Non-local rings whose ideals are all quasi-injective: Addendum

G. Ivanov

In [1] I made a Remark which, when subsequently challenged by Anne Koehler, I was unable to justify. While writing up my PhD thesis, I tried to both prove and disprove the statement but failed on both counts. However, I did reduce it to a highly plausible statement which is presented here.

CONJECTURE. Every Q-ring is a direct sum of a finite number of indecomposable non-local Q-rings and a Q-ring all of whose idempotents are central.

The conjecture is obviously true if and only if every left ideal in a Q-ring is contained in an ideal which is generated by a central idempotent and is minimal with respect to these properties. This is equivalent to the condition that the intersection of all left ideals which have (in the ring) a common homomorphic image disjoint from them is non-zero. The equivalence of the latter statement with the conjecture is proved in the following paragraph.

It is clear that Q-rings which satisfy the conjecture have this property. To show the converse, let L be a left ideal in a Q-ring R, f a central idempotent such that $L\subseteq Rf$ and let Rf_0 , f_0 an idempotent, be an injective hull of L. As Rf is injective, $f_0Rf\neq 0$, which implies that $f_0f\neq 0$. Since $Rf_0=Rf_0f\oplus Rf_0(1-f)$ and $L\subseteq Rf$ is essential in Rf_0 , the ideal $Rf_0(1-f)$ is trivial. Therefore $Rf_0\subseteq Rf$. It follows that the intersection of all ideals which contain L and are generated by central idempotents is injective. Let Re, e an

Received 26 November 1974.

I60 G. Ivanov

idempotent, be this two-sided ideal. If $x \in R(1-e)$ then $ex \in Re \cap R(1-e)$ and so ex = 0. If $(1-e)Re \neq 0$ then there is a minimal ideal $M \subseteq Re$ which is a homomorphic image of R(1-e) (Lemma 2). Moreover, for any central idempotent f with the property that $Re \subseteq Rf$, the product $(1-e)f \neq 0$. This means that each Rf contains a left ideal R(1-e)f which has M as an image. By assumption, the intersection K of these ideals is non-zero. But as each R(1-e)f = Rf(1-e) is contained both in R(1-e) and in Rf, the ideal K is contained in both Re and R(1-e): a contradiction. Therefore, (1-e)Re = 0 and e is a central idempotent, since Re and R(1-e) annihilate each other. Hence Re is the unique smallest ideal which contains L and is generated by a central idempotent.

Reference

[1] G. Ivanov, "Non-local rings whose ideals are all quasi-injective", Bull. Austral. Math. Soc. 6 (1972), 45-52.