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A CONNECTION BETWEEN THE VOLUME
FRACTIONS OF THE STIENEN MODEL
AND THE DEAD LEAVES MODEL
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Abstract

The volume fraction of the intact grains of the dead leaves model with spherical grains
of equal size is 2−d in d dimensions. This is the volume fraction of the original Stienen
model. Here we consider some variants of these models: the dead leaves model with
grains of a fixed convex shape and possibly random sizes and random orientations, and a
generalisation of the Stienen model with convex grains growing at random speeds. The
main result of this paper is that if the radius distribution in the dead leaves model equals
the speed distribution in the Stienen model, then the volume fractions of the two models
are the same in this case also. Furthermore, we show that for grains of a fixed shape and
orientation, centrally symmetric sets give the highest volume fraction, while simplices
give the lowest. If the grains are randomly rotated, then the volume fraction achieves its
highest value only for spheres.
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1. Introduction

Two well-known random models for nonintersecting spheres are the intact grains of the
dead leaves model and the Stienen model. The dead leaves model, which was introduced
by Matheron (1968), is usually described in two dimensions; one can think of leaves falling
randomly to the ground from time −∞ to time 0. The intact grains, or leaves, are then those
which are intact at time 0, when viewed from above. The leaves can be any compact objects,
possibly of random shape, size, and orientation. A proper description of this model is given in
Section 4.

The Stienen model was originally proposed in a materials science context by Stienen (1982).
In his model, each point of a stationary Poisson process is the centre of a sphere with a diameter
equal to the distance to its closest neighbour. Another way to determine the size of a particular
sphere, say A, in the Stienen model, is to let all spheres grow at unit speed until the first collision
with A, disregarding collisions between other spheres. The size of sphere A at this collision
is the size it is allocated in the Stienen model. The reason for giving this description is that it
allows for natural generalisations of the model: one is to let the grains grow at random speeds,
and another is to allow the grains to have shapes other than spherical.

The Stienen and dead leaves models are in many respects quite different. The germs of the
Stienen model constitute a Poisson process, while this is not the case with the intact grains of
the dead leaves model. In the patterns of the Stienen model, small spheres typically tend to
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appear in touching pairs and larger spheres tend to appear in isolation, while the probability of
grains touching each other is 0 in the dead leaves model; if the falling leaves are of a fixed size,
then this is clearly also the case for the intact leaves, while the sizes of the grains in the Stienen
model are determined by the underlying Poisson process and by the growth speed distribution.

In the present paper, however, we focus on the similarity between the two models rather
than on the differences. This similarity concerns the volume fraction, which, for stationary
germ–grain models with nonintersecting grains, can be written as

ρ = λV̄ ,

where λ is the intensity of the germs and V̄ denotes the mean volume of a typical grain. The
main result of the paper is the following: if the radii of the falling leaves in the dead leaves
model have the same distribution as the growth speeds of the grains in the Stienen model, then
the two models have the same volume fraction. Furthermore, we present the radius distribution
of the grains in both models and give upper and lower bounds on the volume fraction. The
grains are assumed to have a given convex shape, but can have random sizes and orientations.

2. Preliminaries

The size of a sphere is often given in terms of its radius; in accordance with this we define
the size of a convex grain K ⊂ R

d as being half its diameter, that is,

sup
x,y∈K

|x − y|
2

,

where | · | denotes the Euclidean distance. Let Cd denote the family of compact, convex sets
K that have interior points in R

d , contain o (the origin), and are of size 1.
Let ld denote the d-dimensional Lebesgue measure. Furthermore, let Bd(z, r) = {x ∈

R
d : |z − x| ≤ r} denote the d-dimensional ball of radius r centred at z. The volume and the

surface area of Bd(o, 1) are denoted by κd and ωd , respectively. Let K(z, r) denote a set that has
the same shape as K but is translated by z and has size r > 0, that is, K(z, r) = {ry+z : y ∈ K};
then ld (K(z, r)) = rd ld(K). Note that if K ∈ Cd then K(o, 1) = K .

For A, B ⊂ R
d , Minkowski addition is defined by

A ⊕ B := {x + y : x ∈ A, y ∈ B},
which can also be written as

A ⊕ B = {x : A ∩ (B̌ + x) �= ∅}, (2.1)

where B̌ = −B denotes the reflection of B at the origin. The volume of xK ⊕ yL, where
x, y ∈ R

+ and K, L ⊂ R
d are nonempty convex sets, can be written as

ld (xK ⊕ yL) =
d∑

i=0

(
d

i

)
xiyd−iVi,d−i (K, L), (2.2)

where Vi,d−i (K, L) := V (K, . . . , K, L, . . . , L) (with K appearing i times and L appearing
d − i times) are the mixed volumes (mixed areas in R

2) of K and L (a definition can be found
in Schneider (1993)). Note the special cases Vd,0(K, L) = ld (K) and V0,d (K, L) = ld (L).
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The set
K ⊕ Ǩ = {x ∈ R

d : K ∩ (K + {x}) �= ∅} (2.3)

is called the difference body of K ⊂ R
d , and if K is convex then

2d ld(K) ≤ ld (K ⊕ Ǩ) ≤
(

2d

d

)
ld (K), (2.4)

where the lower bound is attained if and only if K is centrally symmetric and the upper bound
is attained if and only if K is a simplex. The left-hand inequality of (2.4) follows from the
Brunn–Minkowski theorem, while the right-hand inequality is due to Rogers and Shephard
(1957). Furthermore, if K is a convex set then

ld (K) ≤ Vi,d−i (K, Ǩ) ≤ dmin{i,d−i}ld (K), (2.5)

with equality on the left-hand side if and only if K is centrally symmetric or i(d − i) = 0. On
the right-hand side, there is equality in dimensions two and three if and only if K is a triangle
and a tetrahedron, respectively, or i(d − i) = 0. For a proof of (2.5), see, e.g. Bonnesen and
Fenchel (1948, p. 105). It was conjectured by Godbersen (1938) and Makai, Jr. (1974) that,
furthermore,

Vi,d−i (K, Ǩ) ≤
(

d

i

)
ld (K), (2.6)

with equality if and only if K is a simplex (see Schneider (1993, p. 412)).
Next we introduce the so-called intrinsic volumes, Vi(K), i = 1, . . . , d, for compact, convex

K ⊂ R
d , as follows:

Vi(K) := 1

κd−i

(
d

i

)
Vi,d−i (K, Bd(o, 1)).

Note that V0 is identically equal to 1 and that Vd is the volume. Furthermore, 2Vd−1 is the
surface area and 2κd−1V1/ωd is the mean width.

3. The Stienen model

Two generalisations of the original Stienen model, in which spherical grains grow at the
same speed, were proposed in Section 1:

• one with random growth speeds;

• one with nonspherical grains.

How the sizes of the spheres are determined in the original model can be described in two
different ways: either the diameter of a sphere equals the distance from the centre of the sphere
to the centre of its closest neighbour or, equivalently, a sphere is allocated the size it would
attain if it grew from a germ until it met another sphere and all other spheres grew forever.

Using the latter description it is easy to generalise the model to have random growth speeds.
Assume that all germs are assigned a random growth speed according to a distribution Fsp,
independently of each other and of the Poisson process. The sizes of the grains are determined
as in the original model, the only change being that they now grow with random speeds. The
second of the proposed generalisations is also easily explained using the second description of
how the sizes are determined: here it is nonspherical grains of possibly different orientations
that grow until the first collision with another grain.

https://doi.org/10.1239/aap/1175266468 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266468


44 • SGSA M. MÅNSSON

If all grains have the same shape as K ∈ Cd , then the volume fraction of the Stienen model
is

ρ = λ E[ld (K(o, R))] = λld(K) E[Rd ], (3.1)

where R denotes the random size (half the diameter) of a typical grain and λ is the intensity
of the underlying Poisson process. Thus, we need to find the distribution of R in order to
determine the volume fraction. This is what will concern us in the remainder of this section,
and will be considered in two different cases: in the first subsection we consider grains of fixed
orientation, while in the second we consider randomly oriented grains.

3.1. Fixed orientation

In the original d-dimensional Stienen model a sphere grows halfway to its nearest neighbour,
and since we start with a Poisson point process it is clear that the radius of a sphere at the origin
is larger than r if there are no points in Bd(o, 2r). Hence,

P(R > r) = exp{−λκd(2r)d},
which yields

E[Rd ] = (2dλκd)−1. (3.2)

Inserting (3.2) into (3.1) gives the volume fraction ρ = 2−d .
This result is easily generalised to grains of the same shape and orientation as K ∈ Cd . For

spherical sets, the radius of a sphere is larger than r if there are no points in the set

Bd(o, 2r) = {x ∈ R
d : Bd(o, r) ∩ Bd(x, r) �= ∅}.

For nonspherical grains, we need to replace this set by

{x ∈ R
d : K(o, r) ∩ K(x, r) �= ∅} = K(o, r) ⊕ Ǩ(o, r)

(which exactly follows from (2.1)). The distribution function and volume fraction then follow
as above.

Now we let the grains grow with random speeds which are independent of each other and
assume the grains to have the same shape and orientation as K ∈ Cd . For a distribution function
F , consider

�fix(K, r, F ) :=
∫ ∞

0
ld (K(o, r) ⊕ Ǩ(o, s)) dF(s)

=
d∑

i=0

(
d

i

)
riVi,d−i (K, Ǩ)

∫ ∞

0
sd−i dF(s), (3.3)

where the equality follows from (2.2), and assume that the dth moment of F exists. First we
determine the distribution function of the final size of a typical grain, letting Fsp denote the
distribution of the growth speed.

Theorem 3.1. Assume that the grains have the same shape and orientation as K ∈ Cd and
that the dth moment of Fsp exists. Then the following results hold for the Stienen model with
grains growing with random speeds.

(i) The distribution function of the final size of a typical grain is

F(r) = 1 −
∫ ∞

0
exp{−λ(r/s)d�fix(K, s, Fsp)} dFsp(s).
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(ii) The volume fraction is

ρ = ld (K)

∫ ∞

0
sd�fix(K, s, Fsp)

−1 dFsp(s).

Proof. (i) Assume that there is a grain at the origin which grows at speed s. The size of this
grain is smaller than r if it stops growing before the time r/s. For this to happen there must be
at least one point of the original Poisson process with some speed h and some position z which
collides with the grain at the origin before time r/s, that is, such that

K(o, r) ∩ K(z, hr/s) �= ∅.

Since the speeds are independent of each other, the positions of the grains which can prevent
the size of the grain at the origin exceeding r can be seen as an independent thinning of the
original Poisson process, which results in an inhomogeneous Poisson process on R

d ×R
+ with

intensity

λ 1{x∈{z:K(o,r)∩K(z,hr/s)�=∅}} dx dFsp(h) = λ 1{x∈K(o,r)⊕Ǩ(o,hr/s)} dx dFsp(h),

where the equality follows from (2.3). The expected total number of points of this process is

λ

∫ ∞

0

∫
K(o,r)⊕Ǩ(o,hr/s)

dx dFsp(h) = λ

d∑
i=0

(
d

i

)
riVi,d−i (K, Ǩ)

∫ ∞

0

(
hr

s

)d−i

dFsp(h)

= λ

(
r

s

)d d∑
i=0

(
d

i

)
siVi,d−i (K, Ǩ)

∫ ∞

0
hd−i dFsp(h),

using (2.2) in the first equality. The radius of a grain at the origin growing at speed s exceeds r

if there are no points at all in this Poisson process. The proof is concluded by integrating over
all possible growth speeds.

(ii) From (i) it follows that

E[Rd ] = 1

λ

∫ ∞

0
sd�fix(K, s, Fsp)

−1 dFsp(s),

and we obtain the volume fraction by inserting this expectation into (3.1).

Note that if all grains grow at the same speed, say s0, then

�fix(K, s0, Fsp) = sd
0 ld (K ⊕ Ǩ)

and we obtain the following result.

Corollary 3.1. In the Stienen model with convex grains that have equal shape and orientation
and grow at the same speed, the distribution function of the size of a typical grain is given by

F(r) = 1 − exp{−λrd�fix(K)},
where

�fix(K) := ld (K ⊕ Ǩ) =
d∑

i=0

(
d

i

)
Vi,d−i (K, Ǩ). (3.4)

The volume fraction is

ρ = ld (K)

�fix(K)
.
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3.2. Random orientations

In addition to letting the grains grow at different speeds, we can also let them have different
orientations. Let SO(d) denote the group of rotations about the origin. By a uniformly
distributed rotation we mean an element from SO(d), chosen according to the Haar measure
ν, with ν(SO(d)) = 1 (see, e.g. Schneider and Wieacker (1993) for details). Here we let the
grains be rotated according to this uniform distribution, and we let the rotations be independent
of each other and of the positions of the grains. Let the sizes of the grains be determined as
previously.

This yields another inhomogeneous Poisson process consisting of germs which can prevent
the size of the grain at the origin exceeding r . This process is defined on R

d × R
+ × SO(d)

and has the intensity measure

λ 1{x∈K(o,r)⊕ϑK(o,hr/s)} dx dFsp(h)ν(dϑ).

If we let

�rot(K, r, F ) :=
∫ ∞

0

∫
SO(d)

ld (K(o, r) ⊕ ϑK(o, y))ν(dϑ) dF(y)

= 1

κd

d∑
k=0

κkκd−k

(
d

k

)−1

rkVk(K)Vd−k(K)

∫ ∞

0
yd−k dF(y), (3.5)

where we have used the generalised Steiner formula (see, e.g. Weil and Wieacker (1993,
p. 1407)) in the second equality, the expected total number of points of this Poisson process is

λ

∫ ∞

0

∫
SO(d)

∫
K(o,r)⊕ϑK(o,hr/s)

dxν(dϑ) dFsp(h) = λ

(
r

s

)d

�rot(K, s, Fsp).

The proof is concluded by integrating over all possible growth speeds.

Theorem 3.2. Theorem 3.1 holds in the case of random orientations if �fix is replaced by �rot,
defined in (3.5).

Corollary 3.2. If all grains grow at the same speed, then

ρ = ld (K)

�rot(K)
,

where

�rot(K) :=
∫

SO(d)

ld (K ⊕ ϑK)ν(dϑ) = 1

κd

d∑
k=0

κkκd−k

(
d

k

)−1

Vk(K)Vd−k(K). (3.6)

4. The dead leaves model

The original dead leaves model was introduced by Matheron (1968) and is a random
tessellation of space as well as being a model for nonintersecting sets. It can be defined as
follows. Consider a stationary Poisson process {(xi, ti)} with unit intensity in R

d × (−∞, 0].
Interpret ti as the arrival time of the point xi ∈ R

d . Let d-dimensional, possibly random,
compact grains be placed at the points xi sequentially in time, in such a way that a new grain
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might delete portions of ‘older’ ones. At time t = 0 the space R
d is completely covered, and

the grains which are not completely deleted constitute a tessellation of R
d which is called the

dead leaves model.
The grains which are intact, that is, not intersected by any later grains, constitute a model

of nonintersecting grains. Note that the union of the intact grains constitute a random closed
set in R

d . The intact grains of the dead leaves model can also be considered the limit of
a generalisation of one of Matérn’s hard core models introduced in Månsson and Rudemo
(2002). This generalisation is constructed as follows.

1. First generate a Poisson process with constant intensity in R
d . At the points of this process

place independent grains of a given shape, but of possibly random sizes and orientations.
Furthermore, to each grain give a weight, according to a continuous distribution. The
weights are independent of each other and of everything else.

2. Then thin the process by letting all pairs of grains which intersect ‘compete’: a grain is
kept if it has the higher weight in all pairwise comparisons with the grains it intersects.

The original Poisson process together with the grains can be seen as a proposal model. In
accordance with this, we let λpr and Fpr denote the proposal intensity and proposal distribution
function of the sizes of the grains, respectively, before thinning. The intensity measure and
distribution function of the sizes in the thinned process will be denoted by λ and F , respectively.

Let �T denote this model with intensity λpr = T and weights uniformly distributed on
[−T , 0]. Then the points of the original Poisson process together with the weights can be
regarded as a Poisson process with unit intensity in R

d × [−T , 0]. If we let �i, i = 1, 2, . . . ,
be based on the same Poisson process in R

d × (−∞, 0] and think of the weights as arrival
times, it follows that �i ⊂ �i+1, and the limiting random set

⋃∞
i=1 �i equals the intact grains

of the dead leaves model. Results for �T can now be used to obtain results for the intact grains
of the dead leaves model.

The dead leaves model and generalisations of it, for instance the colour dead leaves, have
been studied in a number of papers by Jeulin; see, e.g. Jeulin (1997). Results on the intensity
and size distributions of the intact grains can be found in Jeulin (1989). The connection between
Matérn’s second hard core model and the dead leaves model in the case of fixed-sized spheres
was noted by Stoyan and Schlater (2000). In Andersson et al. (2006) some aspects of the
volume fraction of the dead leaves model were considered.

The following results for the generalisation of Matérn’s model can be found in, or follow
directly from, Månsson and Rudemo (2002).

Lemma 4.1. Assume that the grains have the same shape as K ∈ Cd and that the dth moment
of Fpr exists. Let �(K, r) = �fix(K, r) if the orientation is fixed and let �(K, r, F ) =
�rot(K, r, F ) otherwise, where �fix(K, r, F ) and �rot(K, r, F ) are as given in (3.3) and (3.5),
respectively.

(i) The intensity is

λ =
∫ ∞

0

1 − exp{−λpr�(K, r, Fpr)}
�(K, r, Fpr)

dFpr(r).

(ii) The size distribution of the grains is

F(r) = 1 − λ−1
∫ ∞

r

1 − exp{−λpr�(K, s, Fpr)}
�(K, s, Fpr)

dFpr(s).
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(iii) The volume fraction is

ρ =
∫ ∞

0
rd 1 − exp{−λpr�(K, r, Fpr)}

�(K, r, Fpr)
dFpr(r).

Letting λpr tend to ∞ in the above lemma immediately gives the following theorem.

Theorem 4.1. Assume that the grains have the same shape as K ∈ Cd and that the dth moment
of Fpr exists. Let �(K, r, F ) = �fix(K, r, F ) if the orientation is fixed and let �(K, r, F ) =
�rot(K, r, F ) otherwise, where �fix(K, r, F ) and �rot(K, r, F ) are as given in (3.3) and (3.5),
respectively. The following results hold for the intact grains of the dead leaves model.

(i) The intensity is

λ =
∫ ∞

0
(�(K, r, Fpr))

−1 dFpr(r).

(ii) The size distribution of the grains is

F(r) = 1 − λ−1
∫ ∞

r

�(K, s, Fpr)
−1 dFpr(s).

If the original size distribution is continuous with density fpr, then the distribution of the
sizes is also continuous, with density

f (r) = fpr(r)

�(K, r, Fpr)λ
.

(iii) The volume fraction is

ρ = ld (K)

∫ ∞

0
rd�(K, r, Fpr)

−1 dFpr(r).

In particular, if the grain size is fixed then

ρ = ld (K)

�(K)
,

where �(K) equals �fix(K) if the orientation is fixed and equals �rot(K) if the orienta-
tions are random. The functions �fix(K) and �rot(K) are as defined in (3.4) and (3.6),
respectively.

Comparing Theorems 3.1 and 4.1, we have the following result.

Theorem 4.2. If the growth speed distribution in the Stienen model, Fsp, and the grain size
distribution before thinning in the dead leaves model, Fpr, are equal, then the volume fractions
are equal in the two models.

5. Bounds on the volume fraction

The volume fraction depends on the shape of the grains. For instance, in two dimensions the
area fraction is 1

4 for discs and 1
6 for triangles of a fixed size and orientation. In the formulae

in Theorems 3.1 and 4.1 it can be seen that the volume fraction depends on the shape through
the mixed volumes if the orientation is fixed. If the orientations are random then the volume
fraction depends on the shape through intrinsic volumes rather than through mixed volumes.
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5.1. Fixed orientation

We will now use the inequalities concerning mixed volumes in Section 2 to give upper and
lower bounds on the volume fraction.

Theorem 5.1. (i) Let the grains have the same shape and orientation as K ∈ Cd . Let Fpr
denote the proposal distribution of the grain sizes in the dead leaves model and the growth
speed distribution in the Stienen model, and assume that the dth moment of Fpr exists. Then
the volume fraction of these models has the following bounds:

ρ ≥
∫ ∞

0

( d∑
i=0

(
d

i

)
ri−ddmin{i,d−i}

∫ ∞

0
sd−i dFpr(s)

)−1

dFpr(r),

ρ ≤
∫ ∞

0

( d∑
i=0

(
d

i

)
ri−d

∫ ∞

0
sd−i dFpr(s)

)−1

dFpr(r).

The upper bound is attained if and only if K is centrally symmetric. For d = 2 and d = 3,
the lower bound is attained if and only if K is a triangle and a tetrahedron, respectively.
Furthermore, if the conjectured inequality (2.6) is true, then

ρ ≥
∫ ∞

0

( d∑
i=0

(
d

i

)2

ri−d

∫ ∞

0
sd−i dFpr(s)

)−1

dFpr(r),

with equality if and only if K is a simplex.

(ii) If the grain sizes in the dead leaves model and the growth speed in the Stienen model are
fixed, then the volume fraction has the following bounds:(

2d

d

)−1

≤ ρ ≤ 2−d . (5.1)

The upper bound is attained if and only if K is centrally symmetric, and the lower bound is
attained if and only if K is a simplex.

Proof. (i) This result follows from Theorem 3.1, (2.5), and (2.6).

(ii) This result follows from Corollary 3.1 and (2.4).

5.2. Random orientations

We now present upper bounds on the volume fraction when the orientations of the grains
are random. The lower bound is 0, since for any fixed volume there exist sets with this volume
and arbitrarily large intrinsic volumes of lower dimensions, meaning that �rot can be arbitrarily
large. For instance, in two dimensions there are rectangles of area 1 and arbitrarily large
perimeter.

Theorem 5.2. (i) Assume that the grains are independently and uniformly rotated and have
the same shape as K ∈ Cd . Let Fpr denote the proposal distribution of the grain sizes in the
dead leaves model and the growth speed distribution in the Stienen model, and assume that the
dth moment of Fpr exists. Then the volume fractions in these models have the following bound,
with equality if and only if K is a sphere:

ρ ≤
∫ ∞

0

( d∑
i=0

(
d

i

)
ri−d

∫ ∞

0
sd−i dFpr(s)

)−1

dFpr(r).
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(ii) If the grain sizes in the dead leaves model and the growth speed in the Stienen model are
fixed, then

ρ ≤ 2−d ,

with equality if and only if K is a sphere.

Proof. (i) From the Brunn–Minkowski theorem it follows that

ld ({x : K(o, r) ∩ ϑK(x, y) �= ∅}) ≥ (r + y)d ld(K),

with equality if and only if K and ϑ(Ǩ) are translates of one another. Hence,
∫ ∞

0

∫
SO(d)

ld ({x : K(o, r) ∩ ϑK(x, y) �= ∅})ν(dϑ) dFpr(y)

≥
∫ ∞

0
(r + y)d ld(K) dFpr(y)

= ld (K)

d∑
i=0

(
d

i

)
ri

∫ ∞

0
yd−i dFpr(y),

with equality if and only if K is a sphere, since K and ϑ(Ǩ) are translates of one another for
all ϑ ∈ SO(d) if and only if K is a sphere. The result of (i) then follows from Theorem 4.1
and (3.5).

(ii) This result follows immediately from that of (i).

Unlike in the case of fixed orientations, the centrally symmetric sets do not all behave in the
same way now: here spheres are the only sets for which the upper bound of the volume fraction
is attained. Furthermore, all triangles and tetrahedra do not give the same volume fraction when
the orientations are random.

5.3. Discs, triangles, and other extremal sets

Finally, in this subsection we calculate the volume fraction of the Stienen model with grains
growing at equal speeds and that of the dead leaves model with fixed-sized grains of the following
shapes: discs, squares, and equilateral triangles in two dimensions, and spheres, cubes, and
regular tetrahedra in three dimensions. For fixed orientations we have, according to (5.1),

1
6 ≤ ρ ≤ 1

4 if d = 2 and 1
20 ≤ ρ ≤ 1

8 if d = 3,

with equality on the right-hand side of each inequality if and only if K is centrally symmetric
(for instance for discs, spheres, squares, and cubes) and equality on the left-hand side of each
if and only if K is a triangle and a tetrahedron, respectively.

In the case of random orientations it follows from Theorem 4.1 that

ρ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l2(K)

l2(K)2 + S1(K)2/(2π)
if d = 2,

l3(K)

l3(K)2 + S2(K)b̄(K)
if d = 3,

where S1 is the perimeter, S2 is the surface area, and b̄ is the mean width. All quanti-
ties are straightforward to calculate, except perhaps those for the tetrahedron, which were
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Table 1: The volume fraction in some special cases.

d Shape Fixed orientation Random orientation

2 Disc 1
4

1
4

2 Square 1
4 (2 + 8/π)−1 ≈ 0.22

2 Equilateral triangle 1
6

√
3(2

√
3 + 18/π)−1 ≈ 0.19

3 Sphere 1
8

1
8

3 Cube 1
8

1
11

3 Regular tetrahedron 1
20 (2 + 18

√
3
2 (1 − arccos 1

3 /π))−1 ≈ 0.068

given in Månsson and Rudemo (2002) as follows: l3(K) = 2
√

2/3, S2(K) = 4
√

3, and
b̄(K) = (3/π)(π − arccos 1

3 ). The volume fractions are summarised in Table 1.
Note that for squares and cubes the volume fraction is lower if the grains are randomly

rotated than if they have a fixed orientation, and vice versa for triangles and tetrahedra.

6. Ideas for future work

In this paper the orientation of the grains in the original process is either fixed or uniformly
distributed. A natural generalisation would be to let the grains have some anisotropic orientation
distribution. As pointed out by a referee, Theorem 3.2 should still hold in this case with �rot
defined as in (3.5), if the integration is performed with respect to the orientations. However, the
generalised Steiner formula cannot be used. With this generalisation, there are many questions
to consider, for example what distribution gives the highest volume fraction for a given shape.
For triangles a guess is that a distribution assigning one of two opposite directions with equal
probabilities would do so. Another issue is the connection between the orientation distributions
before and after thinning.
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