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THE RING OF ALGEBRAIC CORRESPONDENCES ON
A GENERIC CURVE OF GENUS g

SHOJI KOIZUMI

0. Let p be a prime number or zero and let g be a non-negative
integer. Then there is a coarse moduli space Mg for complete non-
singular irreducible curves of genus g defined over fields of characteristic
p, which is an irreducible variety over the algebraic closure Fp of the
prime field Fp. (Especially, FQ is also denoted by Q as usual.) ([8], [2]).
The curve corresponding to a generic point of Mg over Fp is called a
generic curve of genus g. The purpose in this note is to prove the
statement:

( I ) the ring «f (C) of algebraic correspondences on a generic curve
C is trivial, i.e., isomorphic to the ring Z of rational integers.
Let J(C') be a Jacobian variety associated to a complete non-singular
irreducible curve C. As it is well-known, there is a canonical isomorphism
between £(Cf) and the ring End (/(CO) of endomorphisms of /(CO, and
therefore the above (I) is equivalent to the following:

(II) we have, for a generic curve C,

End (J(O) ^ Z .

Despite much plausibility of the result, as far as the author knows, no
proof for our statement is found in any literature.(1)

The main tools for our proof are theories of moduli of curves and
of reductions of abelian varieties at a discrete valuation. The proof for
(II) is divided into two parts: first (1) the Jacobian variety J(C) is simple,
and secondly (2) using the simplicity of J(C), the relation End (J(C)) = Z
is proved. When the genus is one, the first part (1) is trivial, and the
second (2) is classical and well-known ([3]), while the statement (II) itself

Received March 3, 1975.
(1) Mr. Shigefumi Mori has kindly communicated to the author that he has exam-

ples of hyperelliptic curves of any genus and of any characteristic, each of which has
the ring of algebraic correspondences isomorphic to Z.
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is trivial in case g = 0. The cases of higher genera are fairly easily
deduced by induction on g, once one proves the simplicity of J(C) in
case g = 2 and = 3 and this is proved through dimensional arguments.
In Section 1, we summarize what we quote from the moduli theory.
We define the notion of the algebraic closure (or, briefly, a-closure) of
moduli for a curve and for an abelian variety, which is less fine than
the notion of the field of moduli for each ([6]), but fine enough for our
use here. A difference of these two notions is described in the items
1.1.1 and 1.1.2, which will never be used throughout the paper. Section
2 is devoted to recalling some research from the reduction theory with-
out explicit proofs. The proof of our result will be completed in Sec-
tion 3. Acknowledgement must be given to the result of conversations
with Mr. T. Sekiguchi which was useful for preparing this note.

1. Preliminaries from moduli theory.

We fix once for all, as "universal domain" a field K of character-
istic p9 which is algebraically closed and of infinite transcendental degree
over the prime field Fp. The fields which will be considered in the paper
are all contained in K. By a curve we always understand a complete
non-singular irreducible curve defined over an algebraically closed field,
except when the contrary is specifically stated.

PROPOSITION-DEFINITION 1.1.(2) Let X be an abelian variety or a
curve. Then there exists an algebraically closed field Kx uniquely de-
termined by X, which is characterized by the following two properties:

(aί) there is a variety Xf isomorphic to X which is defined over
Kx;

(an) if a variety X" is isomorphic to X and defined over a field K',
then the algebraic closure of Kf contains Kx.

The field KΣ as above is called the "algebraic closure of moduli for
X" (or briefly "a-closure of moduli for X").

Proof. First, we remark that the uniqueness of Kz is obvious from
our conditions (ai) and (aίί) once we prove the existence of it. We now
use the terminology and results in [6]. In the case where X is a curve,
the algebraic closure of the field of moduli for X satisfies the two

(2) Of course, we can discuss the notion of the "algebraic closure of muduli"
for a more general structure, e.g., for an FM-structure in [6]. But we restrict ourselves
only to the cases, with which we actually concern ourselves in this paper.
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conditions (ai) and (aii). In the case of abelian varieties, we take a very
ample divisor D on Z. The pair (X,stf(D)) consisting of X and the
maximal algebraic family ^(D), of positive divisors, containing D defines
an stf Structure (or inhomogeneously polarized variety in the sense of
[8]). The field of moduli for (Z, <$f(D)) exists ([6]), and as is easily seen,
the algebraic closure Kx of the field of moduli for (X,s/(D)) does not
depend on D but only on Z, and has our properties (ai) and (aii). This
completes the proof.

Remark 1.1.1. When we are concerned with the definition of the
α-closure of moduli for a curve X, the curve Z does not have to be
"complete and non-singular". In fact, if Z is an irreducible curve
(perhaps not complete, with singularity), and if X1 is a (complete non-
singular) curve birationally equivalent to Z, then the α-closure KΣl of
moduli for X1 satisfies the two conditions (ai) and (aii) on Z, which are
obtained, respectively, from (ai) and (aii) by substituting a "variety" and
"isomorphic", respectively, by an "irreducible curve" (perhaps not com-
plete, with singularity) and "birationally equivalent". On the other hand
the hypothesis that a curve is complete and non-singular, is quite es-
sential when we prove the existence of the field of moduli for the curve.
The collection of irreducible curves (perhaps not complete, with singu-
larity) satisfies the axioms of "FAf-system" in the sense of ([6] p. 40)
under the usual definitions of "fields of rationality" and of "transforms"
of curves by field isomorphisms, and under "birational equivalence" in
place of "isomorphy". The following Proposition 1.1.2 shows that the
field of moduli for an irreducible curve Z in this FM-system does never
exist if the universal domain is of characteristic p > 0 and if the en-
closure KΣ of moduli (which is defined as KXl in the above), does not
coincide with the algebraic closure Fv of Fp.

PROPOSITION 1.1.2. Let kf and k be two fields such that kr is a
purely inseparably algebraic extension of k, and Kf a regular extension
of k!. Then there is a field K between k and Kf such that K is regular
over k and kfK = K'.

Proof.™ It suffices to prove our assertion under the additional as-
sumption that W: k] equals characteristic p>0 of k, i.e., k; = k(t) with
1e k and V e k. Let (xly x2f , xn) be a set of algebraically independent

(3) This proof is due to G. Shimura.
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elements of K' over kf such that Kr is separably algebraic over

k'(x19 •••,#„), and K the set of all elements of K' separably algebraic

over k(x19 ,# n ) . Then the field K satisfies the conditions we required.

Q.E.D.

In the following we shall list some useful properties of the α-closure

Kx of moduli, most of which are directly derived from studies about

curves and abelian varieties developed in these years. Let Fp be the

algebraic closure of the prime field Fp. For the α-closure Kx of moduli

for X, we denote by dim Kx the transcendental degree of Kx over Fp.

1.2. Let Mg be a coarse moduli variety for curves of genus g over fields

of characteristic p. If C is a curve of genus g, then the a-closure Kc of

moduli coincides with the algebraic closure Fp(x) of the field Fp(x) generated

over Fp by the point x of Mg corresponding to C. Furthermore, we

have dim Kc = 0 (resp. < 1 or < Sg — 3) if g = 0 {resp. — 1 or > 2),

and in each case g > 0, the equality holds in the above inequality as to

dimKc if and only if C is a generic curve.

Proof. From the definition of coarse moduli spaces ([8] p. 99), for

any algebraically closed field F, there is a one-one correspondence be-

tween the set of all curves of genus g over F modulo isomorphism and

the set of all F-rational points on Mg. This proves Fp(x) = Kc.

As for the latter part, it is sufficient to show dim Mg = 3<7 — 3

(resp. = 1 or = 0 ) if g > 2 (resp. = 1 or = 0). In fact, this equality is

classical in the case when g = 0 or = 1 ([4]). If g > 2, the coarse moduli

space Jig for curves, of genus g, defined over fields of any characteristic

is an irreducible scheme over Z and we know that JtQ X Spec (Q) is an

irreducible variety of dimension Sg — 3, which is a coarse moduli variety

of curves of genus g over fields of characteristic zero. On the other

hand, Jίg X Spec (Fp) coincides with Mg, and has the same dimension as

Jίg x Spec (Q) because of the irreducibility of the scheme Jίg ([8] p. 103,

p. 143).

1.3. Let C and J{C) be a curve and its Jacobian variety, respec-

tively. Then we have Kc = KJiC). In particular, if X is a principally

polarized abelian variety of dimension 2, we have dim Kx < 3.

The first equality Kc = KJ(C) follows from Torelli's theorem, and the

second inequality does from the above equality and the fact that every
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principally polarized abelian variety of dimension 2 is isomorphic to a

Jacobian variety or the product of two elliptic curves ([15]).

Remark 1.3.1. If we use Mumford's theorem stated in [9], which

says that all abelian varieties can be lifted to characteristic zero, we

get an inequality dim Kx < \g(g + 1) for any abelian variety X of dimen-

sion g. Nevertheless, we have restricted our statement only to what

we need for later use.

1.4. Suppose that the universal domain is of positive characteristic

p. If X and Y are two isogenous abelian varieties of dimension g and

if X is of p-rank g (i.e., X contains pg points of order p), we have

Kx = Kγ.

Under the assumptions on X, there are only finitely many purely

inseparable isogenies X -* X' of height one and in this case, we have

KΣ — Kx, ([10] p. 146-7). The equality about the α-closures of moduli

for two isogenous abelian varieties X and X' are more easily obtained

in separable isogeny case without using the assumption on p-rank. Our

general case is just a combination of the above two cases.

2. Preliminaries from reduction theory.

Now we recall some research from the reduction theory of abelian

varieties. There are four items 2.1-2.4 we cite here: the first two 2.1

and 2.2 are fundamental and found in [14] or [7], the last one 2.4 fol-

lows from 2.3, and the third 2.3 will be reduced to a few well-known

facts. Let K be a field, and v a discrete valuation of K.

2.1. Let Y be an abelian subvarίety of an abelian variety X, both

defined over K. If the reduction X of X at v is an abelian variety,

then the reduction Ϋ of Y at v has an abelian subvariety Y of X as

its support.

2.2. Let X be an abelian variety over K such that all endomorphisms

λ in End(X) are defined over K. If X has an abelian variety X as its

reduction at v, we have a canonical injection: End (X) Q End (X) defined

by v-reduction: λ »-» λ.

2.3. Let J19J2 and J be three Jacobian varieties associated to three

independent generic curves, respectively, of genus g19g2 and g, where
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g = g1 + g2 and both g1 and g2 are positive. Then there exist three

abelian varieties J[, J'2 and Jr such that J[ = J19 J'2 = J2 and J' = J, and

that J[ x J'2 is a reduction of Jf at some discrete valuation.

2.4. Suppose that the universal domain is of characteristic p > 0.

If C is a generic curve of genus g, then the Jacobίan variety J(C) of

C is of p-rank g.

The proof of the assertion 2.3 is directly reduced to the following

three facts, each of which is known or easily proved.

2.3.1. If C = CΊ U C2 is a stable curve over an algebraically closed

field, consisting of two curves CΊ and C2 of genus g1 and g2 intersecting

at only one point transversally (where both g1 and g2 > 0 from the defi-

nition of "stable curves")? then C is of genus g = gx + g2 and a reduc-

tion of a curve C of genus g at some discrete valuation v ([13]).

2.3.2. Let C" be a curve and let C — CΊ U C2 be a stable curve as

in 2.3.1. If C is the reduction of C" at a discrete valuation v, then

there is a model J(C) of the Jacobian variety of C" with J(C) as its

reduction at some extension vf of v, where J(C) is a generalized Jacobian

variety of C ([2] Th. 2.5).

2.3.3. Let C = C1 U C2 be a stable curve as in 2.3.1. Then the

product /(CΊ) X J(C2) of Jacobian varieties of CΊ and C2 is a generalized

Jacobian variety of C in a natural way.

As for 2.4, according to the previous 2.3, the product Ex x x Eg

of g generic elliptic curves Z?* is a reduction of an abelian variety J'

isomorphic to J(C). Since Έγ x x Eg is of p-rank g and the p-rank

does not increase under the process of reduction, we can conclude that

J' and also J(C) are of p-rank g.

3. Main results.

After all necessary preparations in the previous sections, our theo-

rems will be proved straightforwardly.

THEOREM 3.1. The Jacobian variety J(C) of a generic curve C of

genus g > 1 is simple.

Proof. The case when g = 1 is trivial. In the cases of higher

genera, if we assume J(C) is not simple, J(C) is isogenous to a product

X x Y of two abelian varieties X and Y of lower dimensions. When
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g = 2 or = 3, we claim an inequality (*) dimίCXxΓ < dimKJ(C) = 3# — 3.
In fact if g = 2, both X and Γ are one dimensional and we have
dim KXxY < dim KΣ + dim Kγ < 2 < 3. If # = 3 and dim X = 2, the
inequality (*) is a consequence of dim Kx < 3. The latter inequality
dim Z x < 3 is obvious in the characteristic zero case. If the character-
istic is positive, J(C) is of p-rank 3 (cf. 2.4). Since X X Y isogenous
to J(C) is also of p-rank 3, the p-rank of X must be equal to 2 and
dim Kx < 3 because X is isogenous to a principally polarized abelian
variety (cf. 1.3, 2.4 and [10] p. 234). This proves the inequality (*)
dimKXxY < 3 + 1 < 6 = ά\mKJ{C). Since the inequality (*) contradicts
1.4, we have finished the proof for the case g = 2 or — 3. Now we
assume g > 4 and prove our theorem by induction on g. Assume that
J(C) is not simple and I is a proper abelian subvariety of J(C) of di-
mension < g/2. Let gγ and g2 be two positive integers such that gx +
g2 — g and neither g1 nor g2 equals dim X. In fact, such g1 and g2 can
be taken, because # > 4 . According to 2.3, a reduction of J(C) at some
discrete valuation v may be assumed to be the product J1 x J2 of the
Jacobian varieties Jx and J2 of two generic curves, respectively, of genus
gx and g2. Then the support X of the reduction X of X at v is an
abelian subvariety of Jx x J2, at least one of whose projections to J1

and J2 must be a proper abelian subvariety of the component Jt (i = 1,
or =2) . This contradicts the hypothesis of induction, which asserts
the simplicity of Jt. Q.E.D.

THEOREM 3.2. Let J{C) be the Jacobian variety of a generic curve
of genus g > 1. Then we have End (/(C)) = Z.

Proof. This will be proved by induction on g. If g = 1, the result
is well-known. In the general case, as in the proof of the previous
theorem, we may assume that J(C) has a product J1 x J2 of two Jacobian
varieties J19 J2 of positive dimensions, as its reduction at some valuation
v, such that End (Ĵ ) = Z, for i = 1,2 and that J19 J2 are not isogenous
to each other (cf. 2.3). Then End (/(C)) is isomorphic to a subring of
End(/i X J2) (cf. 2.2). On the other hand, End(/(C)) has no zero-divisor
because J(C) is simple, and End(/i x J2) is isomorphic to the ring Z®Z.
Hence, End (J(C)) must be isomorphic to Z as a subring of Z® Z, free
from zero divisors.

Q.E.D.
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We end the paper with a few superfluous words: the proofs of our
theorems need a good background and little originality.
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