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Small inertial effects on a spherical bubble, drop or particle moving near a wall in a
time-dependent linear flow

By Jacques Magnaudet

Journal of Fluid Mechanics, vol. 485 (2003), pp. 115–142

Some numerical errors were recently discovered in § § 6 and 7 of the above paper. It
is the purpose of this corrigendum to provide the corrected expressions and clarify
the discussion of the corresponding results.

After re-evaluating the leading-order integral involved in the derivation of equation
(21), it turns out that the factor 27/16 should be changed to 2, so that the near-wall
rotation-induced lift force experienced by a drop translating with the slip velocity V S0

in a rotating flow about the x3-axis is

FL =
π

2
Ta

[
R2

µ

(
κ−1

(
1 +

3

4
Rµκ

))
+

8

3

]
e3 × V S0 + O(κ). (1)

This changes the result (24) for a drop centrifuged in the same flow to

F′′
U + F′′

L = −πTa

[
R2

µ

(
5

2
κ−1 − 24 + 44λ − 126λ2 − 191λ3

48(1 + λ)(2 + 3λ)2
+

8

21(2 + 3λ)2
ρ̄

)

− 4

3

]
e3 × V S0 + O(κ). (2)

In the discussion following (21), on p. 132, a factor −6π is missing in the expression
for the counterpart of (1) in an unbounded flow. The correct expression of this force
for a rigid sphere is thus FL = −(9π/140)

√
2(19 − 9

√
3)Ta1/2e3 × V S0 (Gotoh 1990)

and the factor by which this expression has to be multiplied to be generalized to a
drop of arbitrary viscosity is 4

9
R2

µ instead of R2
µ as erroneously written (the latter

remark also holds for the other situations discussed in § § 6 and 7). Comparing Gotoh’s
expression with (1) reveals that wall effects reverse the sign of the lift force, unlike
what happens in a pure shear flow (see § 6). This means for instance that a particle
at rest in a rotating container experiences a centripetal lift force when it stays far
from the endwalls, whereas this force becomes centrifugal when the dimensionless
separation κ−1 between the particle and one of the endwalls becomes small compared
with Ta−1/2.

Also, after correcting the value of one of the integrals involved in the derivation of
equation (17), the factor E0(λ) (which also appears in equation (56b) of Magnaudet,
Takagi & Legendre 2003) becomes

E0(λ) =
4840 + 11796λ + 6174λ2 − 1265λ3

1200(2 + 3λ)2(1 + λ)
, (3)
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so that the shear-induced lift force in equation (17) may be written in the form

FL = −π

8
Re α R2

µ

{
5

(
κ−1

(
1 +

9

8
Rµκ

)
+ G1(λ)

)
(V S0 · e3)e1

+
11

3

(
κ−1

(
1 +

9

8
Rµκ

)
+ G2(λ)

)
(V S0 · e1)e3

}
+ O(κ) (4)

with

G1(λ) = − 4

75

(160 + 564λ + 666λ2 + 265λ3)

(1 + λ)(2 + 3λ)2
, G2(λ) = − 2

55

λ(168 + 372λ + 210λ2)

(1 + λ)(2 + 3λ)2
.

(5a, b)

While terms proportional to R2
µκ−1 and R3

µ in (1) and (4) are provided by the outer
region of the disturbance and thus directly result from wall effects, the factor 8/3 in
(1) and terms proportional to G1(λ) and G2(λ) in (4) are provided by the inner region
located at distances from the particle much smaller than the separation (see e.g. the
discussion of equation (14a) on p. 128). It then follows that the latter contributions
are not influenced by the presence of the wall, so that they would remain unchanged
if we were considering the rotation- or shear-induced lift force in an unbounded flow.
For instance, (4) and (5b) show that for a rigid sphere the contribution proportional
to G2(λ) yields a force equal to 7

8
παRe(V S0 · e1)e3, in agreement with Saffman’s

result for a freely rotating sphere in an unbounded shear flow (Saffman 1965). As
in this inner region the flow about the particle is correctly described by Stokes
approximation, superposition holds. Thus if we rotate the axes by −π/2 in the term
involving G1(λ), this contribution becomes the second-order force experienced by a
drop translating parallel to e1 in the shear flow −αx1e3. Adding the latter term to the
one involving G2(λ), which is the second-order force on a drop translating parallel
to e1 in the shear flow αx3e1, yields the second-order lift force experienced by a
drop translating parallel to e1 in the solid-body rotation flow α(x3e1 − x1e3). Using
(5) we then find that the corresponding force is − 4

3
παRe(V S0 · e1)e3, a result which

now agrees with (1) provided we set Ta = αRe and change the rotation axis e3 to
e2. It is worth noting that, while (5) indicates that the strength of the second-order
lift force depends on the viscosity ratio λ in a pure shear flow, (1) shows that it
is independent of the viscosity and hence purely inertial in a solid-body rotation
flow.

Obviously the last two rows of table 1 on p. 117 which summarizes all the results
of the paper must be changed according to (1) and (3).

REFERENCES

Gotoh, T. 1990 Brownian motion in a rotating flow. J. Staistt. Phys. 59, 371–402.

Magnaudet, J., Takagi, S. & Legendre, D. 2003 Drag, deformation and lateral migration of a
buoyant drop moving near a wall. J. Fluid Mech. 476, 115–157.

Saffman, P. G. 1965 The lift force on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385–400.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
22

87
13

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004228713


Corrigenda 377

DOI: 10.1017/S0022112004228713

Dynamics of scalar dissipation in isotropic turbulence: a numerical
and modelling study

By Prakash Vedula, P. K. Yeung and R. O. Fox

Journal of Fluid Mechanics, vol. 433 (2001), pp. 29–60

Owing to an error that arose inadvertently from a post-processing code, the values of
the ratio σ (χ)/µ(χ) shown in the seventh row of table 3 are incorrect. The corrected
values are given below. The previous values were too large and would suggest a higher
level of intermittency of the scalar dissipation rate (χ) than that indicated by other
measures such as the skewness and flatness computed from the same datasets. On the
other hand, this correction does not affect any of the statements or conclusions made
in the original paper.

Rλ 38 38 90 90 90 141 141 243 243
Sc 1

4
1 1

8
1
4

1 1
8

1 1
8

1

σ (χ)/µ(χ) 1.73 2.14 2.00 2.26 2.62 2.27 2.62 3.01 3.22

The corrected values are also available in a subsequent paper published by two of
us (Fox & Yeung 2003, table IV therein). However, we hope this corrigendum will
help further ensure that future readers interested in using the numerical simulation
data will not be misled.

We thank Professors K. R. Sreenivasan and R. W. Bilger for their communications
which drew our attention to the error.
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