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THE N-DIMENSIONAL APPROXIMATION CONSTANT*

G. SZEKERES

I describe recent advances in our understanding of the simultaneous

approximation problem.

It is a nice occasion to speak at Kurt Mahler's 80th birthday.

Originally I was to speak on Abel's functional equation under the somewhat

slender excuse that Kurt was working recently on functional equations

related to Abel but than I thought it better to change my subject.

Let me first remind you of the simultaneous approximation problem.

Given a set of n non-zero real numbers which I write in the vector

notation as

We want to approximate JC by rational fractions p_/q = {p.,/q, ,p /q}

with common denominator q. Dirichlet's box principle tells us that we

can always determine p_/q in infinitely many ways so that

p./q| < q , i-1 n .

I shall use the number max q|qx. - p . | as a measure of goodness of
i x x

approximation. Let us define the approximation constant of JC, C(X),

to be the infimum of all c > 0 for which the inequality
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ax q | qxi - p±|
 nmax q

i

has infinitely many solutions in integers q > 0, p. ,... ,p . We know of
1 n

course that c £ 1 but c < 1 is actually known since Minkowski,

whatever x. The n-dimensional approximation constant C is the
— n

supremum of C(x) for all possible JC. So C is the smallest positive

number for which the above inequality has infinitely many integer solutions

for all c = C + e and all real JC. The principal problem then is to

determine the exact value of C . We know from Hurwitz that C, =
n 1

but for no n > 1 is the value of C known.

n

There is a curious bifurcation of the problem into two separate

questions, which appears already in the case of n = 1 although not as

blatantly as for n > 1. We may ask for C when all possible non-zero
vectors x are taken into consideration, and ask for the value C* when

— n

only those x_ a r e admitted for which x ,... ,x together with 1 form a

rational basis of a real algebraic number field of degree n+1. We

certainly must have C* < C , with strict inequality if the worst

n — n

approximable vectors JC are not the algebraic kind. For n = 1 we know

of course that C* = C ; for C(x) to be =1//E , x must be in the
quadratic number field of fs.

Although the exact value of Cn is not known, there exist good

estimates from below. In 1927 FurtwSngler showed that C >_ X//K where

A is the absolute discriminant of any real number field of degree n+1;

so to obtain the strongest FurtwHngler estimate one has to take the real

number field with smallest possible discriminant. For n = 3 this

happens to be 23 (namely the field of x3-x-l = 0) so according to

FurtwSngler C >̂  1//5T . Davenport later significantly improved on

FurtwHngler. Using Kurt Mahler's methods from the geometry of numbers he

showed that /K in the inequality can be replaced by D , the critical

determinant of the (n+1)-dimensional region
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Fortunately for those who are not familiar with critical determinants,

Davenport's inequality has a more mundane form. In fact he shows, using

a remark by Cassels, that

D < SE /V , hence C > V //E
n — n,s n,s n — n,s n,s

where A is the smallest absolute value of discriminants of real
n,s

number fields of degree n+1 which have s pairs of complex conjugate

algebraic conjugates (so that 2s < n) and 2 ^ is the greatest
n, s

volume of an origin-centred parallelotope inscribed in the region

f f IxJ f t i(*i2+x
s+i

2) ± X •
i=l X i=n-2s+l * s + x

(Warning to readers of Davenport's 1955 paper: there is some mix-up with

the factor 2 n ) . For instance in the case of n=2, s=0 the Davenport

region is the double hyperbola |x |.|x | _< 1 , and in the case of

2 2
n=2,s=l it is the disk x + x _< 2 . Since the unit cube can always

be inscribed in the Davenport region, V >̂  1 , and FurtwHngler is a

n / s

corollary. Indeed no greater parallelogram can be inscribed in a circle

with radius /? and so V = 1, but clearly V = 2, and since 49
2,1 Z,Uis the minimal discriminant of a totally real cubic field (namely of

x +2x -x-l=O), we obtain the improved estimate C 21 2/7

This estimate is originally due to Cassels.

The beautiful inequality of Davenport has several interesting features.

Notice first that to compute V //K we need to know two wholly

n,s n,s

unrelated quantities: one is the minimal absolute discriminant of real

number fields of degree n+1 and various reality types. This at present

is a problem for the computer and as computer techniques improve, so will

(hopefully) our knowledge of minimal discriminants. For instance

A3,l = 2 7 5 ' A3,0 = 7 2 5

A. = 1609, A = 4511 , A = 14641 (Hunter 1957),
4^2 4 / X 4 / U

and figures are now available up to n=6.
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The other quantity which appears in Davenport's inequality, namely V ,

n,s

is a harmless looking quantity and one would think at first sight that

its order of difficulty is that of a hard student competition problem

(in fact in this year's SUMS competition I did set a problem nearly

equivalent to the calculation of V ) . On closer inspection it turns

4,2

out to be much tougher than it looks and it is only comparatively recently

(1980) that Tom Cusick was able to show that V = 2 and V = i/27'.
3,1 -3,"

Indeed details for the second result were so bothersome that Cusick throws

up his hands in despair and omits details. Quite recently Sam Krass (to

whom I shall come back later) has obtained through simpler calculations

the inequalities
V4,2 ± 1 6 / 9 ' V4,l ± 2 ' V4,0 ± 4 '

and more general inequalities for all V . I commend this problem to
n,s

your attention.

My other remark concerning Davenport is this: Although discriminants

of number fields do appear in the inequality, from Davenport's proof it

does not at all follow that the inequality still holds if we restrict x_

to bases of real number fields. For n=2 this was only quite recently

settled by Cusick and Adams, and we now know that C* = 2/7. It seems

likely to me (though this could be a minority opinion) that also C is

equal to 2/7 and indeed that Davenport's inequality is a strict equality

for all n, both for C and C* , but this is certainly a very
n n

hazardous guess.

Now to a quite recent result of Sam Krass. Some twenty years ago I

proposed a continued fraction-like n-dimensional approximation algorithm

for the practical calculation of simultaneous approximation fractions for

a given JC . Since that time there was a proliferation of such algorithms,

some supplying all good approximations but only at the expense of

arithmetic complexity. If you are not content with regarding such an

algorithm merely as an object of interest for its own sake, like for

instance Jacobi's, but wish to turn it into a useful mathematical tool

* Sydney University Mathematics Competition
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then arithmetic or geometric simplicity is of overriding importance.

Whether all good approximations are really supplied by the algorithm is

not necessarily a decisive factor. Suppose that the algorithm supplies

infinitely many really good approximations, then it is conceivable that it

can be used for the purposes of the approximations constants C and C* .

It is not necessary for me here to go into details of the algorithm itself.

The essential point is that instead of approximating JC by single rational

points (in n-space) I use rational vertices of an n-simplex inside which

the point is situated. The algorithm merely supplies a standard method

for chopping up n-space into such simplexes. For instance when n=l , the

chopping up corresponds to a Farey dissection of the real line and the

vertices of the intervals are just consecutive approximation fractions

(including intermediary fractions) of the continued fraction development

of x.

Suppose that m. /mn *-s t n e approximation fraction of x. at

the j-th vertex; then we can form the matrix M = (m. ), i,j = 0,...,n ,

and because of the way the algorithm proceeds, we always have det M = ±1.

It follows that the volume of the simplex is just (n!.m ...m )

The approximation number of JC with respect to the O-vertex

(0) . (0) .
m /m = m/m say, is

m . Max | mm. - m. | = m . Max | x. - m. /m |
0 Y u 1 i. \J i *̂ 1 u

Now as the denominators grow, the simplexes become quite small, and

it is better to scale them up to a size where the volume is just 1/m!

That is, we multiply the coordinates by the factor X = (niQ m ) .

Let us write w± = mQ
(i ) / (m0

(0)... m 0
( n ) ) 1 / ( n + 1 ) so that JJ w± = 1 ;

also let us write
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Then the approximation number is

n+l i. .nW0 -^Kil

Here then is a "continuous" generalization of the approximation number.

Given a simplex of volume 1 with n arbitrary real vertices and one

vertex at the origin £ , n+l "weights" w. at the vertices with
n
| f w. = 1 , and a point £ inside the simplex, we can assign an
i=0 1

approximation number to his configuration consisting of a simplex, weights

and a point. At each stage the algorithm supplies a unique new

configuration and hence a corresponding approximation number, and it was

my hope to show (perhaps with substantial computer help) that whatever

the initial simplex configuration, eventually one will always land with a

configuration of appropriately small approximation number, obtaining

thereby an upper estimate for C .

This was also the original starting point of Sam Krass; but somewhat

unexpectedly, success came from the opposite direction: an estimate from

below, and referring to C* . I shall confine myself to stating his main

result; the computational details are quite heavy.

THEOREM OF KRASS. Let F be a real algebraic number field of degree

n+l with s pairs of conjugate complex algebraic conjugates and absolute

discriminant A(F). Then to every e > 0 there exists a rational basis

l» £,,...,£ of F such that
x n

C(£) > Vn^s//ATF) - e .

That is, Davenport's inequality is achieved within the relevant field.

This is a nice sharpening of Davenport's theorem. One of the

interesting aspects of the method of proof is that Davenport's expression

appears very naturally, without any reference to lattice constants and the

geometry of numbers. This seems to indicate that the simplex method is in

some sense complementary to the geometry of numbers. The algorithm itself

does not appear in the argument, but weighted simplexes are extensively

used, strengthening my belief that a simplex algorithm of this kind is the
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most effective extension of the ordinary continued fraction process.

I join everyone here in wishing Kurt Mahler many more years of

activity.
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