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Abstract
This paper is focused on the existence and uniqueness of nonconstant steady states in a reaction–diffusion–ODE
system, which models the predator–prey interaction with Holling-II functional response. Firstly, we aim to study
the occurrence of regular stationary solutions through the application of bifurcation theory. Subsequently, by a gen-
eralized mountain pass lemma, we successfully demonstrate the existence of steady states with jump discontinuity.
Furthermore, the structure of stationary solutions within a one-dimensional domain is investigated and a variety of
steady-state solutions are built, which may exhibit monotonicity or symmetry. In the end, we create heterogeneous
equilibrium states close to a constant equilibrium state using bifurcation theory and examine their stability.

1. Introduction

In the seminal paper [26], Turing proposed the concept of diffusion-driven instability (DDI), which may
explain the spontaneous formation of the pattern in developmental biology. Here, DDI is the spatial
homogeneous instability caused by the interaction of two chemical substances with different diffusion
rates. Since then, the Turing notion has become a paradigm for the pattern generation and inspired the
emergence of various theoretical models, but its biological verification has remained elusive [1, 10].

However, not all patterns are formed as a result of DDI. Some models incorporate a combination of
a reaction-diffusion equation and an ordinary differential equation. A common example of migration
involves macroalgae and herbivores, particularly since macroalgae are stationary and exist solely within
the environment inhabited by herbivore species. Furthermore, the pattern occurs not just in classical
reaction–diffusion systems in which all species diffuse [11, 12, 14, 24] but also in degenerate systems
in which certain species do not diffuse. The latter systems were modelled by reaction–diffusion–ODE
systems, see [2, 17, 25]. A model consisting of free receptors, bound receptors and ligands was proposed
by Sherrat et al. [25], which described the coupling of cell-localized processes with cell to cell commu-
nication via diffusion in a cell assembly. Free and bound receptors are located on the surface of the cell
and therefore do not diffuse. Ligand diffuses and acts by binding itself to receptors, thereby triggering an
intracellular response that leads to cell differentiation. Their model has a built-in spatial heterogeneity
that triggers patterning. Marciniak–Czochra [19, 20] later extended their model and demonstrated that
nonlinear interactions of hysteresis type can result in the spontaneous emergence of the pattern, without
the need for spatial heterogeneity. For a detailed mathematical analysis of their work, please refer to [15,
16, 18, 21].
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In order to analyse the contribution of non-diffusive components in the pattern development
procedure, we concentrate on the following system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut = r
(

1 − u

K

)
u − cuv

m + bu
, t> 0, x ∈�,

vt = d2�v − av + βcuv

m + bu
, t> 0, x ∈�,

∂τv = 0, t> 0, x ∈ ∂�,
u(x, 0) = u0(x) ≥ 0, �≡ 0 v(x, 0) = v0(x) ≥ 0, �≡ 0 x ∈�,

(1.1)

where u and v represent the population density of the prey and predator, respectively; d2 represents
the predator diffusion rates; � is a bounded domain in the Euclidean space RN with smooth boundary,
denoted as ∂�;� is the Laplace operator in RN ; τ is the unit outer normal vector on ∂�. The parameters
r, m, c, b, a, β, K are positive constants.

The case is interesting because a scalar reaction–diffusion equation typically cannot produce sta-
ble spatially heterogeneous patterns [5]. While it is true that problem (1.1) does not exhibit stable
Turing-type patterns, it is worth noting that DDI (Diffusion-Driven Instability) can still occur by select-
ing suitable parameters. Interestingly, under certain conditions, the stationary problem associated with
equation (1.1) can be simplified into a boundary value problem for a single reaction–diffusion equation
featuring a discontinuous nonlinearity, which leads to the emergence of positive solutions with jump
discontinuity. There is a lot of work on such issues, such as [6, 27, 32]. Hence, the focus of this paper is
studying the stationary problem associated with equation (1.1).⎧⎪⎪⎪⎨⎪⎪⎪⎩

r
(

1 − u

K

)
u − cuv

m + bu
= 0, x ∈�,

d2�v − av + βcuv

m + bu
= 0, x ∈�,

∂τv = 0, x ∈ ∂�.

(1.2)

For convenience, we let

f1(u, v) = r
(

1 − u

K

)
u − cuv

m + bu
, f2(u, v) = −av + βcuv

m + bu
.

The main findings of our current work can be summarized as follows. To begin, we carefully select
suitable coefficients a, c, m, b and β in order to ensure that the kinetic system (without considering
diffusion) of problem (1.1) possesses only one positive equilibrium (u∗

2, v∗
2) located on the right branch,

as depicted in Figure 1(b). Then, by a variational approach to bifurcation methods, we show the existence
of regular stationary solutions of problem (1.2). Next, by transforming the problem into a boundary
value problem for a single equation involving v(x), we establish the existence of a discontinuous solution
(u(x), v(x)) for problem (1.2) using the generalized mountain pass lemma (Theorem 4.1). This solution is
characterized by a jump discontinuity in u(x) and�v(x). The innovation of our current research is from
the presence of a discontinuous nonlinearity in the reduced problem for v(x), which results in invalidating
the general mountain pass lemma introduced by Ambrosetti and Rabinowitz [3]. Fortunately, Chang [7]
expanded the existing theory to handle problems involving partial differential equations that contain
discontinuous nonlinearities. It appears that this approach is suitable for our specific issue, allowing us
to solve challenges we faced.

We analyse problem (1.2) within the one-dimensional domain [0, 1] to know the structure of pattern
formation. Under certain conditions on the coefficients, the equation f1(u, v) = 0, where u ≥ 0, has three
distinct branches. These branches can be represented as u = h0(v) :≡ 0, u = h1(v), and u = h2(v), with the
feature that h0(v)< h1(v)< h2(v) (see Figure 1). To begin, we select a non-negative constant γ ∈ (0, v∗

2)
and utilize the functions u = h0(v) and u = h2(v) in the following manner: u = h0(v) for v< γ and u =
h2(v) for v> γ . Subsequently, the equation (1.2) is transformed into a boundary value problem for v(x),
which has discontinuous nonlinearity.

Next, by considering all values of the diffusion coefficient d2, we are able to construct monotone
solutions for this particular equation, and they are then used to construct symmetric solutions through
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Figure 1. Nullclines for f1(u, v) = f2(u, v) = 0. The blue curve represents the solution of f1(u, v) = 0,
while the red curve represents the solution of f2(u, v) = 0. In (a), we select a = 0.4, b = 1, m = 0.3,
K = 0.8, c = 1, β = 1.4, r = 0.3. In (b), we select a = 0.4, b = 1, m = 0.3, K = 0.8, c = 1, β = 0.6,
r = 0.3.

the process of reflecting the monotone solutions, as described in Theorem 5.1. In order to demonstrate
Theorem 5.1, we employ the shooting way, which was used in the research of Takagi and Zhang [28].
Furthermore, by selecting a smaller interval for β within the range of (0, v∗

2), we can establish the unique-
ness of solutions for any given d2. This is accomplished by employing another form of shooting method
[22], as demonstrated in Theorems 5.2 and 5.3. Moreover, the mode of (u(x), v(x)) refers to the num-
ber of points at which v′′(x) is discontinuous. Specifically, an n-mode solution vn(x) (n ≥ 2) implies that
there are exactly n points of discontinuity in v′′

n(x). Notably, a one-mode solution v1(x) shows that v1(x)
is either monotone increasing or monotone decreasing on [0, 1].

Finally, with the aid of bifurcation theory [8], we create nonconstant continuous stable states close
to (u∗

3, v∗
3) within the one-dimensional space domain of [0,1] and investigate their instability.

The paper is divided into five sections: In Section 2, we present preliminary results on nonlinear
functions f1 and f2 that will be utilized in the subsequent sections of this paper. In Section 3, we construct
regular stationary solutions of problem (1.2) utilizing the bifurcation theory. In Section 4, we prove the
existence of discontinuous stationary solutions of problem (1.2). In Section 5, we not only construct
steady states with jump discontinuities but also explore various types of these states, and these steady
states can exhibit monotonic or symmetric behaviour. Additionally, we verify the uniqueness of these
steady states under certain additional conditions. In Section 6, the investigation focuses on the stability
of stationary solutions.

2. Preliminaries

We shall discuss certain properties of the functions f1 and f2 that will be applied in this paper.

Proposition 2.1. If Kb>m and u ≥ 0 hold, then f1(u, v) = 0 has three distinct branches: u = h0(v) = 0
for v ∈ (− ∞, +∞), u = h1(v) for v ∈ (rm/c, vM) and u = h2(v) for v ∈ (− ∞, vM), where

uM = Kb − m

2b
, vM =

r
(

1 − uM

K

)
(m + buM)

c
> 0.

Proof. If f1(u, v) = 0, then

u = 0 or r
(

1 − u

K

)
− cv

m + bu
= 0.

It is easy to obtain that v = r
(

1 − u

K

)
(m + bu)/c has a maximum point (uM, vM), where
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uM = Kb − m

2b
, vM =

r
(

1 − uM

K

)
(m + buM)

c
. (2.1)

When Kb>m, then uM > 0, which shows that

v = p(u) = r
(

1 − u

K

)
(m + bu)/c (2.2)

is monotone increasing in (− ∞, uM), while monotone decreasing in (uM, +∞). As a result, for v ∈
(p(0), vM) = (rm/c, vM), u = h1(v) is monotone increasing with respect to v, and for v ∈ (− ∞, vM),
u = h2(v) is monotone decreasing with respect to v. Direct calculations provide uM <K. Based on the
expression of vM in (2.1), we easily deduce that vM > 0.

Proposition 2.2. Assume that Kb>m and βc> ab hold. Then,
(i) (u∗

2, v∗
2) is a positive solution of f1(u, v) = f2(u, v) = 0 for uM < am/(βc − ab)<K and it is on the

branch u = h2(v), where u∗
2 = am/(βc − ab) and v∗

2 = r

(
1 − u∗

2

K

)
(m + bu∗

2)/c;

(ii) (u∗
3, v∗

3) is a positive solution of f1(u, v) = f2(u, v) = 0 for 0< am/(βc − ab)< uM and it is on the

branch u = h1(v), where u∗
3 = am/(βc − ab) and v∗

3 = r

(
1 − u∗

3

K

)
(m + bu∗

3)/c.

Proof. We omit the details because the proof is elementary.

Proposition 2.3. Assume that the Proposition 2.2 (i) holds, we have the following results.
(i) f2(h0(v), v)< 0 for v ∈ (0, +∞) and f2(h2(v), v)> 0 for v ∈ (0, v∗

2).
(ii) d

dv
f2(h0(v), v)< 0 for v ∈ (− ∞, +∞) and there is a constant d̃ ∈ (0, v∗

2) that ensures
d
dv

f2(h2(v), v)< 0 for (̃d, v∗
2].

Proof. (i) Obviously,

f2(h0(v), v) = −av< 0 for v ∈ (0, +∞).

Then, we find that u = h2(v)> u∗
2 for v ∈ (− ∞, v∗

2) and βcu/(m + bu) is monotone increasing with
respect to u. So

βch2(v)

m + bh2(v)
− a>

βcu∗
2

m + bu∗
2

− a = 0.

This shows that f2(h2(v), v)> 0 for v ∈ (0, v∗
2).

(ii) By direct calculations, we get
d

dv
f2(h0(v), v) = −a< 0 for v ∈ (− ∞, +∞),

d

dv
f2(h2(v), v) =

(
βch2(v)

m + bh2(v)
− a

)
+ v

βcmh
′
R(v)

(m + bh2(v))2
.

Recall that h
′
2(v)< 0 for v ∈ (− ∞, vM) from the Proposition 2.1 proof. Combining this with −a +

βch2(v∗
2)/(m + bh2(v∗

2)) = 0, then we get d
dv

f2(h2(v), v)|v=v∗
2
< 0. By continuity, there exists a constant

d̃ ∈ (0, v∗
2) such that d

dv
f2(h2(v), v)< 0 for (̃d, v∗

2].

3. Existence of regular stationary solutions

In this section, we mainly show the existence of regular stationary solutions of problem (1.2). Firstly,
we review the results of [4] and express them in a form that [4] is already suitable to deal with a system
consisting of PDEs and ODEs. Thus, we deal with a solution (u, v) = (u(x), v(x)) to the boundary value
problem
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{
f (u, v) = 0, x ∈�,

d2�τv + g(u, v) = 0, x ∈�,
(3.1)

with arbitrary C2−functions f and g, with constant d2 > 0, and in an open bounded domain�⊆ RN with
a C2−boundary. �τ represents the Laplacian operator and Neumann boundary conditions.

Definition 1. ([4]) A solution (u, v) = (u(x), v(x)) of problem (3.1) is called weak if
(i) u is measurable,
(ii) v ∈ W1,2(�),
(iii) g(u, v) ∈ (W1,2(�))∗ (the dual of the space W1,2(�)),
(iv) the equation f (u(x), v(x)) = 0 is satisfied for almost all x ∈�,
(v) the equality

−d2

∫
�

∇v(x) · ∇ζ (x)dx +
∫
�

g(u(x), v(x))ζ (x)dx = 0

holds for all test functions ζ ∈ W1,2(�).

Definition 2. ([4]) The weak solution of problem (3.1) in the sense of Definition 1 is called a regular
solution, if there is a C2-function θ : R → R such that u(x) = θ (v(x)) for all x ∈�.

Remark 1. It is easy to find that every regular solution of problem (3.1) satisfies

f (u(x), v(x)) = f (θ (v(x)), v(x)) = 0 for all x ∈�,

where v = v(x) is a solution of the elliptic Neumann problem

d2�τv + P(v) = 0 for x ∈� (3.2)

with P(v) = g(θ (v), v).

Proposition 3.1. Assume that N ≤ 6. Let y ∈ C2
b(R) satisfy y(0) = y′(0) = 0. There is a sequence of num-

bers ds → d2 and a sequence of non-constant functions vs ∈ W1,2(�) such that ||vs||W1,2 → 0 and which
satisfies the boundary value problem

ds�τvs + (λk + d2 − ds)vs + y(vs) = 0 for x ∈�. (3.3)

Proof. We prove this lemma using the Rabinowitz bifurcation theorem of the variational equation [23].
Then, assume that

(i) M is a real Hilbert space,
(ii) X ∈ C2(M, R) with X′(u) = Lu + Z(u),
(iii) L is linear and Z(u) = o(||u||) at u = 0,
(iv) λ is an isolated eigenvalue of L of a finite multiplicity. If these assumptions hold, by [23], we

know that (λ, 0) ∈ R × M is a bifurcation point of

A(μ, v) ≡ Lv + Z(v) −μv = 0. (3.4)

Thus, for ||v|| �= 0, the solution (μ, v) of the equation (3.4) is present in each neighbourhood of (λ, 0).
And we apply the usual Sobolev space M = W1,2(�) with the equivalent scalar product

〈u, v〉W1,2(�) =
∫
�

∇u · ∇vdx +
∫
�

uvdx

and the functional

X(v) = λk + d2

2

∫
�

v2dx +
∫
�

S(v)dx

with S(v) = ∫ v

0
y(s)ds. It is easy to find that X ∈ C(W1,2(�), R) and X(v) is differentiable in the Fréchet

sense for each v ∈ W1,2(�). By simple calculation, we have

DX(v)ζ = (λk + d2)
∫
�

vζdx +
∫
�

y(v)ζdx
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with DX ∈ C(W1,2(�), Lin(W1,2(�), R)). The second Fréchet derivative at the point v ∈ W1,2(�) is
represented by the bilinear form〈

D2X(v)ζ , κ
〉 = (λk + d2)

∫
�

ζκdx +
∫
�

y′(v)ζκdx.

Next, we prove that D2X(v) ∈ C
(
W1,2(�), Lin(W1,2(�), Lin(W1,2(�), R))

)
. For vn → v in W1,2(�) and

ζ , κ ∈ W1,2(�), we estimate

| 〈(D2X(vn) − D2X(v))ζ , κ
〉 | ≤ ∫

�

|y′(vn) − y′(v)||ζ ||κ|dx

≤ ||y′′||∞
∫
�

|vn − v||ζ ||κ|dx

≤ ||y′′||∞||vn − v||3||ζ ||3||κ||3

≤ ||y′′||∞||vn − v||W1,2 ||ζ ||W1,2 ||κ||W1,2 .

The last inequality comes from the Sobolev embedding assuming N ≤ 6.
Particularly, we have for each test function ζ ∈ W1,2(�)

X′(v)(ζ ) = (λk + d2)
∫
�

vζdx +
∫
�

y(v)ζdx ≡ Lv(ζ ) + H(v)(ζ ).

Therefore, we can find that H(v) = o(||v||W1,2 ) as ||v||W1,2 → 0 by assuming y = y(v). It is easy to find that
μ= 1 is an isolated eigenvalue of the operator L with finite multiplicity. So, we obtain

Lv(ζ ) = 〈v, ζ 〉W1,2(�) for all ζ ∈ W1,2(�),

that is

(λk + d2)
∫
�

vζdx =
∫
�

∇v · ∇ζdx +
∫
�

vζdx for all ζ ∈ W1,2(�).

Obviously, we can reduce to the eigenvalue problem for �τ . Now, the property that λk is an isolated
eigenvalue with finite multiplicity is applied. So, by the Rabinowitz Theorem [23], we can find that
(1, 0) is a bifurcation point of (3.4) which means that there is a sequence of numbers ds → d2 and nonzero
{vs} ⊂ W1,2(�) such that ||vs||W1,2 → 0, satisfying

Lvs(ζ ) + Z(vs)(ζ ) − ds 〈vs, ζ 〉1,2 = 0 for all ζ ∈ W1,2(�),

which is equivalent to the equation satisfied by the weak solutions vs ∈ W1,2(�) to problem (3.3)

−ds

∫
�

∇vs · ∇ζdx + (λk + d2 − ds)
∫
�

vsζdx +
∫
�

y(vs)ζdx = 0

for all ζ ∈ W1,2(�).

Proposition 3.2. Assume that N ≤ 6. Suppose that (u, v) ∈ R2 is a constant solution of problem (1.2)
such that f (u, v) = 0 and g(u, v) = 0. We use the following notation

a0 = fu(u, v), b0 = fv(u, v), c0 = gu(u, v), d0 = gv(u, v) (3.5)

and assume that

a0 �= 0 and
1

a0

det

(
a0 b0

c0 d0

)
= d2λk > 0, (3.6)

for some λk eigenvalues of −�τ . Then, there is a sequence of real numbers ds → d2 such that the
following perturbed problem
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{
f (u, v) = 0, x ∈�,
ds�τv + (d2 − ds)(v − v) + g(u, v) = 0, x ∈�,

(3.7)

has a non-constant regular solution.

Proof. We construct non-constant solutions to the reaction–diffusion–ODE system by Proposition 3.1.
In the following, we define an open ball with a radius of ρ > 0 that is centred at v as Bρ(v). First, we show
that only a finite number of vs can be constant in Proposition 3.1. If there is a constant subsequence

{
vln

}
that satisfies the equation (3.3) such that vln → 0, then we know that y′(0) = −λk, which is obviously a
contradiction.

Next, since detfu(u, v) �= 0, for all V ∈ (Bρ(v)), we obtain that there is a ρ > 0 and a function
θ ∈ C2(Bρ(v)) such that θ (v) = u and f (θ (V), V) = 0. Then, for all V ∈ (Bρ(v)), we prove that P(V) ≡
g(θ (V), V) satisfies P(v) = 0 and P′(v) = d2λk > 0. It is easy to find that P(v) = g(θ (v), v) = g(u, v) = 0.
In addition, differentiating the function P(V) = g(θ (V), V) gets

P′(V) = gu(θ (V), V)θ ′(V) + gv(θ (V), V). (3.8)
On the other hand, we differentiate the equation f (θ (V), V) = 0 to obtain fu(θ (V), V)θ ′(V) +
fv(θ (V), V) = 0, or, equivalently,

θ ′(V) = −f −1
u (θ (V), V)fv(θ (V), V). (3.9)

In the end, choosing V = v, substituting equation (3.9) into equation (3.8) and by (3.5) we have
P′(v) = −gu(θ (v), v)f −1

u (θ (v), v)fv(θ (v), v) + gu(θ (v), v) = −c0a−1
0 b0 + d0.

Notice that

−c0a−1
0 b0 + d0 = det

(
1 0
0 −c0a−1

0 b0 + d0

)
= 1

a0

det
(

a0 0
c0 −c0a−1

0 b0 + d0

)

= 1

a0

det
((

a0 b0

c0 d0

)(
1 −a−1

0 b0

0 1

))
= 1

a0

det
(

a0 b0

c0 d0

)
.

(3.10)

So, P′(v) = d2λk > 0.
Next, P represents an arbitrary extension of the function P to the whole line R that satisfies

P ∈ C2
b(R) and P(V) = P(V) for all V ∈ (Bρ(v)). (3.11)

By Proposition 3.1, we have a sequence ds → d2 such that
ds�τvs + (d2 − ds)(vs − v) + P(vs) = 0 for x ∈� (3.12)

has a non-constant solution vs ∈ W1,2(�). Indeed, It is sufficient to search for these solutions in the form
vs = v + ms, where ms satisfies

ds�τms + (P
′
(v) + d2 − ds)ms + y(ms) = 0 in � (3.13)

with h
′
(v) = d2λk and y(ms) = h(v + ms) − h

′
(v)ms satisfies y ∈ C2

b(R), y(0) = 0, and y′(0) = 0.
Next, we can find the solutions ms of problem (3.13) by Proposition 3.1. Therefore, according to

the standard elliptic theory, we have ||ms||W2,2(�) → 0. By the bootstrap arguments using the elliptic
Lp estimates and the Sobolev embedding theorem, we know that ||ms||W2,q(�) → 0 for q> N

2
and hence

||ms||L∞(�) → 0. Particularly, by (3.11), if ||ms||∞ ≤ ρ, we get h(vs) = h(v + ms) = h(v + ms) = h(vs). So,
the nontrivial solution of problem (3.12) is vs = v + ms, where h is changed to ρ. In the end, we define
us = θ (vs) to get a nontrivial regular solution of problem (3.7).

Now we apply the previous results to the specific reaction–diffusion–ODE model (1.2). So, (1.2) may
be rewritten as ⎧⎪⎨⎪⎩

r
(

1 − u

K

)
u − cuv

m + bu
= 0, x ∈�,

d2�τv − av + βcuv

m + bu
= 0, x ∈�.

(3.14)

https://doi.org/10.1017/S0956792525000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000063


8 G. Guo et al.

By simple calculation, it is easy to see that problem (3.14) has trivial equilibrium (u1, v1) = (0, 0), semi-
trivial equilibrium (u2, v2) = (K, 0), and if 0<

am

βc − ab
, then (u3, v3) = (u∗, v∗), where

u∗ = am

βc − ab
, v∗ = βmr[K(βc − ab) − am]

K(βc − ab)2
= βru∗(K − u∗)

aK
.

We always assume that a<
βcK

m + bK
and u∗ <K.

Theorem 3.3. Assume that 2u3 >K. For a, b, c, r, m, β, K are all positive constants and for a discrete
sequence of the diffusion coefficients d2 > 0 problem (3.14) has a regular stationary solution.

Proof. We consider a solution (u3, v3) of problem (3.14) and use Proposition 3.2 with the constant

stationary solution (u, v) = (u3, v3). Since 2u3 >K, 1 − 2u3

K
< 0, that is, a0 < 0. By simple calculation,

we can find that

det
(

a0 b0

c0 d0

)
=

∣∣∣∣∣∣∣∣
r − 2ru3

K
− cmv3

(m + bu3)2
− cu3

m + bu3

βcmv3

(m + bu3)2
0

∣∣∣∣∣∣∣∣ = βcmv3

(m + bu3)2
· cu3

m + bu3

> 0.

As a result, for some eigenvalue λk > 0, we may select d2 > 0 to satisfy equation (3.6).

4. Existence of steady states with jump discontinuous

In this section, we prove the existence of non-constant solutions of problem (1.2) by applying a gener-
alized mountain pass lemma due to Chang [7, 31]. According to the first equation of (1.2), we obtain
u = h0(v), u = h1(v) and u = h2(v). Applying the functions u = h0(v) and u = h2(v), we get the following
single boundary value problem for v alone{

d2�v + f γ2 (v) = 0, x ∈�,
∂τv = 0, x ∈ ∂�,

(4.1)

where

f γ2 (v) =
⎧⎨⎩ f2(h0(v), v) = −av, v< γ ,

f2(h2(v), v) = −av + βch2(v)v

m + bh2(v)
, γ < v ≤ vM,

(4.2)

and γ ∈ (ξ , v∗
2). Note that ξ = p(0), where p(0) has been defined in (2.2).

Theorem 4.1. Assume that the hypotheses of Proposition 2.2 (i) hold, then problem 4.1 has at least one
classical nontrivial solution v(x) so that 0 ≤ v(x) ≤ v∗

2. Particularly, v(x) must cross γ .

Remark 2. By classical nontrivial solution, we mean a solution v(x) of (4.1) such that v(x) �≡ 0, v(x) �≡
v∗

2, v(x) ∈ C1(�̄) and �v(x) on the �̄ has jump discontinuity.

To prove Theorem 4.1, we first generalize f γ2 (v) to f̃ γ2 (v), as follows

f̃ γ2 (v) =
⎧⎨⎩

f γ2 (v) for v ≤ vM,

−a(v − vM) + vM

(
−a + βch2(vM)

m + bh2(vM)

)
for v> vM,

(4.3)

and consider {
d2�v + f̃ γ2 (v) = 0, x ∈�,
∂τv = 0, x ∈ ∂�.

(4.4)
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Since f̃ γ2 (v) discontinues at v = γ , we search for the solution of (4.4) in W1,2(�). The energy functional
Jd2 (v) connected to (4.4) is described as follows

Jd2 (v) = d2

2

∫
�

|∇v|2dx −
∫
�

Gγ (v)dx, (4.5)

where Gγ (v) = ∫ v

0
f̃ γ2 (s)ds. Moreover, we endow W1,2(�) with the norm

||v|| =
(∫

�

|∇v|2dx +
∫
�

v2dx

) 1
2

.

Note that v = 0 and v = v∗
2 are two constant solutions of (4.4). As a result, the proof will be divided into

two cases: Case 1 Jd2 (0) ≤ Jd2 (v∗
2) and Case 2 Jd2 (0)> Jd2 (v∗

2).
Firstly, we consider Case 1. Let s = v − v∗

2 and Qd2 (s) = Jd2 (s + v∗
2) − Jd2 (v∗

2). Then

Qd2 (s) = d2

2

∫
�

|∇s|2dx −
∫
�

(Gγ (s + v∗
2) − Gγ (v∗

2))dx (4.6)

Here, we rephrase the definitions of the generalized gradient, Palais-Smale condition (henceforth
denoted by (PS)), and the generalized mountain pass lemma in the context of our problem.

Definition 3. If Q : W1,2(�) → R is a locally Lipschitz continuous function, then for each φ ∈ W1,2(�),
we can define the generalized directional derivative Qo(s; φ) in the direction φ by

Qo(s; φ) = lim
u→0,r↓0

Q(s + u + rφ) − Q(s + u)

r
,

and the generalized gradient of Q(s) at s, denoted by ∂Q(s), is defined to be the subdifferential of the
function Qo(s;φ) at 0. That is,ψ ∈ ∂Q(s) ⊂ (W1,2(�))∗ if and only if 〈ψ , φ〉 ≤ Qo(s;φ) for all φ ∈ W1,2(�),
where (W1,2(�))∗ is the dual space of W1,2(�).

Definition 4. We say that a locally Lipschitz continuous function Q satisfies the Palais–Smale condition
(P.S.) if any sequence {sn} ⊂ W1,2(�) for which {Q(sn)} is bounded and λ(sn) = min

ψ∈∂Q(sn)
||ψ ||(W1,2(�))∗ → 0

possesses a convergent subsequence.

Theorem 4.2. ([7]) Let Q(s) be a locally Lipschitz continuous function on W1,2(�) which satisfies (P.S.)
and assume that

(i) Q(0) = 0 and there exist positive constants ρ, α such that Q> 0 in Bρ\{0} and Q>α on ∂Bρ;
(ii) there is an e ∈ W1,2(�), e �= 0 such that Q(e) ≤ 0.
Then Q(s) has a critical point. Here, Bρ = {

s ∈ W1,2(�)| ||s||W1,2(�) ≤ ρ
}
.

Next, we prove that Qd2 (s) satisfies all the assumptions of Theorem 4.2.

Remark 3. If 0 ∈ ∂Qd2 (s), then the critical point of Qd2 is s ∈ W1,2(�), as stated in [7]. Once we obtain
a critical point s of Qd2 (s), then v = s + v∗

2 is a critical point of Jd2 (v).

Proposition 4.3. Assume that hypotheses of Proposition 2.2 (i) hold. Then Qd2 (s) is a locally Lipschitz
continuous function on W1,2(�).

Proof. According to the definition of f̃ γ2 (v) in (4.3), we rewrite equation (4.6) as

Qd2 (s) = R∗ −
∫
�

∫ s

0

(hγ (w + v∗
2) − hγ (v∗

2))dwdx, (4.7)

where R∗ = d2

2

∫
�

|∇s|2dx + a

2

∫
�

s2dx. Clearly, R∗ is C1 on W1,2(�) and hence locally Lipschitz contin-
uous. On the other hand, we know that hγ (v) = 0 if v< γ , hγ (v) = βch2(v)v/(m + bh2(v)) if γ < v ≤ vM

and hγ (v) = βch2(vM)vM/(m + bh2(vM)) if v> vM. Thus, we find that there exist a constant a1 such
that |hγ (v) − hγ (v∗

2)|< a1 for all v ∈ R, which means that |hγ (s + v∗
2) − hγ (v∗

2)|< a1 for all s ∈ R. Let
H(s) = ∫ s

0
(hγ (w + v∗

2) − hγ (v∗
2))dw and B(s) = ∫

�
H(s)dx. Then
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|H(s1) − H(s2)| ≤ |
∫ s1

s2

∣∣hγ (w + v∗
2) − hγ (v∗

2)|dw
∣∣< a1|s1 − s2|;

so that

|B(s1) − B(s2)|< a1

∫
�

|s1 − s2|dx ≤ a1mes(�)1/2||s1 − s2||L2(�)

≤ a1mes(�)1/2||s1 − s2||W1,2(�). (4.8)

Therefore, B(s) is a locally Lipschitz continuous function on L2(�) and W1,2(�). From this, it can be
concluded that Qd2 (s) is locally Lipschitz continuous on W1,2(�).

Proposition 4.4. Assume Proposition 2.2 (i) holds. Let {sn} ⊂ W1,2(�) be a sequence such that{
Qd2 (sn)

}
is bounded and λ(sn) = min

ψ∈∂Qd2 (sn)
||ψ ||(W1,2(�))∗ → 0 as n → ∞. Then {sn} possesses a convergent

subsequence.

Proof. By Proposition 4.3, we know

Qd2 (sn) = d2

2

∫
�

|∇sn|2dx + a

2

∫
�

s2
ndx −

∫
�

H(sn)dx

≥ 1

2
min {d2, a} ||sn||2

W1,2(�) − a1mes(�)1/2||sn||W1,2(�).

Thus, {sn} is bounded in W1,2(�) and there is a weakly convergent subsequence
{
sni

}
with limit

s0 in W1,2(�). Since W1,2(�) → L2(�) is compact,
{
sni

}
is strongly convergent in L2(�). Recalling

Proposition 4.3, both B(s) and Qd2 (s) are locally Lipschitz continuous. So, according to Definition 3,
the generalized gradients of B(s) and Qd2 (s) with respect to s do exist and they are denoted by ∂B(s) and
∂Qd2 (s), respectively. Note that

∂Qd2 (sn) ⊂ {Lsn} − ∂B(sn), (4.9)

where L is an elliptic differential operator such that Ls = −d2�s + as. We have applied Propositions (4)
and (3) of [7] to prove (4.9). Since λ(sn) → 0 as n → ∞, there is a sequence ρni ∈ ∂B(sn) such that

Lsni − ρni → 0 in (W1,2(�))∗.

Because of ρni ∈ ∂B(sn),
{
ρni

}
is bounded in L2(�). This can be demonstrated by noting that B(sni ) is

locally Lipschitz continuous on L2(�) according to (4.8). Therefore, there is a subsequence
{
n′

i

}
of {ni},

which satisfies that
{
ρn′

i

}
is weakly convergent to ρ0 in L2(�). Therefore, it is strongly convergent in

(W1,2(�))∗. So,

Lsn′
i
→ ρ0 in (W1,2(�))∗,

which shows that sn′
i
→ (L)−1ρ0 in W1,2(�).

Proposition 4.5. Assume that Proposition 2.2 (i) holds. We get
(i) Qd2 (0) = 0 and there are constants ρ > 0, α > 0, which satisfy that Qd2 ≥ α if ||s||W1,2(�) = ρ;
(ii) there is an e ∈ W1,2(�), ||e||W1,2(�) >ρ, which satisfies that Qd2 (e) ≤ 0.

Proof. (i) By (4.7), we know Qd2 (0) = 0. Moreover, we can rewrite (4.7) as follows

Qd2 (s) = d2

2

∫
�

|∇s|2dx + 1

2

∫
�

(a − (hγ )v(v
∗
2))s2dx

−
∫

�

∫ s

0

(hγ (w + v∗
2) − hγ (v∗

2) − (hγ )v(v
∗
2)w)dwdx (4.10)

From the definitions of f2(h2(v), v) in (4.2) and hγ (v) after (4.7), we know f2(h2(v), v) = −av + hγ (v),
which implies ∂vf2(h2(v), v) = −a + (hγ )v(v). By the proof of Proposition 2.3 (ii), we see ∂vf2(h2(v∗

2), v∗
2)<

0, so there is a constant a2 > 0 such that a − (hγ )v(v∗
2)> a2 for all x ∈�.
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Let�(s) = hγ (s + v∗
2) − hγ (v∗

2) − (hγ )v(v∗
2)s and�(s) = ∫ s

0
�(w)dw. It is easy to see that�(s) = o(|s|)

at s = 0 uniformly in x ∈�. Thus, for any ι > 0, there exists a δ > 0 such that |�(s)| ≤ ιs2 if |s| ≤ δ. In
addition, in the proof of Proposition 4.3, we can recall the following that |hγ (w + v∗

2) − hγ (v∗
2)|< a1,

which leads to the conclusion that for every ε ∈ (1, (N + 2)/(N − 2)), there exists a constant a3 > 0 such
that |hγ (w + v∗

2) − hγ (v∗
2)|< a1 + a3|w|ε for all w ∈ R. This means that there exists a constant a4 > 0

such that |H(s)| = | ∫ s

0
(hγ (w + v∗

2) − hγ (v∗
2))dw| ≤ a4|s|ε+1 for |s|> δ. Thanks to the Sobolev embedding

theorem, we get

Qd2 (s) = d2

2

∫
|s|>δ

|∇s|2dx + a

2

∫
|s|>δ

s2dx −
∫

|s|>δ
H(s)dx

+d2

2

∫
|s|≤δ

|∇s|2dx + 1

2

∫
|s|≤δ

(a − (hγ )v(v
∗
2))s2dx −

∫
|s|≤δ

�(s)dx

≥ d2

2

∫
|s|>δ

|∇s|2dx + a

2

∫
|s|>δ

s2dx − c5||s||ε+1
W1,2(�)

+d2

2

∫
|s|≤δ

|∇s|2dx + (
a2

2
− ι)

∫
|s|≤δ

s2dx

≥ a6||s||2
W1,2(�) − a5||s||ε+1

W1,2(�) = (a6 − a5||s||ε−1
W1,2(�))||s||2

W1,2(�)

with some positive constants a5 and a6. Therefore, let ρ = (a6/2a5)1/(ε−1), we can see that Qd2 (s) = 0 for
||s||W1,2(�) ≤ ρ if and only if s = 0 and that Qd2 (s) ≥ (a6/2)ρ2 = α for ||s||W1,2(�) = ρ.

(ii) By selecting e = −v∗
2, we derive Qd2 (e) = Jd2 (0) − Jd2 (v∗

2) ≤ 0 from Case 1.

Using Theorem 4.2, we find that Qd2 has a critical point s(x). Then v(x) = s(x) + v∗
2 is a critical point

of Qd2 . Now, we examine Case 2. Similarly to Propositions 4.3 and 4.4, we can show that Qd2 (v) is
also locally Lipschitz continuous on W1,2(�) and satisfies (PS). Hence, it is also crucial to establish the
following Proposition.

Proposition 4.6. Assume that Proposition 2.2 (i) holds. We conclude that
(i) Qd2 (0) = 0 and there are constants ρ1 > 0, α1 > 0, which satisfy that Qd2 ≥ α1 if ||v||W1,2(�) = ρ1;
(ii) there is an e1 ∈ W1,2(�), ||e1||W1,2(�) >ρ1, which satisfies that Qd2 (e1) ≤ 0.

Proof. (i) Obviously, we know Qd2 (0) = 0 by (4.7). Similarly to (4.10), (4.5) can be rewritten as follows

Qd2 (v) = d2

2

∫
�

|∇v|2dx + a

2

∫
�

v2dx −
∫
�

∫ v

0

hγ (w)dwdx. (4.11)

Since hγ (v) = 0 if v< γ , we know that there exists a δ1 ∈ (0, γ ) such that
∫ v

0
hγ (w)dw = 0 for |v| ≤ δ1.

Then, by the definition of hγ (v), we obtain |hγ (w)|< a7 with a constant a7 > 0, which implies that for
every ε ∈ (1, (N + 2)/(N − 2)), there exists a constant a8 > 0 such that |hγ (w)|< a7 + a8|w|ε for all w ∈
R. This shows that there is a constant a9 > 0 such that | ∫ v

0
hγ (w)dw| ≤ a9|v|ε+1 for |v|> δ1. Then repeating

the proof of Proposition 4.5, we can show that there exist positive constants ρ1, α1 such that Qd2 ≥ α1 if
||v||W1,2(�) = ρ1. (ii) Let e1 = v∗

2. Then it is easy to know that Qd2 (e1) = Jd2 (v∗
2) − Jd2 (0)< 0 according to

Case 2.

Using Theorem 4.2 again, we can show that Qd2 has a critical point v(x).

Proof of Theorem 4.1. A critical point v(x) of Qd2 has been found. In fact, v(x) is a weak solution of
(4.4). We can obtain that v(x) is a classical solution of (4.4) by the elliptic regularity theorem [29].

Now, we demonstrate that 0 ≤ v(x) ≤ v∗
2. Because the proof for 0 ≤ v(x) and v(x) ≤ v∗

2 are similar,
we only show that v(x) ≤ v∗

2. Let v(x1) = max
x∈�

v(x)> v∗
2. If x1 ∈�, then d2�v|x=x1 ≤ 0, which means
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that f̃ γ2 (v(x1)) ≥ 0. But by the definition of f̃ γ2 (v), we find f̃ γ2 (v(x1))< 0, which is a contradiction. If
x1 ∈�, there is a ball BR(r0) ⊂� centred at r0 ∈� of radius R, which satisfies ∂�∩ BR(r0) = {x1} and
v(x)< v(x1) in BR(r0). Since v(x1)> v∗

2, it follows from continuity that v(x)> v∗
2 in BR(r0), provided r0 is

sufficiently close to x1 and R is small enough. So, f̃ γ2 (v(x))< 0 for x ∈ BR(r0), which shows that d2�v> 0
in BR(r0). In addition, v(x)< v(x1) in BR(r0). By employing the Hopf boundary point Proposition (see,
e.g., Chapters 8 and 9 of [13]), we observe that ∂τv> 0. This is in contradiction with the boundary con-
dition ∂τv = 0. Thus, v(x) ≤ v∗

2 on �. Since f γ2 (v) = f̃ γ2 (v) for all v ≤ vM, any classical solution v(x) of
(4.4) is also a classical solution of (4.1).

Finally, we demonstrate that v(x) crosses γ . Otherwise, we can suppose that γ < v(x) ≤ v∗
2 for all

x ∈�. According to Proposition 2.3 (i), we find that f γ2 (v) = f2(h2(v), v) ≥ 0. So,
∫
�

f2(h2(v), v)dx ≥ 0. In
addition, integrating the first equation of (4.1) over �, we get

∫
�

f γ2 (v) = ∫
�

f2(h2(v), v)dx = 0. This only
holds if v(x) ≡ v∗

2. So we have a contradiction. Similarly, we can demonstrate that 0 ≤ v(x)< γ for all
x ∈� is also invalid.

Remark 4. Suppose v(x) is a solution of (4.1) and define

u(x) =
{

0 v(x)< γ ,
h2(v(x)) v(x)> γ .

Then, (u(x), v(x)) forms a stationary solution of problem (1.2).

5. Monotone and symmetric solutions

In this section, we focus on the construction of monotonic and symmetric solutions of (4.1) in the one-
dimensional space domain [0, 1] through the method in [31]. Therefore, (4.1) can be expressed as{

d2v′′ + f γ2 (v) = 0, x ∈ (0, 1),
v′(0) = v′(1) = 0.

(5.1)

Firstly, to recall that in the introduction, a solution Vn,+(x)(n ≥ 2) for an n-mode means that the number
of points of discontinuity for V ′′

n,+(x) is n.
First of all, we fix γ ∈ (ξ , v∗

2) and follow the method in [28] to construct monotonically increasing
and symmetric solutions to (5.1) for each d2 > 0,where ξ = p(0) has been defined in (2.2).

Theorem 5.1. Assume that Proposition 2.2 (i) and d2 > 0 hold. For every γ ∈ (ξ , v∗
2), problem (5.1) has

a monotonic increasing solution V1,+(x; d2). Furthermore, the equation (5.1) has an n-mode symmetric
solution Vn,+(x; d2) with d2 = n2d2 for each value of n> 2.

Proof. We divide the proof into two steps.
Step 1. We consider the following initial value problems{

d2v′′ − av = 0, x ∈ (0, n0),
v′(0) = 0, v(n0) = γ ,

(5.2)

{
d2v′′ + f2(h2(v), v) = 0, x ∈ (n0, 1),
v(n0) = γ , v′(1) = 0,

(5.3)

where n0 ∈ (0, 1). It is easy to find that W0(x; n0, d2) is a unique monotone increasing solution to problem
(5.2) for every d2 > 0, where

W0(x; n0, d2) = γ

cosh
√

a/d2n0

cosh
√

a/d2x.

Next, we prove that problem (5.3) has a unique monotone increasing solution W1(x; n0, d2) for every d2 >

0. Since f2(h2(v∗
2), v∗

2) = 0, f2(h2(v), v)> 0 for all v ∈ (0, v∗
2) and ∂vf2(h2(v∗

2), v∗
2)< 0 by Proposition 2.3,
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there exist 0< n1 < n2 such that −n1(v − v∗
2)< f2(h2(v), v)<−n2(v − v∗

2) for v< v∗
2. In order to find a

solution of (5.3), we study the following initial value problems for i = 1, 2{
d2v′′ − ni(v − v∗

2) = 0 x ∈ (n0, 1),
v(n0) = γ , v′(1) = 0.

(5.4)

Let Yi(x; n0, d2) be respective solutions of problems (5.4) for i = 1, 2. Then it is easy to find that
Y1(x; n0, d2) is a lower solution of (5.3) and Y2(x; n0, d2) is an upper solution of (5.3). For sim-
plicity, we let Gn0 (x; a) = cosh(a(1 − x))/cosh(a(1 − n0)). Simple calculations yield that for i = 1, 2,
Yi(x; n0, d2) = (γ − v∗

2)Gn0 (x;
√

ni/d2) + v∗
2. We claim that Y1(x; n0, d2)< Y2(x; n0, d2), let Y(x; n0, d2) =

Y1(x; n0, d2) − Y2(x; n0, d2). Then Y(x; n0, d2) satisfies{
d2Y ′′ = n1(Y1 − v∗

2) − n2(Y2 − v∗
2)> n1Y x ∈ (n0, 1),

Y(k; n0, d2) = 0, Y ′(1; n0, d2) = 0.

If Y(xM; n0, d2) = max
x∈[n0,1]

Y(x; n0, d2)> 0 at some xM ∈ (n0, 1), then

0 ≥ d2Y ′′(xM; n0, d2)> n1Y(xM; n0, d2)> 0.

This is a contradiction. So, Y1(x; n0, d2) ≤ Y2(x; n0, d2). We verify that (5.3) has a solution W1(x; n0, d2)
by using the upper and lower solution approach.

Next, we show the uniqueness of a solution for (5.3). By the comparison method, we can guarantee
the existence of a maximal solution WM(x) and a minimal solution Wm(x) such that

Y1(x)<Wm(x)<WM(x)< Y2(x).

Let f̃2(v) = f2(h2(v), v)/v, then f̃2(v) is strictly decreasing in v. Due to WM(x) and Wm(x) satisfying (5.3),
we see

d2W
′′
M + f̃2(WM)WM = 0, x ∈ (n0, 1), (5.5)

and
d2W ′′

m + f̃2(Wm)Wm = 0, x ∈ (n0, 1). (5.6)
Multiply (5.5) by Wm and multiply (5.6) by WM. Then we obtain

0 =
∫ 1

n0

((d2W
′′
M + f̃2(WM)WM)Wm − (d2W ′′

m + f̃2(Wm)Wm)WM)dx

= d2(W ′
M(x)Wm(x) − W ′

m(x)WM(x))
∣∣∣1

n0

+
∫ 1

n0

(̃f2(WM) − f̃2(Wm))WMWmdx

= d2γ (W ′
m(n0) − W ′

M(n0)) +
∫ 1

n0

(̃f2(WM) − f̃2(Wm))WMWmdx. (5.7)

Since WM(x)>Wm(x) in (n0, 1] and f̃2(v) is strictly decreasing in v, then
W ′

m(n0) − W ′
M(n0) ≤ 0, f̃2(WM) − f̃2(Wm) ≤ 0, n0 ≤ x ≤ 1.

Due to WMWm > 0, WM ≡ Wm can be seen from equation (5.7). This shows that we have completed the
proof of the uniqueness of a solution for (5.3). Moreover, combining d2W ′′

1 + f2(h2(W1), W1) = 0 with
f2(h2(W1), W1)> 0 and W ′

1(1; n0, d2) = 0, we get that W1(x; n0, d2) is monotone increasing in x.
Step 2. By simple calculation, we get

W ′
0(n0; n0, d2) = γ

√
a/d2tanh(

√
a/d2n0), W ′

1(n0; n0, d2) = 1

d2

∫ 1

n0

f2(h2(W1), W1)dx. (5.8)

Define ρ0 to be a sufficiently small positive number. If n0 = 1 − ρ0, then we find W ′
0(1 − ρ0; 1 − ρ0, d2)>

W ′
1(1 − ρ0; 1 − ρ0, d2) by (5.8), since f2(h2(v), v) is bounded for all x ∈ [0, v∗

2]. In addition, if n0 = ρ0,
then W ′

0(ρ0; ρ0, d2)<W ′
1(ρ0; ρ0, d2) for sufficiently small ρ0 > 0. Assume �(n0, d2) = W ′

0(n0; n0, d2) −
W ′

1(n0; n0, d2). Thus, we obtain
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�(1 − ρ0, d2)> 0, �(ρ0, d2)< 0. (5.9)

It is easy to see that �(n0, d2) is continuous with respect to n0 for all d2 > 0. The combination of this
and (5.9), there exists a n∗

0 such that �(n∗
0, d2) = 0 and

V1,+(x, d2) =
{

W0(x; n∗
0, d2) for x ∈ [0, n∗

0],
W1(x; n∗

0, d2) for x ∈ [n∗
0, 1],

is a monotone increasing solution of (5.1) for all d2 > 0.
Following, using V1,+(x, d2) and its reflection, we create symmetric solutions to (5.1) starting from

the monotone increasing solution V1,+(x, d2). For all n ≥ 2, define a function Vn,+(x, d2) on 0 ≤ x ≤ 1 by

Vn,+(x, d2) =
{

V1,+(nx − 2j; d2) for x ∈ [2j/n, (2j + 1)/n],
V1,+(2(j + 1) − nx; d2) for x ∈ [(2j + 1)/n, 2(j + 1)/n],

where j = 0, 1, 2, · · · , [n/2] and d2 = n2d2. Then Vn,+(x, d2) is a symmetric solution of (5.1). This
completes the proof.

Next, by using the shooting approach developed in the work of Mimura, Tabata and Hosono [22],
we further fix γ ∈ (d∗, v∗

2) and demonstrate the existence and uniqueness of monotone increasing and
symmetric solutions to problem (5.1). We consider the following two initial value problems{

d2v′′ − av = 0, x> 0,
v′(0) = 0, v(0) = b∗

0,
(5.10)

and {
d2v′′ + f2(h2(v), v) = 0, x> 0,
v′(0) = 0, v(0) = b∗

1,
(5.11)

where d∗ < b∗
0 < γ < b∗

1 < v∗
2.

Let V0(x; b∗
0) and V1(x; b∗

1) be unique solutions of (5.10) and (5.11). We can see that V0(x; b∗
0) is

monotonically increasing and V1(x; b∗
1) is monotonically decreasing (see Proposition 5.4). For j = 0, 1,

let x = lj be the unique solution of Vj(x; b∗
j ) = γ and ψj(lj) satisfies ψj(lj) = ∂Vj

∂x
(lj;b∗

j (lj)). Next we set

l0 = lim sup
b∗

0→d∗
l0(b∗

0), l1 = lim sup
b∗

1→v∗
2

l1(b∗
1),ψ0 = lim

l0→l0

ψ0(l0),ψ 1 = lim
l1→l1

ψ1(l1),

z0(α0) =ψ−1
0 (α0), z1(α1) =ψ−1

1 (α1), z0 = lim
α0→α

z0(α), z1 = lim
α1→−α

z1(α),

(5.12)

where αj =ψj(lj) and α = min
{
ψ 0, −ψ 1

}
. Here, we have utilized the facts that the inverses b∗

j (lj) of lj(b∗
j )

and the inverses ψ−1
j (αj) of αj (j = 0, 1) indeed exist. We will establish these findings in Proposition 5.5.

Then the following two theorems are main results of this section.

Theorem 5.2. Assume that Proposition 2.2 (i) holds. For each γ ∈ (d∗, v∗
2), let 1 ≤ z0 + z1. If d2 > 0,

T1,+(x) is a unique increasing solution of problem (5.1) and for every integer n ≥ 2, Tn,+(x) is a unique
n-mode symmetric solution of problem (5.1).

Theorem 5.3. Assume that Proposition 2.2 (i) holds. For each γ ∈ (d∗, v∗
2), let 1> z0 + z1. If d2 > 0,

B̃n,+(x) is a unique n-mode symmetric solution of problem (5.1) for every integer n ≥ N0, where N0 is the
smallest positive integer greater than 1/(z0 + z1).

We start our discussion with the following propositions.

Proposition 5.4. Assume that Proposition 2.2 (i) holds. For all b∗
0 such that (5.10) has a unique positive

and strictly increasing solution V0(x; b∗
0) defined for x> 0, and (5.11) has a unique positive and strictly

decreasing solution V1(x; b∗
1) for 0 ≤ x< xb∗

1
, where xb∗

1
is the solution of V1(x; b∗

1) = 0.
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Proof. By f2(hL(V0), V0) = f2(0, V0) = −aV0, we know d2V ′′
0 = aV0. By simple calculation

V0(x; b∗
0) = b∗

0cosh
(√

a/d2x
)

and V ′
0(x; b∗

0) = b∗
0

√
a/d2sinh

(√
a/d2x

)
. (5.13)

So, for all x> 0, we can get V0(x; b∗
0) is positive and strictly increasing. By Proposition 2.3 (i), we

have d2V ′′
1 = −f2(h2(V1), V1)< 0. Thus, V1(x; b∗

1) is decreasing with respect to x. Since V ′
1(0; b∗

1) = 0, so
V ′

1(x; b∗
1)< 0 for 0 ≤ x< xb∗

1
. These results show that V1(x; b∗

1)> 0 is strictly monotone decreasing on
[0, xb∗

1
) and V1(xb∗

1
;b∗

1) = 0.

Proposition 5.5. Assume that Proposition 2.2 (i) holds. For γ ∈ (d∗, v∗
2), we have the following

conclusions
(i)

∂l0

∂b∗
0

< 0, lim
b∗

0→γ
l0(b∗

0) = 0 and
∂l1

∂b∗
1

> 0, lim
b∗

1→γ
l1(b∗

1) = 0;

(ii)
∂ψ0(l0)

∂l0

> 0, lim
l0→0

ψ0(l0) = 0 and
∂ψ1(l1)

∂l1

< 0, lim
l1→0

ψ1(l1) = 0,
where for j = 0, 1, lj and ψj(lj) are already defined in the previous section.

Proof. Since the assertions for l0 and ψ0(l0) may be treated similarly, it is sufficient to verify the
statements for l1 and ψ1(l1).

(i) Recall that V1(l1(b∗
1); b∗

1) = γ . We differentiate it with respect to both sides with respect to b∗
1 and

get
∂V1

∂x

dl1

db∗
1

+ ∂V1

∂b∗
1

= 0,

so
dl1

db∗
1

= −∂V1

∂b∗
1

/
∂V1

∂x
.

Moreover, let ξ1(x; b∗
1) = ∂V1

∂x
(x; b∗

1) and η1(x; b∗
1) = ∂V1

∂b∗
1

(x; b∗
1). We get ξ1(x; b∗

1)< 0 for all x ∈ (0, l1) by

the proof of Proposition 5.4. It is easy to find that η1(x; b∗
1) is a solution of{

d2η
′′
1 + d

dv
f2(h2(V1), V1)η1 = 0 for x ∈ [0, 1],

η′
1(0; b∗

1) = 0, η1(0; b∗
1) = 1.

We find that if 0 ≤ x ≤ l1, then V1(x; b∗
1) ∈ [γ , b∗

1] ⊂ (d∗, v∗
2]. By Proposition 2.3 (ii), we have

d

dv
f2(h2(V1), V1)< 0 for V1(x; b∗

1) ∈ [γ , b∗
1] ⊂ (d∗, v∗

2]. So,

η′′
1(0; b∗

1) = − 1

d2

d

dv
f2(h2(b∗

1), b∗
1)η1(0; b∗

1)> 0.

Expanding η1(x; b∗
1) near x = 0, we get

η1(x; b∗
1) = η1(0; b∗

1) + η′
1(0; b∗

1)x + 1

2
η′′

1(0; b∗
1)x2 + · · ·> 0.

Thus, we have d2η
′′
1 = − d

dV1

f2(h2(V1), V1)η1 > 0 for η1(x; b∗
1)> 0. Then, η′

1(x; b∗
1) is strictly increas-

ing with respect to x. Since η′
1(0; b∗

1) = 0, we know η′
1(x; b∗

1)> 0 for x ∈ (0, l1]. Combining this with
η1(0; b∗

1) = 1, we get η1(x; b∗
1) ≥ 1 for all x ∈ [0, l1]. So,

dl1

db∗
1

= −∂V1

∂b∗
1

/
∂V1

∂x
= −η1(l1(b∗

1); b∗
1)

ξ1(l1(b∗
1); b∗

1)
> 0,

and l1 is strictly increasing in b∗
1. Next, we show that lim

b∗
1→γ

l1(b∗
1) = 0. Since e∗ := f2(h2(γ ), γ )/d2 > 0 and

V1(x; b∗
1) satisfies

V1(x; b∗
1) = b∗

1 − e∗

2
x2 + O(x3) as x → 0. (5.14)
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Therefore, by simple calculation, we have l1(b∗
1) = √

2(b∗
1 − γ )/e∗(1 + o(1)) as b∗

1 → γ , which shows
that lim

b∗
1→γ

l1(b∗
1) = 0. As a result, the inverse of l1(b∗

1) exists and is represented as b∗
1(l1).

(ii) Since ψ1(l1) = ∂V1

∂x
(l1; b∗

1(l1)) = ξ1(l1; b∗
1(l1)), from Proposition 4.2, we get

dψ1(l1)

dl1

= ∂ξ1

∂x
+ ∂ξ1

∂b∗
1

db∗
1

dl1

= ∂ξ1

∂x
− ∂ξ1

∂b∗
1

ξ1(l1; b∗
1(l1))

η1(l1; b∗
1(l1))

= 1

η1(l1; b∗
1(l1))

(
∂ξ1

∂x
η1 − ∂η1

∂x
ξ1

)
(l1; b∗

1(l1))

= 1

η1(l1; b∗
1(l1))

(
∂ξ1

∂x
η1 − ∂η1

∂x
ξ1

)
(0; b∗

1(l1))

= − f2(h2(b∗
1), b∗

1)

d2η1(l1; b∗
1(l1))

< 0.

Since
(
∂ξ1

∂x
η1 − ∂η1

∂x
ξ1

)′
= ξ ′′

1 η1 − η′′
1ξ1 = 0, we obtain

∂ξ1

∂x
η1 − ∂η1

∂x
ξ1 is a constant. And by (5.14), we

have V
′
1(x; b∗

1) = −e∗x + O(x2) as x → 0, so

ψ1(l1) = −√
2e∗(b∗

1 − γ )(1 + o(1)) as l1 → 0.

Hence, lim
l1→0

ψ1(l1) = − lim
b∗

1→γ

√
2e∗(b∗

1 − γ ) = 0. As a result, ψ1(l1) is strictly decreasing with respect to l1

and the inverse ψ−1
1 (α1) of α1 does exist.

Proposition 5.6. For α ∈ [0, α], z0(α) + z1(− α) are a strictly increasing functions of class C1 such that

z0(0) + z1(0) = 0 and z0(α) + z1(− α) = z0 + z1.

Proof. By the implicit function theorem and Proposition 5.5, we know that z0(α) and z1(− α) are a
strictly increasing functions of class C1. Then, it follows from Proposition 5.5 (ii) that lim

l0→0
ψ0(l0) = 0

and lim
l1→0

ψ1(l1) = 0. Thus, lim
α→0

z0(α) = 0 and lim
α→0

z1(− α) = 0, which show z0(0) + z1(0) = 0. Since z0 =
lim
α0→α

z0(α), z1 = lim
α1→−α

z1(α), we have z0(α) + z1(− α) = z0 + z1.

Proof of Theorem 5.2. Since 1 ≤ z0 + z1, z0(α) + z1(− α) increases in α according to Proposition 5.6,
so there is a unique α∗ ∈ (0, α] that satisfies z0(α∗) + z1(− α∗) = 1. Let z0(α∗) =ϒ∗ for such α∗. Then
the definitions of z0 and z1 yield ψ0(ϒ∗) = α∗ and ψ1(1 −ϒ∗) = −α∗. So, ψ0(ϒ∗) +ψ1(1 −ϒ∗) = 0.
Define

T1,+(x) =
{

V0(x; a∗
0(ϒ∗)) for x ∈ [0,ϒ∗],

V1(1 − x; a∗
1(1 −ϒ∗)) for x ∈ [ϒ∗, 1],

where a∗
0(ϒ∗) = a∗

0(z0(α∗)) and a∗
0(1 −ϒ∗) = a∗

1(z1(− α∗)).
Then it becomes a unique increasing solution of (5.1). Then, for each integer n ≥ 2, we demon-

strate the existence of Tn,+(x). Let αn = α0 = −α1 such that z0(αn) + z1(− αn) = 1

n
. Since n ≥ 2, we

know
1

n
< 1 ≤ z0 + z1. As a result, we can construct a unique monotone increasing solution Z1,+(x) on

[0, 1/n], where T1,+(x) = V0(x; b
∗
0) with b

∗
0 = b∗

0(z0(αn)) for x ∈ [0, z0(αn)] and T1,+(x) = V1((1/n) − x; b
∗
1)

with b
∗
1 = b∗

1(z1(− αn)) for x ∈ [z0(αn), 1/n]. Now define

Tn,+(x) =
{

T1,+((2j/n) + x) for x ∈ [2j/n, (2j + 1)/n],
T1,+([2(j + 1)/n] − x) for x ∈ [(2j + 1)/n, 2(j + 1)/n],
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where j = 0, 1, 2, · · · , [n/2]. Then Tn,+(x) is an n-mode symmetric solution of (5.1). This completes the
proof.

Proof of Theorem 5.3 Since z0(α) + z1(− α) is a strictly increasing function for α ∈ [0, α] from
Proposition 5.6, whose range is the same as [0, z0 + z1] ⊂ [0, 1]. If N0 is the smallest positive integer
greater than 1/(z0 + z1), it follows that there is a unique α∗

n such that z0(α∗
n ) + z1(− α∗

n ) = 1/n(n ≥ N0).
Similar to the proof of Theorem 5.5, we can create a unique monotone increasing solution B̃1,+(x) on
[0, z0(α∗

n ) + z1(− α∗
n )], where

B̃1,+(x) =
{

V0(x; b∗
0) for x ∈ [0, z0(α∗

n )],
V1(z0(α) + z1(− α) − x; b∗

1) for x ∈ [z0(α∗
n ), E]

with b∗
0 = b∗

0(z0(α∗
n )), b∗

1 = b∗
1(z1(− α∗

n )) and E = z0(α∗
n ) + z1(− α∗

n ). Then we extend B̃1,+(x) to the interval
[0, 2E] by

B̃2,+(x) =
{

B̃1,+(x) for x ∈ [0, E],
B̃1,+(2E − x) for x ∈ [E, 2E].

We continue this process until x reaches x = 1. Then B̃n,+(x) is an n-mode symmetric solution of (5.1).

6. Existence and stability of bifurcation solutions

Firstly, in order to study the stability of this equilibrium solution for system (1.1) on one-dimensional
domain [0, 1], we analyse the spectrum of the linearized operator through the method in [31]. Let (̃u, ṽ)
be any constant solution of system (1.2) and

f (u, v) = (f1(u, v), d2v′′ + f2(u, v)),

then the Fre’chet derivative with respect to (u, v) of F at (̃u, ṽ) is expressed as follows

L =
(

f11 f12

f21 d2
d2

dx2 + f22

)
,

where f11 = f1u(̃u, ṽ), f12 = f1v (̃u, ṽ), f21 = f2u(̃u, ṽ), f22 = f2v(̃u, ṽ). Suppose that λ is an eigenvalue of L.
Then we find that λ satisfies the characteristic equation

λ2 − (f11 + f22 − d2Lj)λ+ f11f22 − f12f21 − d2f11Lj = 0 (6.1)

for some j ≥ 0, where Lj = (π j)2, j = 0, 1, 2, · · · , are the eigenvalues for d2

dx2 subject to Neumann bound-
ary conditions. In addition, cos(π jx) is an eigenfunction corresponding to Lj and {cos(π jx)}∞

j=0 forms a
basis of L2(0, 1).

Theorem 6.1. For d2 > 0, the following assertions are true.
(i) The trivial solution (̃u, ṽ) = (0, 0) and the semi-trivial solution (̃u, ṽ) = (K, 0) are unstable.
(ii) The positive solution (̃u, ṽ) = (u∗

2, v∗
2) is locally asymptotically stable under the assumption of

Proposition 2.2 (i).
(iii) The positive solution (̃u, ṽ) = (u∗

3, v∗
3) is locally asymptotically stable under the assumption of

Proposition 2.2 (ii).

Proof. The proof is simple. As a result, we omit the detail.

Then, we consider d2 as a bifurcation parameter and study the bifurcation problem near the constant
steady state (u∗

3, v∗
3) in the boundary value problem

https://doi.org/10.1017/S0956792525000063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000063


18 G. Guo et al.

⎧⎪⎪⎨⎪⎪⎩
r
(

1 − u

K

)
u − cuv

m + bu
= 0, x ∈ [0, 1],

d2v′′ − av + βcuv

m + bu
= 0, x ∈ (0, 1),

v′(0) = 0, v′(1) = 0.

(6.2)

Let

X̃ = {
(u, v)|u ∈ C0([0, 1]), v ∈ C2([0, 1]), v′(0) = v′(1) = 0

}
,

Ỹ = C0([0, 1]) × C0([0, 1]).

Then the Fréchet derivative L̃ with respect to (u, v) of F at (u∗
3, v∗

3) can be written as follows

L̃ =
(

f̃11 f̃12

f̃21 d2
d2

dx2 + f̃22

)
,

where

f̃11 = r(K − 2u∗
3)

K
− mr(K − u∗

3)

K(m + bu∗
3)
> 0, f̃12 = − cu∗

3

m + bu∗
3

< 0,

f̃21 = βcmv∗
3

(m + bu∗
3)2
> 0, f̃22 = 0.

Therefore, the characteristic equation (6.1) is transformed into

λ2 − (f̃11 − d2Lj)λ− f̃12 f̃21 − d2 f̃11Lj = 0. (6.3)

Let d̃2 = −f̃12 f̃21/f̃11Lj. Then d̃2 > 0 for every j ≥ 1. If we assume that f̃11
2 + f̃12 f̃21 �= 0, then at d2 = d̃2 for

every j ≥ 1, f̃11 − d2Lj = (f̃11
2 + f̃12 f̃21)/f̃11 �= 0. So, we see that the zero is a simple eigenvalue of (6.3).

Therefore, the following conclusions can be drawn.

Theorem 6.2. Assume that Proposition 2.2 (ii) holds. If f̃11
2 + f̃12 f̃21 �= 0, then (d̃2, (u∗

3, v∗
3)) is a bifurca-

tion point of F = 0. Furthermore, there is a δ0, which satisfies that (6.2) admits a one-parameter family
of non-constant solutions

{
(d̃2 + d2(l), (u(l), v(l))), |l|< δ0

}
of the form u(l) = u∗

3 + lφj + o(l), v(l) = v∗
3 +

lψj + o(l), where φj = cos(π jx), ψ = −(f̃11φj)/f̃12 and d2(0) = 0. Particularly, there exist no solutions
other than

{
(d̃2 + d2(l), (u(l), v(l))), |l|< δ0

} ∪ {
(d2, (u∗

3, v∗
3)), |d2 − d̃2|< δ0

}
in a small neighbourhood

of (d̃2, (u∗
3, v∗

3)) in R × X.

Proof. Assume that �̃= (φ̃, ψ̃) ∈ ker̃L and let φ̃ = ∑
j c̃jφj, ψ̃ = ∑

j d̃jφj, then
∑∞

j Dj

(
c̃j

d̃j

)
φj = 0,

where

Dj =
(

f̃11 f̃12

f̃21 −d2Lj

)
.

Obviously, detDj = 0 ⇔ d2 = d̃2. Let d2 = d̃2, we get

ker̃L = span{�0}, �0 =
(
φ0

ψ0

)
=

(
cos(π jx)

− f̃11
f̃12

cos(π jx)

)
.

Similar to this, it is simple to calculate an eigenvector �∗
0 of L̃∗ associated with 0 having the following

form

ker̃L∗ = span{�∗
0}, �∗

0 =
(
φ0

ψ0

)
=

(
cos(π jx)

− f̃11
f̃21

cos(π jx)

)
,
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where L̃∗ is the adjoint operator of L̃, which is obtained by

L̃∗ =
(

f̃11 f̃21

f̃12 d2
d2

dx2

)
.

Because rang̃L = (ker̃L∗)⊥, we have dimker̃L∗ = codim rang L̃ = 1. Finally, since

L̂ = ∂L̂

∂d2

(
0 0
0 d2

dx2

)
and L̂�0 /∈ rang L̃, we get that the conditions required for the standard bifurcation theorem to apply,
based on the presence of a simple eigenvalue [8], are satisfied.

Next, we study the stability of bifurcation solutions. Suppose that L(l) represent the linearized oper-
ator ∂UF(d̃2 + d2(l), U + l�0 + o(l)), where U = (u, v), U = (u∗

3, v∗
3) and (d̃2 + d2(l), U + l�0 + o(l)) is a

bifurcation solution obtained by Theorem 6.2.

Definition 5. Let B(X, Y) denote the set of bounded linear maps of X into Y . Let T , K ∈ B(X, Y). Then
μ ∈ R is a K-simple eigenvalue of T if

(i) dimN(T −μK) = codimR(T −μK) = 1 and, if N(T −μK) = span {x0},
(ii) Kx0 ∈ R(T −μK).

Proposition 6.3. For d2 = d̃2, 0 is an i-simple eigenvalue of L̃ and i is the inclusion mapping X̃ → Ỹ .

Proof. According to the proof procedure of theorem 6.2, we can get dimker̃L = codim rang L̃ = 1. Then
i� /∈ rang L̃, where�0 satisfies ker L̃ = {�0}. Thus, it is clear that L̃ possesses 0 as an i-simple eigenvalue
according to the definition of a K-simple eigenvalue presented in [30].

We have identified an i-simple eigenvalue λj(d2) for L̃ near d2 = d̃2, as well as an i-simple eigen-
value λ(l) for L(l) when |l| is small enough. By making use of the well-known theorem by Crandall and
Rabinowitz [9], we obtain

lim
s→0,λ(l)�=0

− ld′
2(l)λ′

j(d̃2)

λ(l)
= 1.

Proposition 6.4. If f̃11
2 + f̃12 f̃21 < 0, then both λ(l) and −ld′

2(l) possess the same sign. But if f̃11
2 + f̃12 f̃21 >

0, then both λ(l) and ld′
2(l) possess the same sign.

Proof. From (6.3) we get (λj(d2))2 − (f̃11 − d2Lj)λj(d2) − f̃12 f̃21 − d2 f̃11Lj = 0. Taking the derivative
of both sides with respect to d2, we get 2λj(d2)λ′

j(d2) + Ljλj(d2) − (f̃11 − d2Lj)λ′
j(d2) − f̃11Lj = 0. So,

λj(d̃2) = 0 shows

λ′
j(d2) = −Ljf̃11

f̃11 − Ljd̃2

= −f̃11
2
Lj

f̃11
2 + f̃12 f̃21

.

Thus, if f̃11
2 + f̃12 f̃21 < 0, then λ′

j(d2)> 0, which shows that both λ(l) and −ld′
2(l) possess the same sign.

But if f̃11
2 + f̃12 f̃21 > 0, then λ′

j(d2)< 0, which implies that both λ(l) and ld′
2(l) possess the same sign.

Then we analyse the sign of λ(l). Because (u∗
3, v∗

3) is on the branch u = h1(v), we study the following
boundary value problem {

d2v′′ + d(v) = 0, x ∈ (0, 1),
v′(0) = 0, v′(1) = 0,

(6.4)

where d(v) = f2(h1(v), v).

Theorem 6.5. Let C = d′(v∗
3), D = d′′(v∗

3), E = d′′′(v∗
3) and define N = 3CE − 5D2, then we have the

following conclusions.
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(i) If f̃11
2 + f̃12 f̃21 < 0 and N > 0, then λ(l)< 0 for 0< l � 1.

(ii) If f̃11
2 + f̃12 f̃21 < 0 and N < 0, then λ(l)> 0 for 0< l � 1.

(iii) If f̃11
2 + f̃12 f̃21 > 0 and N > 0, then λ(l)> 0 for 0< l � 1.

(iv) If f̃11
2 + f̃12 f̃21 > 0 and N < 0, then λ(l)< 0 for 0< l � 1.

Proof. We only demonstrate the assertion (i) here, as we can approach the proof of the other assertions
in a similar manner. By Proposition 6.4, it is sufficient to compute d′

2(l) to reveal the sign of λ(l). We
expand v(x, l) and d2(l) in l to obtain

v(x, l) = v∗
3 + l̃n1(x) + l2ñ2(x) + l3ñ3(x) + · · · ,

d2(l) = d̃2 + l̃k1 + l2̃k2 + l3̃k3 + · · · .

Due to d(v∗
3) = f2(h1(v∗

3), v∗
3) = 0, we obtain

d(v) = C(v − v∗
3) + 1

2
D(v − v∗

3)2 + 1

6
E(v − v∗

3)3 + · · · ,

where

C = βcmv∗
3

(m + bh1(v∗
3))2

h′
1(v∗

3),

D = −2βcmbv∗
3

(m + bh1(v∗
3))3

(h′
1(v

∗
3))2 + 2βcm

(m + bh1(v∗
3))2

h′
1(v∗

3) + βcmv∗
3

(m + bh1(v∗
3))2

h′′
1(v∗

3),

E = 6βcmb2v∗
3

(m + bh1(v∗
3))4

(h′
1(v∗

3))3 − 6βcmb

(m + bh1(v∗
3))3

(h′
1(v

∗
3))2−

6βcmbv∗
3

(m + bh1(v∗
3))3

h′
1(v∗

3)h′′
1(v∗

3) + 3βcm

(m + bh1(v∗
3))2

h′′
1(v∗

3) + βcmv∗
3

(m + bh1(v∗
3))2

h′′′
1 (v∗

3).

In addition, it is easy to find that f1(h1(v∗
3), v∗

3) = 0. So, we get h′
1(v∗

3) = −f̃12/f̃11. Consequently, based on
the previous definition of f̃21 and d̃2, we know

C = βcmv∗
3

(m + bh1(v∗
3))2

h′
1(v∗

3) = βcmv∗
3

(m + bh1(v∗
3))2

(
−f̃12

f̃11

) = − d̃2 f̃11Lj

f̃12

(
−f̃12

f̃11

) = d̃2π
2j2.

By substituting these expressions into (6.4), we can obtain a sequence of equations by assigning a value
of zero to the coefficient of each power of l.

d̃2̃n′′
1 + Cñ1 = 0, (6.5)

d̃2̃n′′
2 + k̃1̃n′′

1 + 1

2
D̃n2

1 + Cñ2 = 0, (6.6)

d̃2̃n′′
3 + k̃1̃n′′

2 + k̃2̃n′′
1 + Cñ3 + D̃n1̃n2 + 1

6
Ẽn3

1 = 0. (6.7)

By (6.5), we know that d̃2
d2

dx2 + C has an eigenvalue of 0. So, equation (6.6) can be solved only if

k̃1

∫ 1

0̃

n′′
1̃n1dx + 1

2
D

∫ 1

0̃

n3
1dx = 0. (6.8)

When ñ1(x) = cos(π jx), equation (6.5) is satisfied. By simple calculations, it can be deduced that k̃1 = 0
when it is substituted into (6.8). Therefore, (6.6) is rewritten as

d̃2̃n′′
2 + 1

2
D̃n2

1 + Cñ2 = 0.
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Since ñ2
1 = (1 + cos(2π jx))/2, then we know

d̃2̃n′′
2 + Cñ2 = −1

2
D

1 + cos(2π jx)

2
.

By simple calculations, it can be deduced that

ñ2(x) = − D

4C
− D

4(C − 4d̃2π 2j2)
cos(2π jx) = − D

4C
+ D

12C
cos(2π jx).

Now we consider equation (6.7). Since k̃1 = 0, it follows that (6.7) has a solution if and only if

k̃2

∫ 1

0̃

n′′
1̃n1dx + D

∫ 1

0̃

n2
1̃n2dx + 1

6
E
∫ 1

0̃

n4
1dx = 0. (6.9)

It can be directly calculated that∫ 1

0̃

n′′
1̃n1dx = −1

2
Lj,

∫ 1

0̃

n2
1̃n2dx = − 5D

48C
,

∫ 1

0̃

n4
1dx = 3

8
.

So, (6.9) becomes

−1

2
k̃2Lj − 5D2

48C
+ E

16
= 0; so that k̃2 = 1

24CLj

(3CE − 5D2).

Since k̃1 = 0 and ld2
′(l) = l(̃k1 + 2l̃k2 + O(l2)), we have ld2

′(l) = 2l2̃k2 + O(l3)). Thus, for |l| sufficiently
small, the sign of ld2

′(l) is the same as that of k̃2. This implies that the sign of −λ(l) is the same as that
of k̃2 if f̃11

2 + f̃12 f̃21 < 0, according to Proposition 6.4. So, if f̃11
2 + f̃12 f̃21 < 0 and N > 0, then k̃2 > 0; so

that λ(l)< 0.

7. Conclusions

In this paper, we examine a mechanism of pattern formation that occurs in a predator–prey model with
Holling-II functional response. The model consists of a single reaction–diffusion equation coupled with
an ordinary differential equation. The value of this paper reflects in three aspects.

7.1. Existence of non-constant regular solution

We prove the existence of regular stationary solutions for system (3.14), using the method in [4]. If the
internal equilibrium 2u3 system (3.14) is greater than the carrying capacity K, and the other parameters
are non-negative. Furthermore, if the diffusion coefficient d2 > 0 of the predator, then the system (3.14)
produces a non-constant regular solution (Theorem 3.3).

7.2. Existence and uniqueness of steady states with jump discontinuity

We apply various approaches to demonstrate the existence of steady states with jump discontinuities
and investigate their characteristics on a one-dimensional spatial domain (refer to Theorem 4.1 for
domains of higher dimensions and Theorems 5.1–5.3 for one-dimensional domains). These results show
the existence of discontinuous steady-state solutions (u(x), v(x)) for system (1.1), where u(x) displays a
jump discontinuity while v(x) is either monotonic or symmetric, depending on a fixed parameter γ .
Furthermore, it is observed that by selecting a smaller range for γ , the solution becomes unique. This
uniqueness stems from the fact that f2(h2(v), v) is a strictly decreasing function in relation to v within
this interval. It should be emphasized that these phenomena differ significantly from those observed in
systems where both species exhibit diffusion or non-diffusion.
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7.3. Existence and stability of bifurcation solutions

In Section 6, we focus on the bifurcating solutions of the system (1.1). It has been observed that stable
patterns emerge near the constant equilibrium state in a partial differential equation (PDE) system with
diffusion-driven instability (DDI) property. However, the system (1.1) analysed in this paper exhibits
the characteristic of DDI (Theorem 6.2), but all Turing-type patterns are unstable (Theorem 6.5). This
is significantly different from the classical diffusive model, exhibiting a notable difference.
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