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A b s t r a c t . 

The evolution of spherical single-mass star clusters was followed by nu-
merically solving the orbit-averaged two-dimensional Fokker-Planck equa-
tion in energy-angular momentum space. Velocity anisotropy is allowed in 
the two-dimensional Fokker-Planck model. The development of the anisotropy 
is discussed in detail. 

1. I n t r o d u c t i o n 

Now, direct numerical integration of the orbit-averaged Fokker-Planck (here-
after FP) equation is a main tool to study the dynamical evolution of glob-
ular clusters. A direct-integration scheme was invented by Cohn (1979, 
1980). Cohn (1979) first performed direct numerical integration of the 
time-dependent two-dimensional (hereafter 2D) F P equation in energy-
angular momentum (£*, J) space with the calculation of a self-consistent 
potential. Although Cohn (1979) showed the potential power of the direct-
integration scheme, he had to stop the calculation at a relatively early 
stage of gravothermal core collapse due to a numerical error concerning en-
ergy conservation; the central density of the cluster had increased by only 
three orders of magnitude, when the calculation was stopped. Later, Cohn 
(1980) assumed isotropy of the velocity distribution and treated the one-
dimensional (hereafter ID) energy-space F P equation. The use of the ID 
FP equation has some advantages over the use of the 2D F P equation: one 
of these is tha t it saves a lot of computation time and computer memory 
space; another one is tha t the numerical error in energy conservation is 
greatly reduced (Cohn 1980). This reduction of the error is largely due to 
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the adoption of Chang and Cooper's (1970) finite-differencing scheme for 
the ID F P equation. Cohn (1980) reported tha t the secular energy drift 
rate was reduced by bet ter than a factor of 100 by adopting of the Chang-
Cooper scheme. In fact, he could follow the core collapse until the central 
density increased by twenty orders of magnitude. 

Because of those advantages of the ID F P equation, the ID F P equa-
tion has been used in most F P studies concerning globular-cluster evolu-
tion, while the 2D F P equation has seldom been used. The adoption of 
the simpler ID (isotropic) F P equation seems to be quite reasonable for 
studying the core evolution, which has been a main subject during the past 
two decades, because strong relaxation enforces the isotropy of the velocity 
distribution in the core. 

On the other hand, it is true that the development of anisotropy in the 
halo is a natural consequence of cluster evolution driven by two-body relax-
ation. The relaxation is strong in the core because of its high density, and 
the strong relaxation continues to produce high-energy stars. Such high-
energy stars have very radial orbits on the average, and they travel through 
the low-density halo almost without experiencing collisions. Therefore, ra-
dial orbits predominate in the halo and the velocity anisotropy increases 
as the halo grows. The penetration of anisotropy even into the inner region 
was pointed out in several early studies (e.g., Cohn 1985). This is closely 
related to gravothermal core collapse. 

Thus, the development of velocity anisotropy is expected to occur through-
out the whole cluster. In fact, so far, anisotropy has been considered in 
various simulations concerning the evolution of star clusters (see Taka-
hashi 1995a). Recently, furthermore, more elaborate anisotropic gaseous 
and higher-order fluid-dynamical models of star clusters have been devel-
oped (e.g., Bettwieser and Spurzem 1986; Louis 1990; Louis and Spurzem 
1991; Spurzem 1991; Giersz and Spurzem 1994; Spurzem and Takahashi 
1995). They have made it possible to calculate in detail the evolution of 
anisotropic star clusters. On the other hand, more fundamental 2D F P 
simulations were carried out only for isolated single-mass clusters without 
binaries (Cohn 1979, 1985). 

Considering the above situations, I think tha t it is now a good time 
to reconsider direct 2D F P calculations. Concerning the practical sides of 
computations, it is now possible to carry out the 2D calculations on stan-
dard workstations. A main obstacle to the 2D F P calculations is to develop 
computational schemes of high accuracy (especially in the energy conser-
vation). The aim of this work is to develop reliable numerical schemes for 
the 2D orbit-averaged F P equation and to consider in detail the evolution 
of anisotropic star-clusters. More complete descriptions of the present topic 
are found in Takahashi (1995a, pre-collapse evolution; 1995b, post-collapse 
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Here, R is the scaled angular-momentum: R = J2/ J2(£*), where JC(E) is 
the angular momentum of a circular orbit of energy E. Thus, R takes all 
values between 0 and 1, independent of E. The isotropized distribution 
function, f(E, r ) , introduced by Cohn (1979) was used to calculate the dif-
fusion coefficients, DEE, DE, etc. The isotropization makes computing the 
coefficients much easier. It has generally been conceived tha t the use of the 
isotropized distribution function does not cause significant errors, because 
the coefficients only depend on the moments of f(E, Ä), and because relax-
ation occurs mainly in the core where the distribution function is almost 
entirely isotropic. However, as shown below, since f(E, R) strongly depends 
on R for Ε ~ 0 as the halo develops, we may have to be more careful about 
the use of the isotropized distribution function. 

3. T h e M e t h o d 

The framework of our method is the same as tha t of Cohn's (1979) method. 
Cohn's method comprises two steps: the F P step and the Poisson step. In 
the F P step, the distribution function is advanced by solving the F P equa-
tion with the gravitational potential being held fixed. In the Poisson step, 
the potential is advanced by solving Poisson's equation with the distribu-
tion function being held fixed as a function of the adiabatic invariants. 

An essential difference between our method and Cohn's method exists 
only concerning a discretization scheme of the F P equation. Two differ-
ent discretization schemes have been developed: one is a finite-difference 

(2) 

(1) 

where 

We consider the evolution of spherical one-component star clusters. In a 
steady-state spherical system, the distribution function / ( r , v , t ) is a func-
tion of only the energy Ε and total angular momentum J per unit mass. 
The evolution of / due to two-body relaxation can be described by the 
orbit-averaged F P equation in (E, J)-space (Cohn 1979). The 2D F P equa-
tion under the fixed gravitational potential φ(τ) can be written in a flux-
conserving form, 

2. T h e Orb i t -Averaged Fokker-Planck Equat ion 

evolution). 
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scheme where the Chang-Cooper scheme is simply applied for only the 
energy direction; the other is a finite-element scheme where the test and 
weight functions suggested by the generalized variational principle (Inagaki 
and Lynden-Bell 1990) are used. The details concerning the discretization 
schemes are described in Takahashi (1995a). 

The F P equation is solved in a rectangular domain enclosed by boundary 
lines, Ε = 0(0), Ε = 2? m i n , R = 0, and R = 1, where 0(0) is the central 
potential and the value of Em\n is chosen to be close to zero. We impose 
boundary conditions tha t FE = 0 on boundaries Ε = 0(0), Em-m,

 a n d FR = 
0 on boundaries R = 0 , 1 . We use variables (X, Y) instead of (E,R) in 
practical calculations. The variable X(E) is defined by 

Ε 
X(E)=ln (3) 

.20(0) -E0-E 

where Eo is an adjustable parameter (Cohn 1979). The variable Y(R) is 
defined by 

y ( Ä ) - l n ( l + l / Ä 0 ) ' ( 4 ) 

where Ro is an adjustable parameter, such that 0 < Ro <C 1. We set 
iîo = 0.01 in s tandard runs. This variable is introduced in order to give a 
good representation to radial orbits. 

4. R e s u l t s 

Calculations were carried out using both the finite-difference and finite-
element codes. The results obtained by the two (partially) different codes 
were generally in good agreement. For calculations of the pre-collapse evo-
lution, the numerical accuracy of the two schemes is similar. However, for 
calculations of the post-collapse evolution, the accuracy (in particular, con-
cerning total-energy conservation) of the finite-difference scheme is better . 
The reason why the accuracy of the finite-element scheme is not very good 
for the post-collapse calculations is not clear at present. The figures shown 
below were actually drawn from the results of calculations by the finite-
difference code. 

The initial condition of the calculations was Plummer's model, where 
the velocity distribution is isotropic everywhere. We use standard units such 
tha t G = M = 1 and Si = —1/4, where G is the gravitational constant, M 
is the total mass, and S\ is the initial total energy. 

4.1. PRE-COLLAPSE EVOLUTION 

Unless any heat sources are included in F P calculations, the core continues 
to contract and the core density continues to increase [gravothermal core 
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collapse (Lynden-Bell and Eggleton 1980)]. A calculation was continued 
until the central density increased by about 14 orders of magnitude. During 
the calculation, the numerical error in the total mass was within 0.1%, and 
the error in the total energy was within 1%. 

Figure 1. (a) Evolution of the radial profile of the logarithmic density gradient, 
dlnp/dlnr = —a. The power-law region with α = 2.23 extends into the inner region 
as the core collapse proceeds, (b) Evolution of the radial profile of the anisotropy param-
eter, A = 2 — 2σ?/σ?. The self-similar region with A = 0.16 extends into the inner region 
as the core collapse proceeds. 

Figure l a shows the evolution of the radial profile of the logarithmic 
density gradient, dinp/dlnr = —a. The power-law region with a = 2.23 
extends into the inner region self-similarly as the core collapse proceeds. 
This value of a = 2.23 coincides with that found in the ID (isotropic) F P 
model (Cohn 1980; Heggie and Stevenson 1988). Figure l b shows the evo-
lution of the radial profile of the anisotropy parameter, 4̂ = 2 — 2 σ 2 / σ 2 , 
where σ Γ and a t are the radial and (ID) tangential velocity dispersions, re-
spectively. The self-similar region with A = 0.16 (or σ 2 / σ 2 = 0.92) extends 
into the inner region as the core collapse proceeds. Cohn's (1985) calcula-
tion gave a similar value of A « 0.15. However, the degree of anisotropy in 
the halo is somewhat stronger in our calculation than in Cohn's calculation. 

At late stages of the core collapse, the collapse rate ξ = tT(0)d In p(0)/dt, 
where t r (0) is the central relaxation time (Spitzer and Hart 1971a) and p(0) 
is the central density, tends to an asymptotic constant value of ξ = 2.9 x 
10~ 3 . On the other hand, Cohn's (1979) 2D calculation gave ζ = 6.0 x 10~ 3 

and Cohn's (1980) ID calculation did ξ = 3.6 x 1 0 - 3 . While the value of 
f in our anisotropic model is smaller than tha t in the isotropic model, the 
value of £ in Cohn's (1979) anisotropic model is larger. Which tendency 
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is true? I think tha t Cohn's value is less reliable than our value, because 
Cohn's calculation was accompanied by a large error in energy conservation 
(~ 11%) and did not follow the core collapse very deeply. Although I cannot 
give satisfactory proof of the slower collapse in anisotropic clusters, the 
following intuitive interpretation may be helpful: the reduction of the 2D F P 
equation to the ID F P equation by averaging over angular momentum space 
causes artificial diffusion in addition to real diffusion, and, consequently, 
the core collapse proceeds faster in isotropic clusters. It is interesting tha t 
Louis (1990) also found the lower value of f in anisotropic clusters using 
fluid-dynamical models. 

Figure 2a shows the evolution of Lagrangian radii for the 2D and ID 
models. The time is measured in units of the initial half-mass relaxation 
time t rh,i (Spitzer and Hart 1971a). We find again slower core collapse in 
the 2D calculation from figure 2a. The 2D calculation gives a core collapse 
time of t c o n = 17.6£rh,i and the ID calculation gives t c o n = 15.6trh,i- Figure 
2b also shows the evolution of Lagrangian radii, but the time for the ID 
calculation is scaled so tha t the collapse time in the ID calculation should 
coincide with tha t in the 2D calculation. In this figure, we do not find any 
significant differences between the two models for the 1-75% Lagrangian 
radii. However, the 90% radius of the 2D model expands further than tha t 
of the ID model; tha t is, the 2D model has a more extended halo. 

Figure 2. (a) Evolution of Lagrangian radii containing inner 1, 2, 5, 10, 20, 30, 40, 50, 
75, and 90% of the cluster mass. The solid curves are the result of the 2D FP calculation, 
while the dotted curves are that of ID calculation. The time is measured in units of the 
initial half-mass relaxation time <rh,i- (b) Same as (a), but the time axis of ID calculation 
is multiplied by a constant factor so that the collapse time in the ID calculation should 
coincide with that in the 2D calculation. 
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Figure 3. (a) Density profile at an epoch when the central density increases by about 4.5 
orders of magnitude for the 2D model (the solid curve), and for the I D model (the dotted 
curve). The asymptotic line ρ oc r~ 3 ' 5 is shown for a comparison, (b) Velocity dispersion 
profiles at the same epochs as in (a). The solid and dashed curves are the radial and I D 
tangential velocity dispersions for the 2D model, respectively. The dotted curve is the I D 
velocity dispersion profile for the ID model. The asymptotic line σ2 α r" 2 is shown for 
a comparison. 

Figure 3a shows the density profiles at epochs when the central density 
increases by about 4.5 orders of magnitude for the 2D and ID models. 
The density profile in the outer halo is approximated by a power law, ρ oc 
r - 3 5 , rather well for the 2D model (cf. Spitzer and Shapiro 1972). In figure 
3b, the velocity dispersion profiles at the same epochs as in figure 3a are 
shown. In the halo the radial velocity dispersion exceeds the tangential 
velocity dispersion considerably. This is because the halo is dominated by 
eccentric orbits. A power law, σ\ oc r - 2 , gives a reasonable fit to the result 
of the 2D F P calculation in the halo. This power law corresponds to the 
constant mean squared angular momentum (cf. Spitzer and Hart 1971b; 
Hénon 1971). 

4.2. POST-COLLAPSE EVOLUTION 

Now we take account of heating effects by three-body binaries. The three-
body binary heating rate per unit mass is given by 

Èh = ChG
bmzp2a-\ (5) 

where Cb is a numerical coefficient (Hut 1985). A standard value of Cb = 90 
was chosen in the present calculations. The local heating rate (5) is orbit-
averaged (Cohn 1979), and then the orbit-averaged heating rate, < E\> > o r b > 
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is added to the usual first-order diffusion coefficient < ΔΕ > o r b - Further-
more, we assume tha t binary scatterings do not produce a net change of 
the scaled angular momentum iî, i.e. < R\> > o r b = 0. 

For calculations of the post-collapse evolution, we must specify the num-
ber of stars in the cluster, iV, and the numerical constant, μ, in the Coulomb 
logarithm Ιη(μΝ). For all the present calculations, the value of μ — 0.11 
was chosen, which was suggested by Giersz and Heggie (1994a) for the pre-
collapse evolution of single-mass clusters. Calculations were performed for 
Ν =5000, 10000, and 20000. Concerning computation time, for example, 
the 2D F P calculation for Ν = 20000, where 151 X-mesh, 35 y-mesh and 
91 r-mesh points were used, required about 95 hours of CPU time on HP 
9000/715 (50 MHz). 

The core expansion is stable for Ν = 5000, marginally stable (over-
stable) for Ν = 10000. For Ν = 20000, the core expansion is unstable: the 
central density oscillates chaotically with the large amplitude [gravothermal 
oscillation (Bettwieser and Sugimoto 1984)]. There are no qualitative dif-
ference concerning the features of the gravothermal oscillations between ID 
and 2D calculations. Figures 4a and 4b show the evolution of the anisotropy 
A averaged over 0 - 1 % , 1-2%,..., and 75-90% Lagrangian radii, for the case 
of Ν = 20000. The anisotropy at inner Lagrangian radii oscillates with the 
core oscillation. We can see the anisotropy oscillation even at the half-mass 
radius. 

O 10 2 0 3 0 4 0 Ο 10 2 0 3 0 4 0 
T / U . , T / U , 

Figure 4- (a) Evolution of the anisotropy A averaged over 0-1%, 1-2%, 2-5%, 5-10%, 
and 10-20% Lagrangian radii, for the case of Ν = 20000. (b) Same as (a), but for the 
anisotropy A averaged over 20-30%, 30-40%, 40-50%, 50-75%, and 75-90% Lagrangian 
radii. A increases as the radius increases. 
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Figure 5. (a) Evolution of the 1, 2, 5, 10, 20, 30, 40, 50, 75, and 90% Lagrangian radii for 
Ν = 10000. The solid curves are the result of the iV-body calculation (by R. Spurzem), 
the dashed curves are that of the 2D FP calculation, and the dotted curves are that of the 
ID FP calculation. The time for the ID calculation is scaled as in figure 2b. (b) Evolution 
of the anisotropy A averaged over the 40-50%, 50-75%, and 75-90% Lagrangian radii. 
The solid curves are the result of the iV-body calculation, and the dashed curves are that 
of the 2D FP calculation. 

Lastly, we compare the F P models and an iV-body model for Ν = 10000. 
The result of the 10000-body calculation has kindly been made available 
by Rainer Spurzem (cf. Spurzem and Aarseth 1995). Figure 5a shows a 
comparison of the evolution of Lagrangian radii. The time for the ID cal-
culation is scaled as in figure 2b. The result is generally in good agreement 
between the 2D F P and iV-body models. In particular, the collapse times 
for the two models are very close. However, we should remember tha t the 
collapse time in physical time units in the F P model depends on μ, and tha t 
there is a scatter of collapse times for each individual iV-body simulation 
(Giersz and Heggie 1994a, b; Spurzem and Aarseth 1995). The good agree-
ment of the collapse time in this case may be accidental. In the iV-body 
model, the inner Lagrangian radii oscillate with the small amplitude after 
the core bounce. This may be due to stochastic binary activities. Figure 5b 
shows the evolution of the anisotropy A in the outer regions. The agree-
ment between the 2D F P and iV-body models is good. This fact supports 
the reliability of the present 2D F P model. 

5. Conc lus ions and Di scuss ion 

I have developed numerical codes to solve the orbit-averaged (E, J)-space 
FP equation with high accuracy, and have investigated in detail the pre- and 
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post-collapse evolution of single-mass spherical star clusters where velocity 
anisotropy is allowed. Two different integration schemes have been devel-
oped: they are the finite-difference scheme and the finite-element scheme. 
Using these schemes, we could follow the core collapse until the central 
density increased by about 14 orders of magnitude, and follow long-term 
evolution past the core collapse. 

We have seen tha t the relaxation process is always accompanied by 
the velocity anisotropy production. We still do not know very much the 
effects of anisotropy on the evolution of more realistic clusters (e.g., multi-
mass clusters, tidally limited clusters, etc.). Since the present work has 
shown tha t 2D F P calculations can be performed with reasonable numerical 
accuracy, we do not have to hesitate doing 2D F P calculations from now 
on. The evolution of more realistic cluster models will be studied in the 
future. 

The author is a research fellow of the Japan Society for the Promotion 
of Science, and this work was supported in part by the Grand-in-Aid for 
Encouragement of Young Scientists by the Ministry of Education, Science 
and Culture of Japan (No. 1338). 

References 

Bettwieser E., Spurzem R. 1986, A&A 161, 102 
Bettwieser E., Sugimoto D. 1984, MNRAS 208, 493 
Chang J.S., Cooper G. 1970, J. Comp. Phys. 6, 1 
Cohn H. 1979, ApJ 234, 1036 
Cohn H. 1980, ApJ 242, 765 
Cohn H. 1985, in Dynamics of Star Clusters, IAU Symp No.113, ed J. Goodman, P. Hut 

(D. Reidel Publishing Company, Dordrecht) p l61 
Giersz M., Heggie D.C. 1994a, MNRAS 268, 257 
Giersz M., Heggie D.C. 1994b, MNRAS 270, 298 
Giersz M., Spurzem R. 1994, MNRAS 269, 241 
Heggie D . C , Stevenson D. 1988, MNRAS 230, 223 
Hénon M. 1971, Ap&SS 13, 284 
Hut P. 1985, in Dynamics of Star Clusters, IAU Symp No. 113, ed J. Goodman, P. Hut 

(D. Reidel Publishing Company, Dordrecht) p231 
Inagaki S., Lynden-Bell D. 1990, MNRAS 244, 254 
Louis P.D. 1990, MNRAS 244, 478 
Louis P.D., Spurzem R. 1991, MNRAS 251, 408 
Lynden-Bell D., Eggleton P.P. 1980, MNRAS 191, 483 
Spitzer L.Jr., Hart M.H. 1971a, ApJ 164, 399 
Spitzer L.Jr., Hart M.H. 1971b, ApJ 166, 483 
Spitzer L.Jr., Shapiro S.L. 1972, ApJ 173, 529 
Spurzem R. 1991, MNRAS 252, 177 
Spurzem R., Aarseth S.J., 1995, in preparation 
Spurzem R., Takahashi K. 1995, MNRAS 272, 772 
Takahashi K. 1995a, PASJ 47, in press 
Takahashi K. 1995b, in preparation 

https://doi.org/10.1017/S007418090000142X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090000142X

