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NEAR-RING-SEMIGROUPS OF CONTINUOUS SELFMAPS

K.D. MAGILL, JR.

We find necessary and sufficient conditions on a topological space X so that S(X), the
semigroup of all continuous selfmaps of X, is isomorphic to the multiplicative semigroup of
a near-ring. The analogous problem is also considered for the semigroup of all continuous
selfmaps which fix some point of X.

1 INTRODUCTION

For general information about near-rings and, in particular, for terms not defined
here, we suggest that [7] be consulted. In [5] Jones and Ligh introduced the notion of
an NR-semigroup (abbreviation for near-ring-semigroup). A semigroup is defined to be
an NR-semigroup if it is isomorpliic to the multiplicative semigroup of some near-ring.
The definition of a near-ring does not require its additive group to be abelian. When
it is, the near-ring is referred to as an abelian near-ring. In keeping with the preceding
terminology, we define a semigroup to be an abelian-near-ring-semigroup (hereafter
referred to as an A NR-semigroup) if it is isomorphic to the multiplicative semigroup of
an abelian near-ring.

Our purpose in this paper is to characterise those topological spaces X such
that S(X) (the semigroup of all continuous selfmaps of X) is an NR-semigroup or
an ANR-semigroup. It is, of course, quite well-known that if X supports a group struc-
ture compatible with its topology, then one can define pointwise addition of functions
(/ + 9){x) = f(x) + g(x) for all f%9 £ S{X) and x € X and the result is a near-ring
with S(X) as its multiplicative semigroup. The question which must be answered is,
"Are there instances where there is no group structure compatible with the topology of
X, and yet it is still possible to define a binary operation on S(X) so that the result
is a near-ring whose multiplicative semigroup is S(X)?" We will see that within a
large class of spaces, the answer is no. In other words, if such a binary operation on
S(X) exists, then there is a binary operation on X such that X, with this operation,
is a topological group. Moreover, the binary operation on S(X) induced by the binary
operation on X will coincide with the original binary operation on S(X). Once we
get this result, we are then in a position to make use of all those results concerning
topological structure of a space which supports a topological group. We are able to
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278 K.D. Magill, Jr. [2]

show, for example, that if X is a locally compact, connected, locally connected, sep-
arable metric space with the property that every point has a neighbourhood which is
an absolute retract, then S(X) is an ANR-semigroup if and only if X is homeomor-
phic to either some Euclidean TV-space, an M-dimensional torus (where M is either
finite or countably infinite) or the product of two such spaces. We get an analogous
result for O-dimehsional spaces. Specifically, we show that if X is any locally compact
O-dimensional metric space, then S{X) is an ANR-semigroup if and only if X is either
discrete, homeomorphic to the Cantor discontinuum, or homeomorphic to the product
of a discrete space and the Cantor discontinuum.

The semigroup S(X) does not have a zero point except in the trivial case where
X consists of one point. The most natural subsemigroups of S(X) which do have zeros
are those of the form SP(X) consisting of all functions in S(X) which fix some point
p & X . The constant function which maps everything into the point p is, of course, the
zero of Sp(X). We also investigate these semigroups and we show that if X is a locally
compact, O-dimensional metric space whose derived set does not consist of exactly one
point and p is any point of X, then SP(X) is an ANR-semigroup if and only if X

is either discrete, homeomorphic to the Cantor discontinuum or homeomorphic to the
product of a discrete space and the Cantor discontinuum.

2 SOME TOPOLOGICAL PRELIMINARIES

Def in i t ion 2 .1 . A topological space X is admissible if it is Hausdorff, first countable

and for each pair of convergent sequences {xrl}^i.j and {yn}^Li where the xn are all

distinct, and in addition, all differ fromlima;„, there exists a positive integer TV and a

continuous selfmap / of X such that f(xn) = yn for all n > N.

PROPOSITION 2.2. Every O-dimensional metric space is admissible.

PROOF: Let {xn}'^L1 and {yn}£Li be two sequences as in the previous definition
and suppose h m x n = p and limyn = q. Define a function / by f(xn) — yn and
f(p) = q. Then / is a continuous function from the closed subset {a;n}^_j U {p} of X

into X and, as such, has an extension to a continuous selfmap of X by Corollary 3 of
[6, p.281]. |

PROPOSITION 2.3. Let X be a first countable, normal, Hausdorff space with the

property that each point of X has a neighbourhood which is an absolute retract. Then

X is admissible.

PROOF: Let {xn}^L1 and {yn}^L! be two sequences as in Definition 2.1 with
l i m z n = p and limj/n = q. Then q is contained in the interior of some H C X which
is an absolute retract. Choose a positive interger N such that yn £ H for n > N and
define f(xn) — yn for n > TV and f(p) = q. Then / is a continuous function from
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[3] Near-ring-semigroups 279

the closed subset {xn}^LN+i U {p} of the normal space X into the absolute retract H

and, consequently, has an extension to a continuous function which maps all of X into
H. I

Some r e m a r k s . Between them, Propositions 2.2 and 2.3 assure us of an ample supply
of admissible spaces. To be sure, the two classes of spaces described are just about
disjoint. The only O-dimensional spaces which satisfy the hypothesis of Proposition
2.3 are the discrete spaces. But many other spaces (not necessarily connected) also
satisfy the hypothesis. Absolute retracts include all Euclidean N -cells, all Euclidean
TV-spaces and all dendrites [1, p.138] so all these spaces are admissible as well as all
normal Hausdorff spaces with the property that each point has a neighbourhood which
is homeomorphic to one of these spaces. In particular, all locally Euclidean spaces are
admissible.

For an example of a space which is not admissible, take X = [0,1] x N°° where
N°° is the one-point compactification of the natural numbers. Consider

xn = (0, (n + l) /2) for n odd,

xn = (2/n, (n + 2)/2) for n even,

yn = xn+1 for all n.

The sequences {xn}^L1 and {yn}%Li both converge to (0,oo) but no matter how
large one takes N to be, there does not exist a continuous selfmap / of X with the
property that f(xn) = yn (or f(yn) = «„ ) for all n > N. This example together with
Propositions 2.2 and 2.3 shows that the product of two admissible spaces need not be
admissible.

3 T H E FULL SEMIGROUP OF CONTINUOUS SELFMAPS

The first result of this section is the fundamental lemma which, among other things,

tells us that for admissible spaces, S(X) can be the multiplicative semigroup of a near-

ring only if X is a topological group.

LEMMA 3.1. Let X be any admissible space and let © be any binary operation

whatsoever on S(X) with the property that

(3.1.1) ( /®g)oh = (f oh)®(goh) forallf,g,heS(x).

Fix any a £ X and define a binary operation + on X by

(3.1.2) x+y = (< x > © <y >)(a)
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where < x > and < y > denote the constant functions which map everything into x

and y respectively. Then the following statements are all valid:

(3.1.3) (/ © g)(x) = f{x) + g(x) for all x € X

and f,g e S(X);

+ is a continuous map from X x X to X;

+ is associative if and only if © is associative;

+ is commutative if and only if © is commutative;

(X, +) has an identity if and only if(S(X),®)

has an identity;

(X, +) is a topological group if and only if

(S(X), ©) is a group;

(X,+) is an abelian topological group if and only if

(S(X),(B) is an abelian group.

PROOF: Let x 6 X and f,g e S(X), and use both (3.1.1) and (3.1.2) to get

f(x)+g(x) = (< f{x) > © < gix) >)(o)

(3.1
(3.1

(3.1

(3.1

(3.1

(3.1

•4)

.5)

.6)

•7)

.8)

.9)

= Uf®g)° < * >)(o) = if®g)i< x > (a)) = if®g)ix)

which verifies (3.1.3). To show that + is continuous, suppose l im(z n , y n ) = (p,g).
Then l i m z n = p and limj/n = q. If both p and q are isolated, it is immediate
that l im(x n + yn) = p + q so we assume that one of them, say p, is not isolated.
Consequently, there is no loss of generality if we assume that the xn are all distinct
and different form p . Since X is admissible, there exists a positive integer TV and an
/ 6 S{X) such that /(a;n) = yn for all n> N and it certainly follows that / (p) = q.

Let S be the function in S(X) which is defined by 5(x) = x for all x £ X. Then 6®f

belongs to 5(JV) and we use (3.1.3) to get

l im(x n + yn) = Ii

and since X (and hence X x X as well) is first countable, this proves that + is
continuous.

It is immediate from (3.1.3) that if + is associative then © must also be associa-
tive and the converse follows just about as easily from (3.1.2) so we omit the details.
Consequently, (3.1.5) is valid.
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[5] Near-ring-semigroups 281

Statement (3.1.6) follows immediately from (3.1.2) and (3.1.3) so we next consider

(3.1.7). Suppose (S(X) ,©) has and identity and denote it by e. Choose any b £ X

and use (3.1.3) to get

e(b) + x = e(b)+ < x > (b) = (e © < x >)(&) = < x > (6) = x.

In a similar manner, x -f- e(6) = x so that e(b) is the identity for (X, +). Conversely,

one easily shows that if 0 is the identity for (X,+), then < 0 > is the identity for

We next verify (3.1.8). Suppose (S(X) ,©) is a group. We must show that (X,+)

is a topological group. Again, we let 8 be the map in S(X) which is defined by
8(x) = x for all x G X and we let e denote the identity of (S(X),®). Then there
exists a continuous selfmap a of X such that 8 ® cr — cr ® 8 = e . As we showed in the
verification of (3.1.7), e(6) is the identity for (X, +) , regardless of which point x G X

we choose. In other words, e is a constant function and we will denote the point into
which e maps all of X by 0. With this notation, we now have 8(B<T = <T(B8=<0>.

This, together with (3.1.3) results in

x + <T(X) = <J(X) + x = 0

for each x £ X. Thus, <r(x) is the inverse of x in ( X , + ) and since cr is continuous, it

follows that (X,+) is a topological group. Conversely, suppose (X,+) is a topological

group. Then © is associative by (3.1.5) and (S(X),(B) has an identity by (3.1.7).

Moreover, that identity is < 0 > where 0 is the identity of (X, +). Since (X, +) is

a topological group, the function cr which sends x to its inverse is continuous and

consequently, a o f G S(X) for each / G S(X). It follows from (3.1.3) that

/ © (a o / ) = (cr o / ) © / = < 0 >

so that each element in (S(X),(B) has an inverse. Of course, (3.1.9) follows immediately
from (3.1.6) and (3.1.8) and the proof is complete. |

Our next two results follow from the previous lemma and they permit us to use
the wealth of information available about topological groups in our investigation of
NR-semigroups and ANR-semigroups. We will assume without further mention that
our topological groups are all Tg • This, of course, means that they are all regular and
Hausdorff [4, p l9 , Theorem 4.8].

THEOREM 3.2. Let X be an admissible space. Then S(X) is an NR-semigroup if

and only if there exists a topological group G such that X and G are homeomorphic

as topological spaces.
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THEOREM 3.3. Let X be an admissible space. Then S(X) is an ANR-semigroup

if and only if there exists an abelian topological group G such that X and G are

homeomorpliic as topological spaces.

The proofs of the two theorems are quite similar, so we discuss only the proof of
the latter.

PROOF OF THEOREM 3.3: Suppose first that S(X) is an ANR-semigroup. Then

there exists an abelian near-ring (N, *, •) and an isomorphism <p from S(X) onto the

multiplicative semigroup of (TV,+, •). Define a binary operation © on S(X) by

It is a routine (although somewhat tedious) matter to show (S(X),(B) is an abelian
group and ( / © g) o h = (foh)®(goh) for all f,g € S(X). In other words,
(5(X),©,o) is an abelian near-ring. It now follows from Lemma 3.1 that there ex-
ists a binary operation + on X such that (X, +) is an abelian topoligical group. Thus
there exists an abelian topological group G such that X and G are homeomorphic as
topological spaces.

Conversely, suppose such a topological group G exists and let t be any homeo-

morphism form X onto G. Define a binary operation + on X by

where * denotes the group operation on G. One shows in a straightforward manner

that (X, + ) is an abelian topological group (which is, of course, topologically isomorphic

to (<?,+)) and so now we can define a binary operation © on S(X) by

(f ® g)(x) = f(x) + g(x)

for all x £ X and f,g £ S(X). Then (S(X),(B,o) is an abelian near-ring which
implies that S(X) is an ANR-semigroup. |

The next several results follow quickly from Theorems 3.2 and 3.3 and classical

results from the theory of topological groups. In order to discuss these, it is convenient

to indroduce some notation and to agree upon certain conventions. The symbol RN

will denote the Euclidean N -space and SN will denote the Euclidean N -sphere. That

is

SN = {x € RN+1: ||z|| = 1}.

S1 is, of course, just the unit circle in R2 and is an abelian topological group when

its points are regarded as complex numbers and multiplied accordingly. The M-

dimensional torus TM is the topological group formed by taking the product of M
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copies of the topological group 5 1 . T1 , of course, coincides with S 1 . Here, we allow
M to be countably infinite as well as finite so that an M -dimensional torus may well be
the product of a countably infinite number of copies of S1 . However, when we write R
or 5 ^ , N will always denote a positive integer. Each RN is also an abelian topological
group with the usual pointwise addition. There will be times when we will be regarding
R and T as topological groups and other times when we will be regarding them
as topological spaces only. The context will make the situation clear. And now we are
ready to prove

THEOREM 3.4. S(SN) is an NR-semigroup if and only if N = 1 or 3 and it is an
ANR-semigroup if and only if N = 1.

PROOF: Since S1 can be regarded as an abelian topological group, it follows im-
mediately from Theorem 3.3 that 5 ( 5 J ) is an ANR-semigroup. Now let G be the
collection of all quaternions of norm 1. Under the usual multiplication of quaternions,
G is a nonabelian topological group whose underlying space is homeomorphic to S3 [3,
p374]. Thus, Theorem 3.2 implies that 5(S 3 ) is an NR-semigroup. If N ^ 1 or 3 then
there exists no group structure on S compatible with its topology [2, p.105] so that
Theorem 3.2 tells us that S(SN) is not an NR-semigroup when n ^ 1 or 3. We have
now shown that S(SN) is an NR-semigroup if and only if n = 1 or 3 and S ^ 1 ) is
an ANR-semigroup. To complete the proof we must show that, although 5(S 3 ) is an
NR-semigroup, it is not an ANR-semigroup and because of Theorem 3.3, this will be
accomplished when we are able to demonstrate that there exists no abelian group struc-
ture on S3 which is compatible with the topology on S3 . But Theorem 42 of [8, p.169]
tells us that the only compact, connected and locally connected metric spaces which
have abelian group structures compatible with their topologies are the M -dimensional
tori. Since S3 is homeomorphic to none of these, the conclusion follows. |

THEOREM 3.5. Let X be a locally compact, connected, locally connected, sep-

arable metric space which is admissible. Then S(X) is an ANR-semigroup if and only

if X is homeomorphic to either some Euclidean N -space, some M -dimensional torus

or the product of two such spaces.

PROOF: Suppose X is homeomorphic to one of the spaces mentioned. They can
all be regarded as abelian topological groups so it follows from Theorem 3.3 that S(X)

is an ANR-semigroup.

Conversely, suppose S(X) is an ANR-semigroup, Then X is homeomorphic to an
abelian topological group G by Theorem 3.3 and it follows from Theorem 43 of [8,
p.170] that G is topologically isomorphic to either some Rw, some TN (in [8], T is
denoted by K) or to some RN x TN . |
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Some remarks. It may appear at a glance that our hypothesis is stronger than it
needs to be in order to invoke Theorem 43 of [8] but there is a blanket assumption
there that the groups are second countable [8, p.126].

THEOREM 3.6. Let X be a locally compact 0-dimensional metric space. Then the

following statements are equivalent:

(3.6.1) S(X) is an ANR-senu'group;

(3.6.2) S(X) is an NR-semigroup;

(3.6.3) X is either discrete, homeomorphic to the Cantor

discontinuum or homeomorphic to the product

of a discrete space with the Cantor discontinuum.

PROOF: We first show that (3.6.3) implies (3.6.1). Suppose X is descrete. If X

is finite and has N elements then X is homeomorphic to the underlying space of the
discrete cyclic group of order N . If X is infinite, it is homeomorphic to the underlying
space of any free abelian group (endowed with the discrete topology) on any set whose
cardinality agrees with that of X. Thus, Theorem 3.3 applies and we conclude that
S{X) is an ANR-group whenever X is discrete.

Now let Z2 denote the cyclic group of order two and let G be the topological
group formed by taking the product of a countably infinite number of copies of Z2 • G

is certainly abelian and moreover, its underlying space is homeomorphic to the Cantor
discontinuum [2, p24] so if X is homeomorphic to the Cantor discontinuum, then S(X)

is an A NR-semigroup. Finally, since any discrete space Y can be endowed with an
abelian group structure which is compatible with its topology, then the product Y x G

is also an abelian topological group so that S(X) is an ANR-semigroup whenever X

is homeomorphic to such a space.

It is immediate that (3.6.1) implies (3.6.2) so that we have only to show that (3.6.2)
implies (3.6.3). Suppose S(X) is an NR-semigroup. Then Theorem (3.2) tells us that X

is homeomorphic to a topological group G. Since a topological group is homogeneous,
either no point of G is isolated or all points of G are isolated. If all points are isolated,
then G (and hence X as well) is discrete. We consider the case where no point of G is
isolated. According to Theorem (7.7) of [4, p.62], G contains a compact open subgroup
H. Topologically, H is a compact 0-diniensional metric space with no isolated points
and, consequently, is homeomorphic to the Cantor discontinuum [9, p217, Corollary
30.4]. For any a 6 G the map t defined by t(x) = ax (we use multiplicative notation)
is a homeomorphism from G onto itself which carries H onto the left coset of aH.

Thus each left coset is an open subset of G which is homeomorphic to the Cantor
discontinuum and so we have G = L){Ha : a £ A} where the Ha are the mutually
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[9] Near-ring-semigroups 285

disjoint left cosets. For each a € A, let ha be a homeomorphism from Ha onto the
Cantor discontinuum K and define a map from G onto K x A (let A have the discrete
topology) by h(x) = (ha(x),a) where Ha is the coset which contains x. Then h is
a homeomorphism and we see that in this case, X is homeomorphic to the product
of a discrete space with the Cantor discontinuum. We remark that if A is finite, then
K x A is homeomorphic to K. This is not the case if A is infinite since then K x A

is not compact. I

We conclude this section with one more result.

THEOREM 3.7. Let X be a countable metric space. Then the following statements

are equivalent:

(3.7.1) S(X) is an ANR-seznigroup;

(3.7.2) S(X) is an NR-semigroup;

(3.7.3) X is homeomorphic to either the countably infinite

discrete space or to the space of rational numbers

PROOF: (3.7.3) implies (3.7.1) by Theorem (3.3) so all we really need to show is
that (3.7.2) implies (3.7.3). Suppose (3.7.2) holds and let G be a group which is home-
omorphic to X . Since any toplogical group is homogeneous, G is either discrete or no
point is isolated. But a countably metric space with no isolated points is homeomorphic
to the space of rational numbers by a well-known result of Sierpinski [6, p.287] and the
conclusion follows. |

4 SEMIGROUPS OF THE FORM SP(X)

Recall that Sp(X) denotes the semigroup of all continuous selfmaps of X which
fix the point p £ X . As we mentioned in the introduction, these are perhaps the most
natural subsemigroups of S(X) which contain zeros. We characterise in this section
certain O-dimensional spaces, metric spaces X for which Sp(X) is an NR-semigroup or
an ANR-semigroup. In contrast to the situation for S(X), any near-ring having Sp(X)

for its multiplicative semigroup will have a two-sided multiplicative zero. Our first two
results are straightforward consequences of Theorems 3.2 and 3.3.

THEOREM 4.1. Let X be any admissible space and let p be any point of X. If

S(X) is an NR-semigroup then so is SP(X).

THEOREM 4.2. Let X be any admissible space and let p be any point of X. If

S(X) is an ANR-semigroup then so is Sp(X).

The proofs being similar, we discuss the proof of the former only.
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PROOF OF THEOREM 4.1: By Theorem 3.2, there exists a topological group G

homeomorphic to X. Since G is homogeneous, there exists a homomorphism t from
X onto G such that t(p) — 0, the identity of G. Let * denote the group operation on
G and define a binary operation + on X by

x + y = r1(t(x)*t(y)).

One can verify that (X,+) is a topological group whose identity is p. Now define a

biliary operation © on Sp(X) by

U ® 9)(x) = f{x) + g{t)

for all x £ X and f,g £ Sp(X). Then (Sp(X),(B,o) is a near-ring and the proof is

complete. |

The converses to Theorems 4.2 and 4.3 probably hold, at least for an extensive
class of spaces, if not for the class of admissible spaces. At this point, we are able
to prove the converses only when our spaces are certain 0-dimensional metric spaces.
We first prove an analogue of Lemma 3.1 for Sp(X) and it is convenient to have some
additional notation for this. Let x be any point in X distinct from p and let G be
a clopen subset of X which contains x but not p. The symbol < x,G > will denote
the function which is defined by < x,G > (y) = x for all y £ G and < x, G > (y) — p

for y 6 X — G. Note that < x,G > is continuous and fixes the point p. Consequently,
< x,G >£ SP(X) for each x ^ p. We will refer to such a function as an x-function or
an x-map.

LEMMA 4.3. Let X be a 0-dimensional metric space, let p be any point of X

and suppose that if p is nonisolated, then X contains at least one other point, distinct

from p, which is also nonisolated. Let © be any binary operation whatsoever on Sp(X)

which satisfies:

(4.3.1) (f ®g)o h-(f oh)®(goh)for all f , g , h e SP(X), and

(4.3.2) < p > ©/ = f® < p >= f for all f £ SP{X),

where < p > is the constant function which maps everytliing into the point p. Now

we define a binary operation + on X . For any x € X , define

(4.3.3) p+x = x+p=x.

For x,y ^ p, choose a clopen set G containing both x and y but not p. Then choose

any a £ G and define

(4.3.4) x+y = ( < x,G> © <y,G > ) ( o ) .
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The definition of x + y does not depend on either the clopen set G or the point a.

Moreover, the following statements are all valid:

(4.3.5) ( / © g)(x) = f(x) + g(x) for all x £ X and

f,gesp(xy,
(4.3.6) + is a continuous map from X x X to X;

(4.3.7) + is associative if and only if © is associative;

(4.3.8) + is commutative if and only if © is commutative;

(4.3.9) (X,+) is a topological group if and only if

(Sp(X), ©) is a group;

(4.3.10) (A%+) is an abeiian topological group if and

only if (Sp(X), ©) is an abeiian group.

PROOF: We first prove that for x,y ^ p , the definition of x + y does not depend
upon the choice of the clopen set G or the point a. Let < x,G > and < x,H > be
two a;-maps, let <y,G > and <y,H > be the corresponding y-maps and let a £ G'
and b 6 H. We then use (4.3.1) several times and we get

( < x,G > © < y , G > ) ( a ) = ( ( < x,G > © < y , G > ) o < a,Gu

= ( ( < x,G > o < a,GuH > ) © ( < y , G > o < a,GL)H > ) ) ( & )

= ( < x,GU H > © <y,GuH > ) (&)

= ((<x,H >o<b,GuH >)®(<y,H > o < b,G U H > ) ) ( & )

= ((< x,H >®<y,H >)o < b,GUH >)(&) = (< x,H > © < y,H >)(&).

Next, we verify (4.3.5) and we consider several cases.

Case 1. x = p.

Here, we must have ( / © g){p) = f(p) + g(p) for all f,g E Sp(x). But this is an
immediate consequence of (4.3.3) and the fact that each function in Sp(X) fixes the
point p .

Case 2. x ^ p and f(x) = p .

In what follows, we take any a;-map < x,G > and we use both (4.3.2) and (4.3.3).

( / e g)(x) = ( ( / ®g) o < x, G >)(x) = ( ( / o < x, G >) © (<? o < x,G >))(*)

= {<P>®(go<x,G >)){x) - ( j o < x,G>)(x) = g(x)

The case where x ^ p and g(x) = p follows in much the same way, and so we are left
with:

https://doi.org/10.1017/S0004972700026836 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026836


288 K.D. Magill, Jr. [12]

Case 3 . x ^ p , f(x) ^ p and g(x) ^ p .
Let G be any clopen set containing x , f(x) and p(z) but not p and choose any a £ G.

We use both (4.3.1) and (4.3.4) and we get

( / © 9){x) = ( ( / © g) o < x, G >)(a) = ((fo<x,G>)®(go<x,G > ) ) ( a )

= (< f{x), G > © < ff(x),G >)(a) = f(x) + g(x).

This completes the verification of (4.3.5) and we turn to (4.3.6). If X is discrete, it is
immediate that + is continuous on X x X so we consider the case where X is not
discrete and one of our assumptions assures us of the existence of a nonisolated point
z ^ p . Thus there exists a sequence {zn}^=i of points distinct from each other and
from p such that limzn = z. Now suppose lim(xn,yn) = [%>y)- Then limxn = x
and limyn = y. Define two functions / and g by f(zn) = xn, f(z) = x, f(p) = p,
g(zn) = yn, g(z) = y and g(p) = p Then / and g are continuous functions from the
closed set {z,p} U {zn}£Lj into the O-dimensional metric space X and, as such, can
be extended to continuous selfmaps of X [6, p.281, Corollary 3]. We will denote the
respective extensions by / and g as well. Evidently, both / and g belong to Sp{X)
and we use (4.3.5) to get

yn) = l im(/ (z n ) + g{zn)) = l i m ( / ® g){zn)

Thus, + is a continuous binary operation on X . We will give an example later to show

that + need not be continuous if p is the only nonisolated point of X.

It is immediate from (4.3.5) that © is associative if + is associative. Conversely,

suppose © is associative and consider points x,y,z 6 X. If any of these points is

equal to p then it is immediate from (4.3.3) that (x + y) + z = x + (y + z) so assume

x,y,z ^ p and choose a clopen set G containing x, y and z but not p and let a be

any point in G. We then have

[x +y) + z = (< x,G > © < y,G >){a)+ < z,G > (a)

= ( ( < x,G > © < y,G > ) © < z,G>)(a)

= (< x,G > ©(< y,G > © < z,G >))(a)

= < x,G > (a) + ( < y , G > © < z,G >)(a) = x + (y + z).

Statement (4.3.8) is an immediate consequence of (4.3.5) and we now consider (4.3.9).

If (X, + ) is a topological group, it follows form (4.3.5) that (5p(X),ffi) must be a

group. Conversely, suppose (Sp(X),©) is a group. According to (4.3.2) and (4.3.3)

respectively, < p > is the identity of (Sp(X), ffi) and p is the identity of (X, +). Recall
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that 8 denotes the map in SP(X) which is defined by 8(x) = x for all x € X. Then
there exists a map a £ Sp(X) such that 8 © <j = a © 8 =< p > . From (4.3.5), we get

x + a{x) — 8(x) + <T(X) = (8 © cr)(x) = < p > (x) = p.

Similarly, <T(X) + x = p so that cr(x) is the inverse of a; in (X, + ) . Thus, (X,-f)
is a group. Moreover, + is continuous by (4.3.6) and since a is also continuous, we
conclude that (A'',+) is, in fact, a topological group. Statement (4.3.10) now follows
from (4.3.8) and (4.3.9) and the proof of the lemma is finally complete. |

An example. We remarked after verifying (4.3.6) that + need not be continuous if

p is the only nonisolated point of X. To see this, let X = {0} U {l/n}^L1 have the

topology induced by the real line and consider So(X). Define a map t from X onto

the non-negative integers by i(0) = 0 and t(l/n) = n. Then for / , g £ S0(X) and

z £ X, define

{f®g)(x)=t-1{t{f(x))*t(g(x)))

where here, • denotes the usual addition of integers (the symbol + will be used to
denote the binary operation on X induced by ©). Certainly, (/ © <?)(0) = 0 and one
shows that / © g is continuous on X. Thus, / © g 6 S0(X) so that © is a binary
operation on So(X). Moreover, one can show that both (4.3.1) and (4.3.2) are satisfied
when p = 0. However, the binary operation + defined by (4.3.3) and (4.3.4) is not
continuous in this case. To see this, note that lim(l/n, 1) = (0,1) and

1/n + l = (< l /n ,{ l /n , l} > © < l ,{ l /n , l} >)(1)

= t~\t o < l /n ,{ l /n , l} > (1)*< o < l ,{ l /n , l} > (1))

= t-\t(l/n) +t(l)) = t-^n + 1) = l/(n + 1).

Thus l im( l /n + 1) — 0 and not 1 as it would need to be in order for + to be continuous.

(So(X),(B) is a commutative semigroup with identity < 0 > . However, it is far from

being a group in that no element other than < 0 > has an inverse. Consequently,

(50(A'),©,o) is not a near-ring.

And now we prove two results which, among other things, give us the converses to

Theorems 3.2 and 3.3 for the spaces of Lemma 3.4.

THEOREM 4.5. Let X be a 0-dimensional metric space, let p £ X and suppose

that if p is nonisolated, then some other point in X , distinct form p, is also nonisolated.

Then the following statements are equivalent:

(4.5.1) S(X) is an NR-semigroup;

(4.5.2) Sp(x) ^ an NR-semigroup;

(4.5.3) tiiere exists a topological group G such that X and G

are homeomorphic as topological spaces.
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THEOREM 4.6. Let X be a 0-dimensional metric space, and let p 6 X and suppose

that if p is nonisolated, then some other point in X , distinct form p, is also nonisolated.

Then the folowing statements are equivalent:

(4.6.1) S(X) is an ANR-semigroup;

(4.6.2) SP(X) is an ANR-semigroup;

(4.6.3) there exists an abelian topological group G such that

X and G are homeomorphic as topological spaces.

The proofs being similar, we discuss only the proof of Theorem 4.5.

PROOF OF THEOREM 4.5: It follows immediately from Theorem 3.2 that (4.5.1)
and (4.5.3) are equivalent and Theorem 4.1 assures us that (4.5.1) implies (4.5.2). The
proof will be complete when we are able to show that (4.5.2) implies (4.5.3) and a
technique used previously works here as well. Let <p be an isomorphism from Sp(X)

onto the multiplicative semigroup of some near-ring (N, +, +). Define a binary operation
© on Sp(X) by

Since < p > is the two-sided zero of Sp(X), it follows that <p{< p >) is the addi-
tive identity of the near-ring (N, *, •). One shows in a straightforward manner that
(Sp(X),(B) is a group and that both (4.3.1) and (4.3.2) are satisfied. We now take
+ to be the binary operation on X defined by (4.3.3) and (4.3.4) and it follows from
(4.3.9) that (X, +) is a topological group. This concludes the proof. |

THEOREM 4.7. Let X be a locally compact 0-dimensional metric space, let p be

any point of X and suppose that if p is nonisolated, then some other point in X ,

distinct from p is also nonisolated. Then the following statements are all equivalent:

(4.7.1) S(X) is an ANR-semigroup;

(4.7.2) S(X) is an NR-semigroup;

(4.7.3) Sp(X) is an ANR-semigroup;

(4.7.4) Sp{X) is an NR-semigroup;

(4.7.5) X is either discrete, homeomorphic to the Cantor

discoiitinuum or homeomorphic to the product of a

discrete space with the Cantor discontinuum.

PROOF: The result follows from Theorems 3.6, 4.5 and 4.6. |

In a similar manner, Theorems 3.7, 4.5. and 4.6 immediately yield:
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THEOREM 4.8. Let X be a countable metric space, let p £ X and suppose that

if p is nonisolated, then X contains some other point, distinct from p, which is also

nonisolated. Then the following statements are all equivalent:

(4.8.1) S(X) is an ANR-semigroup;

(4.8.2) S(X) is an NR-semigroup;

(4.8.3) •Sp(-^) JS an ANR-semigroup;

(4.8.4) Sp{X) is an NR-semigroup;

(4.8.5) X is homeomorphic to either the count&bly infinite

discrete space or to the space of rational numbers.

In conclusion, we remark that one obvious open problem is to get converses to The-

orems (4.1) and (4.2) for spaces other than the ones we have discussed in this section. In

particular, we conjecture that it can be done for admissible, locally compact, connected,

locally connected, separable metric spaces. It would then follow from Theorem (3.5)

that for any such space X and any p £ X , Sp(X) would be an ANR-semigroup if and

only if X was homeomorphic to either some Euclidean N -space, some M -dimensional

torus or to a product of two such spaces.
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