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ON FINITE MOMENTS OF FULL
BUSY PERIODS OF GI/G/c QUEUES
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Abstract

For a GI/G/c queue, a full busy period is an interval that begins when an arrival finds c−1
customers in the system, and ends when, for the first time after that, a departure leaves
behind c − 1 customers in the system. We present a probabilistic proof of conditions
for full busy periods to have finite moments. For queues that empty, this result may be
deduced from results in the literature, but our proof is much easier. For queues that do
not empty, our proof still applies, and this result is new.
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1. Introduction

Consider the GI/G/c queue, which has c servers in parallel, and interarrival and service
times that are independent sequences of independent and identically distributed (i.i.d.) random
variables. Customers are served in the order of their arrival.

Let Sn be the service time of arrival n and Tn be the time between arrivals n and n+1, where
E(Tn) = 1/λ and E(Sn) = 1/µ, n ≥ 1. Let ρ = λ/cµ. We assume that ρ ∈ (0, 1), and call
the queue stable when this holds.

For the GI/G/c queue, Kiefer and Wolfowitz defined in [4] an ordered vector of work at
each server, as found by each arrival, and, for ρ ∈ (0, 1), showed that this sequence of vectors
converges in distribution to a unique stationary distribution, independent of initial conditions.
This implies that there is a unique stationary distribution of delay in a queue; let D be a random
variable with this distribution. For ρ ∈ (0, 1), it was shown in [5] that, for a generic service
time S,

E(Sr+1) < ∞ �⇒ E(Dr) < ∞ for r > 0. (1)

In [5], Kiefer and Wolfowitz introduced a full busy period, i.e. an interval that begins when
an arrival finds c − 1 customers in a system and ends when, for the first time after that, a
departure leaves behind c − 1 customers in a system. A conventional busy period begins when
an arrival finds the system empty and ends when, for the first time after that, a departure leaves
the system empty.

These definitions may be ambiguous when multiple events (arrivals and departures) occur
at the same time, for example when the interarrival and service times are lattice with the same
span. One way to remove ambiguity is to say that a full busy period begins at some t if the
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number of customers in a system is less than or equal to c − 1 at t−, and greater than or equal
to c at t+, and ends when the reverse transition occurs. This eliminates full busy periods of
zero length.

For c = 1, it has long been known that the converse of (1) is true; for an elementary proof
of (1) and its converse, see [11]. For c > 1, the converse does not hold. Remarkably, this was
not resolved until 1997 (see [6]).

The Kiefer and Wolfowitz work-vector process is defined at arrival times. For an arrival n,
the sum of the work-vector components is the total work in a system (or just work) found by
that arrival. For the corresponding continuous-time process, we define work at time t , V (t), as
the sum of the remaining service times of all customers in a system at time t .

We consider two cases, as follows.

Case A. A stable queue with c ≥ 2 and P(Tn > Sn) > 0.

For Case A, Whitt [10] showed that discrete- and continuous-time processes, such as the
process {V (t)}, are regenerative in the classical sense, where a cycle begins each time an arrival
finds the system empty. Cycles and cycle lengths are each i.i.d. Furthermore, he showed that
these processes are positive recurrent, which means that cycle lengths have finite mean.

Case B. A stable queue with c ≥ 2 and P(Tn > Sn) = 0.

For Case B, the system never empties. Sigman [8] showed that these processes are regen-
erative, but in a weaker sense. In particular, {V (t)} is a one-dependent regenerative process.
Cycles and cycle lengths are identically distributed; adjacent cycles and cycle lengths may be
dependent, but otherwise they are independent. The process {V (t)} is positive recurrent, with
a unique stationary version, as in Case A.

In Case B, cycles are more complicated. For c = 2, let (Vn1, Vn2) be the work vector found
by arrival n. For some fixed δ > 0, a cycle begins when arrival n + 1 occurs if Vn1 = 0,
Vn2 ≤ δ, and Tn > δ. When this occurs, the work vector found by arrival n + 1 is of the form
(0, (S − T | T > δ)); the work found by arrival n is gone when arrival n + 1 occurs.

For c ≥ 3 under Case B, see [7], where Lemma 1 gives explicit regeneration points, and
Equation (4.6) is an exact representation of the work vector when regeneration occurs. This
vector always has at least one zero component.

These details are not important in our analysis, except to note that when a cycle begins, an
arrival finds at least one idle server. Thus, a full busy period begins and ends within the same
cycle. In our analysis, B and Bf denote a busy period and a full busy period respectively, and
c ≥ 2.

The basic properties of {V (t)} that we need are the same in Cases A and B. In particular, for
a generic cycle length C, we have

E(C) < ∞. (2)

For either case, let V be the stationary work in a system. It is readily shown from similar
conditions for finite delay moments, for example in [2], that when the queue is stable,

E(Sr+1) < ∞ �⇒ E(V r) < ∞ for r > 0. (3)

Thorisson [9] established conditions for finite busy period and busy cycle moments, but only
under Case A. He obtained results not only for ordinary moments but also for more general
geometric moments and other functional forms. By a much easier analysis, but restricted to
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c = 1, Ghahramani and Wolff [3] showed that when the queue is stable,

E(Sr) < ∞ �⇒ E(Br) < ∞ for r ≥ 1. (4)

While a special case of results in [9], (4) was extended in [3] to an associated queue: (Sn, Tn),
n ≥ 1, are i.i.d. vectors, but Sn and Tn may be dependent.

Every cycle contains a random number (possibly zero) of full busy periods. Let N be a
generic number of full busy periods in a cycle of length C. We assume that they occur; that
is, P(N > 0) > 0. Sufficient conditions for this are either P(Tn > ε) > 0 for every ε > 0, or
P(Sn ≤ x) < 1 for every x > 0, where the second condition implies Case A. These conditions
are independent of c. For fixed c ≥ 2, the condition P(S > T1 + · · · + Tc−1) > 0, where the
Ti are i.i.d., is necessary and sufficient for P(N > 0) > 0.

In Section 2, we present a probabilistic proof of the following result.

Theorem 1. When the queue is stable and P(N > 0) > 0,

E(Sr) < ∞ �⇒ E(Br
f ) < ∞ for r ≥ 1.

Under Case A, Theorem 1 may be deduced from results in [9], but our proof is much easier, and
rests on results that are much easier to prove. As our proof also holds in Case B, Theorem 1 is
new for that case.

2. Proof of Theorem 1

Even in Case A, full busy periods are not i.i.d., because full busy periods within the same
cycle are dependent. In Case B, the situation is complicated further by having one-dependent
cycles. With one-dependent cycles, the even-numbered and odd-numbered cycles are i.i.d., so
that even in this case we can define the distribution of Bf as a long-run average, as is done for
various quantities in [12]. Thus, Bf has some distribution function F with this property: for
every x ≥ 0, F(x) is the long-run fraction of full busy periods with lengths not exceeding x.

Let Zf be the sum of the lengths of the full busy periods that occur within a cycle of length
C, where, from (2), E(Zf) < ∞. From this, we have that E(Zf | Zf > 0) < ∞ and

E(Bf) < ∞, (5)

which proves Theorem 1 for r = 1.
Now let Bfe be a corresponding equilibrium full busy period, with distribution function Fe

that has density fe(x) = [1 − F(x)]/ E(Bf). It is well known that, when finite, the moments
of Bf and Bfe are related, i.e.

E(Br−1
fe ) = E(Br

f )

r E(Bf)
for r ≥ 1. (6)

To complete the proof, consider the stationary version of the stable continuous-time work-
vector process, and suppose that E(Sr) < ∞, r > 1. At arbitrary time t , (total) work in system
V is also stationary.

We condition on event A: ‘a full busy period is in progress at time t’. Given that A occurs,
the remaining full busy period has distribution Fe, and we denote it by Bfe; see [12]. From (3)
and P(A) > 0, we have

E[(V | A)r−1] < ∞. (7)
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From time t onwards, we couple the c-server work-vector process with the work process of
the corresponding fast single-server queue, first introduced by Brumelle in [1]. This is a GI/G/1
queue with the same arrival process, where, now, a customer that has service time S is served
in time S/c. At time t , we give this queue the same amount of (total) work, i.e. (V | A). For
this queue, work decreases at rate c, where positive. For our c-server queue, work decreases at
rate c when a full busy period is in progress. After time t , both queues are fed the same arrival
process and service times. We now compare sample paths of these processes from t onwards.

Let Br be the duration of the remaining busy period for this single-server queue under these
conditions. As the work processes of these queues are identical while Bfe is in progress, we
must have Bfe ≤ Br.

We now perform another modification of (only) the single-server queue. Shift every arrival
time after t to the left, by the same amount, until the next arrival occurs at t . Call the queue
with this modification shifted, and let Bs be the duration of the remaining busy period for this
shifted queue. This shift can only make the remaining busy period longer. So Br ≤ Bs, and we
have

Bfe ≤ Bs. (8)

For the shifted queue, Bs may also be viewed as an exceptional first service busy period,
with exceptional first service S + (V | A), where S is a service time independent of all else.

Now E(Sr) < ∞ and (7) implies that E[S + (V | A)]r−1 < ∞ and, hence, by Lemma 2 of
[3], E(Br−1

s ) < ∞. Combining this with (6) and (8), we have E(Br
f ) < ∞, which completes

the proof.
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