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A NOTE ON UNIQUELY MAXIMAL BANACH SPACES

by E. R. COWIE

(Received 16th September 1981)

Let I b e a real or complex Banach space with norm ||.||. Let G denote the set of all
isometric automorphisms on X. Then G is a bounded subgroup of the group of all
invertible operators GL(X) in B(X). We shall call G the group of isometries with respect
to the norm ||.||. A bounded subgroup of GL(X) is said to be maximal if it is not
contained in any larger bounded subgroup. The Banach space X has maximal norm if
G is maximal. Hilbert spaces have maximal norm. For the (real or complex) spaces c0, lp

(l^p<oo), Lp[0,1] (l:gp<oo), Pelczynski and Rolewicz have shown that the standard
norms are maximal ([3], pp. 252-265). In finite dimensional spaces the only maximal
groups of isometries are the groups of orthogonal transformations. Given any bounded
group H in B(X), X can be renormed equivalently so that each TeH is an isometry, by
||x||1=sup{||Tx||; TeH}. Therefore corresponding to every maximal subgroup G there
is at least one maximal norm for which G is the group of isometries. In this paper we
shall investigate those maximal groups G for which there is only one maximal norm
with G as its group of isometries.

We have the following definition:

Definition 1. The Banach space X has uniquely maximal norm if it has maximal
norm and there is no equivalent norm, not a linear multiple of the original norm, with
the same group of isometries.

Uniquely maximal and maximal are not equivalent for norms on a Banach space.
Consider the following examples.

Example 2. The standard norm in the real Banach space lx is maximal. The
isometries in /, are of the form U({xn}) = {anxa(n}} where an= ± 1 and a is a permutation
([1], p. 178). Define

Then ||. ||0 is an equivalent norm on /x with the same group of isometries as the usual
norm \\-\\i, and is not a linear multiple of the original norm. Hence the standard norm
in lt is not uniquely maximal.

Example 3. In [2], Kalton and Wood showed that the uniform norm is a maximal
norm for the complex Banach space C[0,1]. The isometries in C[0,1] are of the form

) = a(t)/(</»W) f°r a " / eC[0 ,1] , te[O, 1] where a(t) is a continuous function such
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that |a(t)| = l for all fe[0,1] and (/> is a homeomorphism of [0,1] (see [1], p. 173).
Define | | / | | i = | | / | | + |/(0)| + | / ( l ) | for all / eC[0 , l ] . Then ||. ||X is an equivalent norm
with the same group of isometries but is not a linear multiple of the original norm.
Hence the uniform norm on C[0,1] is not uniquely maximal.

We shall now obtain a characterisation of uniquely maximal norms. They turn out to
be exactly those norms which are convex transitive. A norm is called convex transitive if
co{Ux; UeG} = {y; | |y | |^l} for each xeX with ||x|| = l.

In order to prove this result we shall require the following lemma.

Lemma 4. Let X have a uniquely maximal norm. Then | | / | | = sup{|/(l/x)|; UeG} for
each xeX with ||x|| = l and each feX*.

Proof. Fix feX*. Define

|; UeG} forallxeX.

Then ||. 1̂  is an equivalent norm on X.
If VeG, then

Therefore \\.\\t has at least the same isometries as ||.||. Hence as the norm is uniquely
maximal,

||x||1 = ||x|| + sup{|/([/x)|;L/eG}=/c||x||

for all xeX and some constant k>0. We have sup{|/(t/x)|; l/eG} = r||x|| for all xeX
and some constant r>0.

||x|| for all UeG. Therefore rg | | / | | . Given e>0
= 1 such that |/Yy)|>||/1l-£. Hence

Now \f(Ux)\£
there exists yeX with

We have proved sup{|/(C/x)|; UeG} = \\f\\ \\x\\ for all xeX.

Theorem 5. For a Banach space X, the norm is uniquely maximal if and only if the
norm is convex transitive.

Proof. Assume X has a convex transitive norm. Fix xeX with ||x|| = l. Then co{Ux;
UeG} = {y; | | y | | ^ l} . Suppose there exists an equivalent norm || _ 11̂  on X with
isometries Gx such that GeG,. Let yeX with ||y|| = l. Given £>0 there exists
{U1,...,Ua}zG and {Al,...,ln}sU+ such that

n

<e, and£Am = l.
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We have

<K

11! for some constant K by equivalence.

Hence Ĥ Hi ÎI:9CIIi> anc^ similarly ||JC||X ^ Ĥ Hi- Therefore {x;||x|| = l}s{y; ||y||i='"} for
some r>0, that is, r-||JC|| = ||̂ c||i f°r all xeX. Hence the norm is uniquely maximal.

The above proof is essentially the proof given by Rolewicz ([3], p. 256) that a convex
transitive norm is a maximal norm.

Suppose that the norm is not convex transitive. Then there exists xeX with ||x|| = l
such that

Let ze{y; \\y\\^l}\B. By the Hahn Banach separation theorem (see [4], p. 60) there
exists feX*, the dual space of X, such that | / (x) |^ l for all xeB and |/(z)|>l. But by
Lemma 4, B is a norming set for /, which is a contradiction.

By the results of Rolewicz ([3], §6 and 7) on convex transitive norms, the spaces
^>[0,1] (l^P<°o) and the space Co[0,1] (all continuous complex valued functions
vanishing at the end points, see Example 2) have uniquely maximal norms.
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