009; Uzuner, Zhang, and Sibanda 2009; Sohn, Wu, and Chute 2012). With the
surge of opinion mining, negation was studied as a marker of polarity change (Das and Chen
2001; 2005b; Polanyi and Zaenen 2006; Taboada et al. 2011; Jiménez-Zafra et al. 2017). Only with
the release of the BioScope corpus (Vincze et al. 2008) did the work on negation receive a boost.
But even so, despite the existence of several publications that focus on negation, it is difficult to
find a negation processor for languages other than English. For English, some systems are avail-
able for processing clinical documents: NegEx (Chapman et al. 2001), ConText (Harkema et al.
2009), Deepen (Mehrabi et al. 2015), NegBio Peng et al. (2018), and NegTool (Enger, Velldal, and
Øvrelid 2017).

3.1 Scope of negation identification
Compared to focus identification, scope identification has received substantially more attention,
due to the existence of several corpora annotated with scopes. Inspired by the annotation of scopes
in the BioScope corpus, the task of detecting negation scopes was introduced as amachine learning
sequence labeling task (Morante, Liekens, and Daelemans 2008; Morante and Daelemans 2009).
Subsequently, three main types of approaches have been applied to processing negation:

• Rule-based systems, in an attempt to improve the NegEx algorithm, such as ConText
(Harkema et al. 2009), DEEPEN (Mehrabi et al. 2015), and NegMiner (Elazhary 2017).
Packard et al. (2014) present an approach that works over explicit and formal representations
of propositional semantics, deriving the scope from the structure of logical-form meaning
representations.

• Machine learning techniques (Agarwal and Yu 2010; Li et al. 2010; Cotik et al. 2016b). Read
et al. (2012) proposed an SVM-based ranking of syntactic constituents to identify the scope.
Velldal et al. (2012) explore a combination of deep and shallow approaches to the problem of
resolving the scope of speculation and negation. Reitan et al. (2015) apply a negation scope
detection system to Twitter data.

• Deep learning approaches (Qian et al. 2016; Ren, Fei, and Peng 2018; Lazib et al. 2018).
Fancellu, Lopez, and Webber (2016) present neural networks for this task, and Fancellu et
al. (2017a) present an error analysis showing that scope is much easier to identify when
delimited by punctuation.

https://doi.org/10.1017/S1351324920000534 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000534


126 R Morante and E Blanco

3.2 Focus of negation identification
Automated systems to predict the focus of negation as annotated in PB-FOC are built using
traditional machine learning algorithms as well as sophisticated neural networks. Blanco and
Moldovan (2011) build a decision tree with a feature set emphasizing semantic role information.
Rosenberg and Bergler (2012) present a rule-based approach implementing several heuristics.
Zou, Zhou, and Zhu (2014) introduce a graph model for focus identification that takes into
account inter-sentential information in addition to intra-sentential information. Doing so allows
them to consider context from a lexical and topical perspective. Sarabi and Blanco (2019) present
a simpler approach to include contextual information: they train an SVM with features derived
from an off-the-shelf rhetorical structure theory (Mann and Thompson 1987) discourse parser
(Surdeanu, Hicks, and Valenzuela-Escárcega 2015). To date, the best results published are pre-
sented by Shen et al. (2019), who obtain 70.51 accuracy. They present a BiLSTM with a CRF layer
and attention mechanisms defined at the word and topic level.

There are less efforts experimenting with the other corpora annotating focus of negation. Most
use an SVM trained with lexical, syntactic, and semantic features (Blanco and Moldovan 2012;
Blanco and Sarabi 2016; Sarabi and Blanco 2016; Sarabi and Blanco 2017). Matsuyoshi et al. (2014)
present 16 heuristic rules to detect the focus in Japanese. Finally, van Son et al. (2018) present a
replication study of the corpus by Blanco and Moldovan (2012). They present results modeling
the scoring class as regression and classification tasks and suggest that three labels (true, false, and
uncertain) may be a better choice than a score ranging from 0 to 5.

This material is based upon work supported partly by the National Science Foundation under Grant No. 1845757. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not nec-
essarily reflect the views of the National Science Foundation. Roser Morante was supported by the Netherlands Organization
for Scientific Research (NWO) via the Spinoza prize awarded to Piek Vossen (SPI 30-673, 2014-2019).
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