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OPTIMAL GROUP PREVENTIVE MAINTENANCE OF A
SYSTEM WITH OBSERVABLE STATE PARAMETER

I. B. GERTSBAKH,* Ben Gurion University of the Negev

Abstract

A group of n independent identical machines with exponential
lifetimes is considered. Repair is made simultaneously for all failed
machines. It is possible to observe the 'state parameter', i.e. the
number of operating machines. It is proved that for two types of
critieria (minimal cost per time unit and maximal return per time unit)
the optimal repair policy is of the following type: repair when the
number of failed machines reaches some prescribed number k, 0 <
k~n.

GROUP MAINTENANCE: CRITICAL LEVEL: STOPPING TIME

We consider n identical machines, the lifetime T, of each one being an exponential
random variable: Ti> Exp (1). Machines fail independently; a unit cost is encountered
for a unit of idle time of one machine. If at some instant t* a decision is made to repair,
then all machines which are down at t* are renewed. It will be assumed that the renewal
takes a negligible time, but the cost for renewing k machines is Co + C 1 • k, Co, C 1 being
positive. At any time of system operation the information is available about the number
of actually operating machines. Our goal is to find an optimal repair rule which
minimizes the average long-run cost per unit of time.

Let {X, t~O} be the random process describing the number of failed machines at time
t, X, = O. Denote by r the class of all stopping times associated with X, We postulate
that the stopping time Tn = inf {t : X, = n} E r. Thus automatically for any T E r E[T ] ~

E[Tn ] <00.
For a fixed T the average long run cost per unit time equals the expected cost per

cycle divided by the expected cycle length (see for example Ross (1983), p. 78):

E[co+CIx'+ fX,dS]
B(T) = E[T]

In the following we assume that 0 < C 1 < 1. This is motivated by the natural demand
that the cost paid for one machine's idle time during its average life E[~] = 1 should
exceed its repair cost c..

It will be shown that there is an optimal stopping rule T* E r which minimizes B (T)
and that

(2)
T* E r* = {Tb k = 1, ... , n},

Tk = inf {t :X, = k }.
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In other words, the optimal replacement policy is to reset all failed machines at the
moment when the number of failed machines reaches some prescribed number k. The
search for the best Tk in T" is an easy task. Indeed, one can see that

(3)

where

k-t

Co+Ct. k+ I (mi+t-mJ.i
i=O

B(Tk) = ----------

(4)

j-I

mj = E[T(i)] = L l/(n - q),
q=O

mo=O.

j = 1,···, k,

A simple numerical check with (3), (4) will reveal the best k.
The fact that the optimal stopping rule T* E I'" follows from a more general result due

to Aven (1982) concerning the minimization problem of ratio-type functionals B(T) =
M(T)/C(T) in the class TEf.
E[~] can be represented in an integral form

(5) E[X,] = E[l"a (x:,) dS]'

(6)

where a(x) is the infinitesimal operator of X, (see Ross (1971), Formula (2) and Lemma
2.1(b)). In our case a(x)= n-x. Denote by A*=infTErB(T). Obviously, O<A*<oo.

One can prove, using the boundedness of E[T] in f that

inf E[CO+CI~+ fTX" dS-A *T] ~f inf C(A *, T) = 0
TEr Jo TEr

(see Aven (1982), Theorem 2.1, and a similar statement in Ross (1971), Lemma 4.1).
Replacing E[~] according to (5) and E[T] by E[S~ ds], C(A*, T) takes the following
form:

(7)

Proposition.

inf C(A *, T) = min C(A *, T).
TEr TEr*

Proof. Note that C I . n - A* < O. If this were not true, C(A *, T)~ co> 0, which con
tradicts (6). Since X,,-process is non-decreasing, it follows immediately from (7) that the
optimal stopping rule does exist and is defined as

(8)

Clearly, T* E T and this T* minimizes B (T).
Okumoto and Elsayed (19g3) considered the same group maintenance scheme, but

they looked for the best age replacement policy. Obviously, the decision to repair all
failed machines after a fixed time to had elapsed since the last renewal is a particular
choice of a stopping time and thus it cannot be superior to the best choice of T in f.
However, the difference in minimal costs is often rather small. For example, Okumoto
and Elsayed had found that for n = 10 machines, Co = $10, Ct = $2, the optimal age for
repair is to= 1·2 x (average machine's lifetime). It will result in an average cost of $8·17
(the data given in their numerical example on page 673 are not correct due to an
arithmetic error). Our computation shows that the optimal stopping rule is to reset the
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(9)

(10)

system immediately after k = 7 machines had failed. This will give the average cost of
$7·99.

It is worth noting that the search for optimal k in (3) can be simplified by using the
following interesting result of Aven (1982), Proposition 2.4: Let B; = B(Tk), where T* is
the optimal stopping time corresponding to k = k*. Then B; is non-increasing for
k ~ k *, and B; is non-decreasing for k ~ k *.

The group preventive maintenance scheme considered above is the same as in the
model of the so-called 'multiline system', described in Gertsbakh (1977), Chapter 3,
Section 5. The difference lies in the cost functional. In the above book the problem was
stated as the maximization of the expected return per unit of time, under the assump
tion that the repair of k machines lasts time do+dlk, do>O, dl>O. The return
functional is

E[l" (n - X,) ds]
D(T) = .

E[T+do+dl~]

Let SUPTEr D(T) = /-L *. A reasoning similar to that leading to (6) gives that the supremum
over I' of the expression

L(IL *, or)= E[l"(n - X,)ds - IL*or- IL*d o- IL*d1X,]
must be zero: SUPTEr L(/-L *, T) = o.

Using (5) and a (x) = n - x, we obtain that

L(IL *, or)= -dolL*+ E[l"((l- d 1 • IL*)(n - X,)- IL*) ds1
As in the proposition (see also Ross (1974), Theorem 4.2(ii)), it is easy to check that

sup L(/-L *, T) = max L(/-L *, T).
TEr TEr*

Indeed, (l-d l./-L*»O, because otherwise for any TEf, L(/-L*, T)~-do/-L*. It is seen
from (10) that the optimal stopping time is

T* = inf {r : (1- dl/-L *)(n - X,) -/-L *~ O} = inf {t: X,~n -/-L */(I-/-L *d l)}.

If all machines were operating without idle time then the average return would be
n/(1 + do+ nd t ) < n/(1 + nd 1) . This implies that n -/-L*/(I-/-L *d l) > O.

A numerical investigation of (9) in the class T" was given by Gertsbakh (1977)
without proving, however, the optimality in this class.
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