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Abstract. We consider the isomorphism problem for partial group rings RparG
and show that, in the modular case, if char(R) = p and RparG1

∼= RparG2 then the
corresponding group rings of the Sylow p-subgroups are isomorphic. We use this
to prove that finite abelian groups having isomorphic modular partial group algebras
are isomorphic. Moreover, in the integral case, we show that the isomorphism of partial
group rings of finite groups G1 and G2 implies �G1

∼= �G2.

2000 Mathematics Subject Classification. Primary 16S10, secondary 16S34, 20C05,
20L05.

1. Introduction. Partial representations of groups were introduced independently
by R. Exel [4] and J. C. Quigg and I. Raeburn [8] in the context of C∗-algebras, motivated
by the desire to study algebras generated by partial isometries on a Hilbert space. The
partial group ring of a group G over a ring R was defined in [3] and plays a role in
the theory of partial representations similar to that of the group ring in representation
theory.

DEFINITION 1.1. Given a group G and a ring R with unity we consider the semigroup
SG generated by the set of symbols {[g] | g ∈ G} with relations:

(1) [e] = 1;
(2) [s−1][s][t] = [s−1][st];
(3) [s][t][t−1] = [st][t−1];

for all s, t ∈ G.
The partial group ring RparG of G over R is the semigroup ring of SG over R.

If R is a commutative ring, then an alternative definition can be given by
the universal property which puts the representations of RparG into one-to-one
correspondence with the partial representations of G (see [3, p. 512]). Given two R-
algebras A and B, an isomorphism A ∼= B will mean an R-isomorphism of algebras.

It is well known that for group rings, if K is a field, in general KG does not determine
G up to isomorphisms. Indeed, E. C. Dade [1] gave an example of two non-isomorphic
groups G and H such that KG ∼= KH for all fields K . Even in the stronger hypothesis
that �G ∼= �H, a counterexample has been given recently by M. Hertweck [5]. It is
then natural to consider the isomorphism problem of partial group rings to see if these
carry more information about the group than group rings in the usual sense. (For more
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information on the isomorphism problem of group rings, the reader may see [9], [10]
or [11].)

The structure of partial group rings was described in [3] where it was also
shown that if G and H are finite abelian groups and R is an integral domain whose
characteristic does not divide the order of G then RparG ∼= RparH if and only if G ∼= H.
An example was given to show that there do exist non-isomorphic finite groups such
that their partial group rings over an algebraically closed field of characteristic 0 are
actually isomorphic.

In this paper we fill a gap in formula (14) of [3] and prove a similar result on
isomorphisms in the modular case; i.e., when the characteristic of R divides the order
of G. We also show that if R is of characteristic p > 0 and G and H are arbitrary finite
groups such that their partial group rings over R are isomorphic, then the group rings
of the corresponding Sylow p-subgroups are also isomorphic. Furthermore, we prove
that if �parG ∼= �parH for finite groups G and H, then also �G ∼= �H showing that the
hypothesis of having isomorphic partial group rings over the integers is even stronger
than having isomorphic integral group rings.

2. The structure of partial group rings. Throughout this paper, G will always
denote a finite group. In this section, we shall describe the structure of RparG, correcting
a gap in the proof of the recursive formula (14) of [3, Theorem 3.2].

We shall consider the Brandt groupoid associated with G, denoted � = �(G),
whose elements are pairs (A, g), where g is an element of G and A is a subset of G
containing its identity e and the element g−1. Note that e, g ∈ gA. The multiplication
of pairs (A, g)(B, h) in � is defined only in the case when A = hB where we set:

(hB, g) · (B, h) = (B, gh).

Notice that the set of units of �, denoted by �(0), is the set of all elements of the
form (A, e).

Let R be a commutative ring. We recall that if � is any groupoid, then the groupoid
algebra R� is the free R-module freely generated over R by the elements of �, with
multiplication given by:

γ1 · γ2 =
{
γ1γ2, if the product is defined
0, otherwise,

and extended linearly on R�.
Let R�(G) denote the R-algebra of the groupoid �(G). The dimension of this

algebra is equal to the cardinality of �(G), which is the number of pairs (A, g) as
described above. We remind that if |G| = n, it was shown in [3] that:

dim(R�(G)) = 2n−2(n + 1). (1)

Observe that, since the right-hand side of (1) is a strictly increasing function on n,
it follows that if G and H are finite groups such that R�(G) is isomorphic to R�(H),
then |G| = |H|.

Notice that the units of �, of the form (A, e), are idempotents in R�(G), they are
mutually orthogonal and their sum is the identity of R�(G).

It was shown in [3, Corollary 2.7] that the groupoid algebra R�(G) is isomorphic to
the partial group algebra RparG.
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It is sometimes useful to represent a groupoid � as an oriented graph E�, whose
vertices are the units of the groupoid. To each element (A, g) ∈ � we assign an oriented
edge of E� from (A, e) to (gA, e) corresponding to the map A � a �→ ga ∈ gA. Each
connected component of E� represents a subgroupoid of �.

Let A be any subset of G containing the identity. In what follows, we will identify
A with the vertex (A, e) of the graph E�(G). We denote by H the stabilizer of A in G;
i.e.:

H = {g ∈ G | gA = A}.
In the graph E�(G), H corresponds to the set of edges starting and ending at the vertex
(A, e). Notice that, since e ∈ A, then H ⊆ A.

Since H acts on the left on A, then the orbits of this action are the right cosets of
H, and A is a union of them, say:

A =
m⋃

i=1

Hti, t1 = e,

where

m = |A|
|H| .

Let �A denote the subgroupoid of �(G) corresponding to the connected component
of the vertex A of the graph E�(G). It was shown in [3, Proposition 3.1] that the groupoid
algebra K�A is isomorphic to Mm(KH). Clearly, K�(G) is the direct sum of the algebras
arising from all the connected components. We wish to compute the number of these
direct summands.

Let C denote a full set of representatives of the conjugacy classes of subgroups of
G. Given a subgroup H ∈ C and a positive integer m, we need to count the number of
subsets A of G, of order |A| = m × |H| whose stabilizer is precisely H. We denote
by bm(H) the number of all such subsets and by cm(H) the number of distinct
direct summands of the form Mm(KH ′) where H ′ is any subgroup of G conjugate
to H.

Notice that, since conjugation is an automorphism of G, if H and H ′ are conjugate
in G, it follows by symmetry that bm(H) = bm(H ′), for all m. Thus, the total number of
sets of order m × |H| whose stabilizer is either H or one of its conjugates is bm(H)(G :
NG(H)), where NG(H) denotes the normalizer of H in G. In each connected component
we have m of these sets (whose stabilizers are pairwise conjugate), whence:

cm(H) = bm(H)(G : NG(H))
m

. (1)

A recursive formula for the coefficients bm(H) can be obtained as in [3]. The
number of subsets of G which is a union of m cosets of H, one of which is always H
itself, is clearly ( (G:H) − 1

m − 1 ). Some of these may have a stabilizer B which is actually bigger
that H, and their number is given by:∑

H<B≤G
(B:H)|m

bm/(B:H)(B).
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So we have:

bm(H) =
(

(G : H) − 1
m − 1

)
−

∑
H<B≤G
(B:H)|m

bm/(B:H)(B).

From formula (1), we have that

bm(H) = mcm(H)
(G : NG(H))

,

hence

cm(H) = 1
m

(G : NG(H))




(
(G : H) − 1

m − 1

)
−

∑
H<B≤G
(B:H)|m

m/(B : H)cm/(B:H)(B)
(G : NG(B))


 . (2)

Thus, we come to the following reformulation of Theorem 3.2 of [3].

THEOREM 2.1. Let R be a commutative ring, G a finite group and let C denote a full
set of representatives of the conjugacy classes of subgroups of G. Then the partial group
ring of G over R is of the form

RparG ∼=
⊕
H∈C

1≤m≤(G:H)

cm(H) Mm(RH),

where cm(H) Mm(RH) means the direct sum of cm(H) copies of Mm(RH) and the
coefficients cm(H) are given by the recursive formula (2) above.

In the light of this fact, Corollary 3.3 of [3] should now be stated as follows.

COROLLARY 2.2. Let G1 and G2 be two finite groups. Assume that there exists
an isomorphism between the lattices of subgroups of G1 and of G2 that preserves
conjugacy and such that corresponding subgroups have isomorphic group rings over R.
Then RparG1

∼= RparG2.

One should notice that the counterexample given in [3, Remark 4.6] to show that
there exist noncommutative groups G1 and G2 which are not isomorphic and such
that KparG1

∼= KparG2, where K denotes an algebraically closed field of characteristic 0,
remains valid since the lattices of subgroups of these groups also fulfill the conditions
of Corollary 2.2.

3. Isomorphisms of modular partial group algebras. In this section we shall
consider partial group algebras over a field K of characteristic p > 0 which divides
the order of the given groups.

The following easy fact will be needed in the sequel.

LEMMA 3.1 ([6, Proposition 22.1]). Let R be a ring with unity and let 1 = e1 +
· · · + er and 1 = f1 + · · · + fs be two decompositions of the identity into a sum of minimal
central idempotents. Then r = s and there exists a permutation σ ∈ Sr such that ei = fσ (i),
1 ≤ i ≤ r.

It follows that if a ring R possesses a decomposition into a finite product of
indecomposable rings then such decomposition is unique up to a permutation of direct
factors.
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REMARK 3.2. Let R be a commutative ring and let G be a group. Write

RparG ∼=
⊕
H∈C

1≤m≤(G:H)

cm(H) Mm(KH),

the decomposition of RparG given by Theorem 2.1. If we write each group ring KH as
a direct sum of indecomposable two-sided ideals, KH = ⊕iIi(H) then the ideals of the
form Mm(Ii(H)) are the indecomposable direct summands of RparG.

THEOREM 3.3. Let R be an integral domain of characteristic p > 0 and let G1, G2

be two finite groups such that RparG1
∼= RparG2. Let Si denote a Sylow p-subgroup of

Gi, i = 1, 2. Then RS1
∼= RS2.

Proof. Since S1 is a p-group and char(R) = p, it follows directly from Theorem 2.1
that KS1 is an indecomposable direct summand of RparG1. By the remark above, there
exists a subgroup H of G2 and an indecomposable direct summand I of KH such that
RS1

∼= Mm(I), for some positive integer m. Notice that RS1 contains no idempotent
elements, so neither does Mm(I) and hence we must have m = 1.

Since I is a direct summand of RH, there exists an idempotent e, which is central
in RH, such that I = RHe.

Claim 1. The p′-elements of H act as scalars on e (i.e., if h ∈ H is a p′-element, then
there exists an element β ∈ R such that he = βe).

Indeed, it is well known that �(S1) = 〈x − 1 | x ∈ S1〉 is a nilpotent ideal of RS1 and
RS1 = R ⊕ �(S1) as R-modules. Since I ∼= RS1, for an element h ∈ H we have that he
can be written in the form he = αe + η where α ∈ R and η is nilpotent. So, there exists
a positive integer n such that ηpn = 0 and we have (he)pn = (αe)pn

. As h is a p′-element,
there exists a positive integer s such that hspn = h, thus he = βe, where β = αspn

.

Claim 2. I = KSe, where S is a Sylow p-subgroup of H.
In fact, since e is central, He is a group and if S is a Sylow p-subgroup of H,

then Se is a Sylow p-subgroup of He. By the claim above, the set N of p′-elements of
He is central, so He = Se × N. Every element x ∈ RHe can be written in the form
x = ∑

i,j rijyihje where each yie ∈ Se and each hje ∈ N so, using again the previous
claim, we obtain

x =
∑

i,j

rijyiβje =
∑

i,j

rijβjyie ∈ RSe.

Conclusion.
As Se is a set of generators of the R-module RSe and the image of S1 under

the isomorphism is a linearly independent set in RSe we have that |S1| ≤ |S| ≤ |S2|.
As |G1| = |G2| it follows immediately that S is a Sylow p-subgroup of G2 and clearly
RS1

∼= I ∼= RS2. �

COROLLARY 3.4. Let R be an integral domain of characteristic p > 0 and let G1, G2

be two finite p-groups such that RparG1
∼= RparG2. Then RG1

∼= RG2. Moreover, if G1 is
abelian then G1

∼= G2.

Proof. The first part of our statement follows directly from the theorem above. If
G1 is abelian then, by a result of Deskins [2], it follows that G1

∼= G2. �
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In order to prove our next theorem we shall need some technical results. For a
finite abelian group G, we shall denote by γm(G) the number of subgroups of G of
order m. We shall say that a divisor k > 0 of |G | is small if every prime that divides |G|
divides also |G|

k .

PROPOSITION 3.5. Let K be an algebraically closed field of characteristic p > 0 and G
a finite abelian group. Let k be a small divisor of |G| with |G| �= 2k. Then, the multiplicity
of M |G|

k −1(K) in the decomposition of KparG as a direct sum of indecomposable two-sided
ideals is

k
|G| − k

∑
m
∣∣|G|,p |� m

1≤m<
k|G|

|G|−k

( |G|
m − 1
|G|
k − 2

)
mγm(G).

Proof. Notice that KparG is a direct sum of two-sided ideals of the form Mm(KH),
where H is a subgroup of G. Writing H = P × N where P is a p-group and p |� |N|,
if P �= 1, we have that Mm(KH) = Mm ((KN)P) = Mm ((K ⊕ · · · ⊕ K)P) ∼= Mm(KP) ⊕
· · · ⊕ Mm(KP). Thus, the indecomposable two sided direct summands of KparG are
either of the form Mm(K) or Mm(KP) where P is a p-subgroup of G, m ≥ 1. Notice
that summands of the form Mm(K) come only from the decompositions of summands
Mm(KH) where H is a p′-subgroup.

Let H be a p′-subgroup of G with ( |G|
k − 1)|H| ≤ |G| and let A be a subset of

G such that 1 ∈ A and |A| = ( |G|
k − 1)|H|. We claim that if the stabilizer S(A) of A

contains H then S(A) = H. In fact, if q is a prime dividing |S(A)|/|H| then q divides
( |G|

k − 1). As q | |G|, it follows from the hypothesis that q | |G|/k, a contradiction. Thus
S(A) = H and it follows that any set which is a union of ( |G|

k − 1) distinct cosets of H
has stabilizer equal to H so the multiplicity of M |G|

k −1(KH) in the decomposition given
in Theorem 2.1 is

k
|G| − k

(
(G : H) − 1

|G|
k − 2

)
.

Since M |G|
k −1(KH) is a direct sum of |H| copies of M |G|

k −1(K) we have that in the
decomposition of KparG into a direct sum of indecomposable two-sided ideals the total
number of summands isomorphic to M |G|

k −1(K) coming from subgroups of a fixed
order m with p |� m is

k
|G| − k

(
(G : H) − 1

|G|
k − 2

)
mγm(G).

The result follows. �
Next we adapt Corollary 4.2 of [3] to the modular case.

COROLLARY 3.6. Let K be an algebraically closed field of characteristic p > 0 and
G1 and G2 finite abelian groups with |G1| = |G2| = qna where q �= p is a prime and q |� a.
If KparG1

∼= KparG2 then γq j (G1) = γq j (G2), for all positive integers j such that 2j ≤ n.

Proof. If a = 1 the the result follows from [3, Corollary 4.2], so one may assume
that qna is not a power of a prime. We prove more in general that if k is a small divisor
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of |G1 | with p |� k, and |G1| > k2, then γm(G1) = γm(G2) for all m ≤ k with p |� m. Under
our hypotheses, the number k = qj satisfies these conditions.

We use induction on k, the case k = 1 being trivial. Let k > 1 be fixed. One easily
observes that the inequality m <

|G1| k
|G1| − k holds if and only if m ≤ k. Moreover, |G1| > 2k

as |G1| > k2. Thus, using Proposition 3.5, we have that the multiplicity of M |G1 |
k −1(K) in

the decomposition of KparG1 into a direct sum of indecomposable two-sided ideals is:

k
|G1| − k

∑
m
∣∣|G1|, p |� m
1≤m≤k

( |G1|
m − 1

|G1|
k − 2

)
mγm(G1).

By Lemma 3.1, this number is invariant under K-algebra isomorphisms. Since the
coefficient of γk(G1) in the above formula is non-zero, to conclude the proof it suffices
to show that γm(G1) = γm(G2) for all m < k with m dividing |G1 | = |G2 | and p |� m. One
checks this similarly as in the proof of [3, Corollary 4.2]. �

THEOREM 3.7. Let R be an integral domain of characteristic p > 0 and let G1, G2 be
two finite abelian groups such that RparG1

∼= RparG2. Then G1
∼= G2.

Proof. Since, for any field E ⊃ R we have that

EparG1
∼= E ⊗R RparG1

∼= E ⊗R RparG2
∼= EparG2,

we may assume, without loss of generality, that KparG1
∼= KparG2 for an algebraically

closed field K .
Let G1 = P1 × · · · × Pt and G2 = Q1 × · · · × Qt be the decompositions of G1 and

G2 as a direct product of Sylow subgroups respectively and assume that P1 and Q1

are the subgroups corresponding to the prime p. Then, by Theorem 3.3 we have that
KP1

∼= KQ1 and hence, by Deskins’ result [2], P1
∼= Q1.

Let qi �= p be the prime divisor of |G1| corresponding to the Sylow subgroups Pi

and Qi respectively. It follows from Corollary 3.6 that γq j
i
(G1) = γq j

i
(G2) for all positive

integers j such that q2j
i divides |G1|. Now, [3, Lemma 4.3] shows directly that Pi ∼= Qi,

2 ≤ i ≤ t. �

4. Integral partial group rings. Let G1 and G2 be finite groups. We will show that
�parG1

∼= �parG2 is a stronger restriction than having isomorphic integral group rings.
Actually, we have the following.

THEOREM 4.1. Let G1 and G2 be finite groups such that �parG1
∼= �parG2. Then,

for every subgroup H of G1 there exists a subgroup N of G2 such that �H ∼= �N. In
particular, �G1

∼= �G2.

Proof. Write

�parG1
∼=

⊕
H∈C

1≤m≤(G1:H)

cm(H) Mm(�H),

�parG2
∼=

⊕
N∈C′

1≤m≤(G2:N)

cm(N) Mm(�N),

the decompositions of �parG1 and �parG2 given by Theorem 2.1.
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Notice that, since it follows immediately from a theorem of Kaplansky [7,
Theorem 7.2.3] that integral group rings of finite groups contain no nontrivial idem-
potent elements, the summands in the decompositions above are all indecomposable.

Given a subgroup H of G1, we have that �H appears as a summand of �parG1 so we
obtain from Lemma 3.1 that there is a subgroup N of G2 and a positive integer m such
that �H ∼= Mm(�N). As �H contains no idempotent elements, it follows immediately
that m = 1 and �H ∼= �N. As G1 and G2 are of maximal order, the last part of our
statement is obvious. �
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