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Abstract

This paper studies the relationship between a normal algebraic extension L of an algebraic number
field K, viewed as a Galois module, and valuations of the field L. In particular, the paper seeks to
establish a relationship between Galois submodules of L and certain types of Chinese Remainder
Theorems.
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1. Introduction

The purpose of this paper is to consider the possibility of introducing arithmeti-
cally defined norms on naturally arising Galois modules. Having introduced such
norms, one can ask how independent inequivalent norms are; that is, there arises
the question of Chinese Remainder Theorems. As we shall see, the possibility of
satisfying some type of Chinese Remainder Theorem is linked to the representa-
tion type of the module considered. The bulk of this paper is concerned with basic
machinery and results. The final section, however, deals with possible applica-
tions of the type of results we are considering.

As a model of much of what follows, consider the following situation. Let L be
a finite normal extension of K, a finite algebraic extension of Q, and let
G = G(L/K). Then it is well known that L has a normal basis over K, so that,
as a KG module, L is the left regular representation. Let us prove this using the
Chinese Remaider Theorem for L.
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I21 Chinese Remainder Theorems and Galois Modules 277

THEOREM 1. Let L be a finite normal extension of K, with K a finite algebraic
extension of Q, and let G = G(L/K). Then as a KG module L is the left regular
representation, i.e. L has a normal basis.

PROOF. By the Chinese Remainder Theorem for L we have

KV®KL= 0 Lw

(cf. [2, pages 54 ff]). Since G acts transitively on the right-hand side, we see that
the right-hand side forms a system of imprimitivity for the module Kv ®KL.
Hence the left-hand side is an induced Gw module, where Gw is the decomposition
group of Lw. However, by Cebotarev's Theorem [7, page 165], there exist primes v
such that, for w\v, we have Gw = 1 and Lw = Kv. But then Kv ®K L is simply
the left regular representation of G, and hence so is L.

Although we have had to invoke some rather powerful results to obtain a
normal basis theorem, it does point out the rather strong connection between the
arithmetic of a field, via the Chinese Remainder Theorem, and its module
structure.

2. Norms on Galois modules

Let L be a finite normal extension of a field K, where K is some finite
algebraic extension of Q. Let M be some K subspace of L. For w, any finite
prime of L, define a norm on M as follows. For x e M, let

||x||w = | x | ^ , « „ = [LW:KV].

It is clear that this defines a norm on M, i.e. that

\w = \a\v\\x\\¥/VaeK,w\v,and
3- \\x+y\\w<\\x\\w + \\y\\w,x,yeM.

Of course different w may induce equivalent norms on M, and we write wl ~ w2,
so that we obtain an equivalence class Wx = {w|w a prime of L, w ~ wx}.

The following lemma clarifies the obvious observation that if w1\vl and w2\v2,
for vv v2 distinct primes in K, then wx •*• w2.

LEMMA 1. Let \\ | | W l , . . . , || \\Wr be a set of norms, with w, lying over distinct primes

vt of K. Then for all a1,...,ar £ M and e > 0, there exists z e M such that

for all w\vt.
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PROOF. By the Chinese Remainder Theorem for K, there exist pairs of algebraic
integers in 0K, such that, given any e' > 0, we have

y + y = i
A\i T A2i x»

where \Xu\Vi < e', \X2i\v, < e' for all j * i (cf. [2, page 48]). Put z = Lr
j=1 X2jOj.

Then

.^. v . . 1,-1 IIH" \\"2j»j\\Wj

for all w\v. However, we can make the right-hand side as small as we please.
Let us further suppose that M is G-invariant, where G = G(L/K). Thus M

becomes a KG module. For a fixed prime v of K, G acts transitively on the
primes w\v of L, so that G also acts transitively on the equivalence classes W of
norms on M. Put Yw = { g e G\gW = W). Then Yw plays the role of the usual
decomposition subgroup Gw= {^e G\gw = w). The following observations are
trivial.

01. Gw is a subgroup of Tw if w e W.
02. | r^ : Gw\ is the number of w in a given equivalence class.
03. \G: Tfy\ is the number of inequivalent norms on M lying over v.
04. TgW = gTwg-\
Our major aim will be to show how the arithmetic properties of our norms, as

given in terms of Chinese Remainder-type Theorems, are related to the represen-
tation type of the GK module M.

Notationally I shall pass from equivalence classes W to elements w e W and
vice-versa, whichever seems more natural in a given setting.

3. Chinese Remainder Theorems

I shall say that M satisfies the Chinese Remainder Theorem (CRT) if the
following holds:

Let || H^ , . . . , || || Wr be inequivalent norms on M. For all a1,...,ar in M, and
for all e > 0, there exists z G M such that ||z - at\\w < e, i.e. the image of M
under the diagonal mapping of M -* © Mw defined by z -> (z,...,z) is dense,
where Mw is the completion of M under the norm || \\w.

https://doi.org/10.1017/S1446788700027257 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027257


I41 Chinese Remainder Theorems and Galois Modules 279

As in Theorem 1, we have the following.

T H E O R E M 2. If M is a G-invariant subspace of L and satisfies the CRT, then M is

monomial.

P R O O F . Since M satisfies the C R T we have, as in Theorem 1, that

KV®KM= <g> Mw,

where the sum is over all inequivalent norms induced by w\v. Thus Kv ®K M is
an induced KVTW module. Again by Cebotarev's Theorem there exist primes v
such that Kv = Lw. However, we clearly have an injection Mw -* Lw, so that
dim Mw = 1. Thus Kv ®K M, and hence M, is monomial.

Thus the CRT is a fairly restrictive condition. Indeed, the following lemma
from group theory indicates some further restrictions.

LEMMA 2. Let H be a normal subgroup of G, and let 0 be a character of H.
Assume that 6G is irreducible. Then 0c\H is multiplicity free.

PROOF. By a standard corollary to Mackay's irreducibility criterion, 6G is
irreducible if and only if 6 and 6X are distinct for all x e H, and 6 is irreducible,
where 6x(g) = 0(x~1gx) (cf. [6, Proposition 23 and the following corollary, pages
59-60]).

However, we clearly have by the definition of induced representations that
6G\H = Ex e G / H 0 x - The lemma then follows immediately.

COROLLARY 1. Suppose K is a splitting field for the representations of Tw, a
normal subgroup of G, where if w e W, then Lw = Kv. Then M is irreducible and
satisfies the CRT if and only if M is one dimensional.

PROOF. First, it is clear that if M is one dimensional, then it is irreducible and
satisfies the CRT. Conversely, by Theorem 2 we have that M is an induced Yw

module and that Kv <8>KM = (& Mw. Fix v such that, if w\v, then Kv = Lw.
iThen we also have a decomposition M = © M, into irreducible KTW^ modules,

by our assumption on K, and this decomposition is unique because of the

multiplicity free result in Lemma 2. Thus

N o w consider the projection onto the first component of the extreme right-hand

side © Kv <8>K Mt -* Mw. This is a homomorphism of KvTWi modules, and hence

the kernel is a KVYW module. By the uniqueness of the left-hand side, some
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Kv®KMt must be annihilated. But this is impossible since we have natural
injections M, -> M -* Mw. Thus we must have Kv ®K M = M and by our
choice of v, the right-hand side is clearly one-dimensional.

Note that some such condition on K as given in the corollary is necessary. For
instance, the first example in Section 5 clearly satisfies the CRT and is irreduc-
ible. However, since Q does not contain the cube roots of unity, K2 cannot be
split into absolutely irreducible submodules over Q when Tw = ((123)).

Let us seek a more general form of Chinese Remainder Theorem. Let W denote
an equivalence class of norms on M. Clearly then gW is another equivalence
class. For H a subgroup of G, let HW denote the H orbit of W. Then gxW and
g2W are both in HW if and only if gl and g2 he in the same (H, Tw) double
coset. Then M is said to satisfy the H-Chinese Remainder Theorem (H-CRT) if
the following holds:

Let |t \\w , . . . , || ||w be norms which belong to distinct H orbits HWt. For all
ax,..., ar e M, and for all e > 0, there exists z e M such that \\z - at\\w < e for
all w e HWt.

The motivation for considering such a definition is that the primes of the
intermediate field F, the fixed field of H, are naturally indexed by double cosets
(H,GW). Notice that if M satisfies the tf-CRT, then it also satisfies the #«-CRT
for all g e 6 . First consider the situation when H is a normal subgroup of G.

THEOREM 3. Let H be a normal subgroup of G, and suppose that M satisfies the
H-CRT. Then M is an induced HTw module.

PROOF. First note that if H is normal, theft the double sets (H, Tw) correspond
to (single) cosets of the subgroup HTW. Now define a new norm on M by

11*11//^= max | |x | |w.

Let MHW denote the completion of M in the resulting topology. Then, again by
the H-CRT, we have that KV®KM~ ® MHW, where the sum runs over all
//-orbits of equivalence classes lying over v. Again the right-hand side forms a
system of imprimitivity with decomposition group HTW, so that M is an induced
HYW module.

Again, as with Theorem 2, the following corollary indicates some of the limits
of the theorem.

COROLLARY 2. Suppose K is a splitting field for the representations of the
subgroup HYW normal in G. Then M is irreducible and satisfies the H-CRT only if
there is one H-orbit of inequivalent norms lying over the prime v of K.
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PROOF. This follows as in Corollary 1.

Now let us turn our attention to the case when H is not normal in G. The
above proof breaks down because the relationship KV®KM= © MHW n o

longer gives rise to a system of imprimitivity since g: MHW —* MHSgW. All we can
say is that the right hand terms are .//-invariant. If, however, we further assume
that Tw = 1, then we have that HW n HggW = 0 unless g e H. With these
observations we may prove the following.

THEOREM 4. Assume that for some w, we have Yw = 1. If M satisfies the
H-CRT, then M is an induced H module.

PROPOSITION. AS before we have that KV®KM= ®.MHW_, as well as
KV®KM= ® MHtw, since M also satisfies the Hg-CKT. Choose v so that
F ^ = 1. Now let G = UgjH be a coset decomposition of G, and consider the
mapping

g^G/H

obtained by summing over the projections Kv ®K M -* MHg w. Since
U g e c / H ^ W exhausts all divisors of v, the mapping is injective. Moreover,
since we can solve for x e Kv ® K M, where

by the corresponding solution

where the non-zero term occurs in the Wt = gW1 component, we see that the
mapping is surjective. Thus we have an isomorphism

K09KMs 0 MH,gWi,
g^G/H

where, now the right-hand side forms a system of imprimitivity with decomposi-
tion group H. Thus M is an induced H module.

4. Converse results

Of course what has been shown in the previous section is of little interest if no
modules can be shown to satisfy any type of Chinese Remainder Theorem. Our
aim now will be to construct modules which do just that.
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Let H be a subgroup of G, with fixed field F. For M' an FH module and any
g e G, gM' is an /"*//* module. Now put M = LgeG/HgM'. Then M is clearly
a ATG module with dimension less than or equal to [G: H]2 dim M'.

THEOREM 5. The module M constructed above satisfies the H-CRT for H normal
inG.

PROOF. Let x be in M, say. Then x = Eg <=G/ngixi f°r some xt e M', so that

2m max \\gjXlL (where m = [G:H])
i

= 2mmax||jc|.||fc-i

Thus, given ax,...,ar^M with a, = Eygya,y, we have that

Thus we need only consider approximations of the type \\Xj - a,-7-||gri . How-
ever, by Lemma 1, if {gj1wi}

r
i=1 lie over distinct primes v' of F, solutions Xj in

M' can be found such that

for all gjlw\v\ if we are given that g~1wi\v'. Now if wv... ,wr lie in distinct H
orbits, so also do gj1w1,..., g]xwr, since H is normal, so they lie over distinct
primes of v' of F. Thus solutions Xj to (*) exist such that

\\x - a,\\w < 2m max\\Xj - au\\g;iw < 2me

for all w in the same i/-orbit as wt.

It is not at all clear how to generalise this to the case where H is not normal. As
indicated by the nature of Theorem 4, when H is not normal extra conditions
must be applied, and so we would expect the situation to be more complex.
Perhaps a different construction is required.

5. Examples

Perhaps it would be wise to conclude with some concrete examples, which
hopefully will illustrate some of what is and what is not possible.
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EXAMPLE 1. Let L = Q(«, Jl), where «3 = 1, w # 1, and let K = Q, F =

Q(w), and M = /2~Q(w). For simplicity let us consider valuations rather than

norms. Let w be a prime of L. For j : e M , w e have x = */2z, where z e Q(w), so

that |JC|W = IV^IJ^L- Thus all that is important is the restriction of w to F, so
that w1 and w2 induce equivalent norms if and only if they lie above the same
prime v' of F. Moreover, M can be obtained from the type of construction given
in Section 4, so that M satisfies the //-CRT, where H = G(L/F). Moreover, for
non-ramified primes, F^, = H if there are two conjugate primes v[ and v'2 of F
which lie over the rational prime p with w\p, i.e. when p = Imod3. Otherwise
F^ = G. Thus if /? = lmod3 we have, for inequivalent Wl and W2, that
QP ®Q M = MWi ffi M^2. Otherwise, for unramified p, we have QP ®Q M =
Mw.

EXAMPLE 2. Let L = Q(w, \/2~, ^a^, /a^), and let K = Q, where ê  =

(1 + ^2)(1 + cofc) and «2 = (1 + v^)(l + to2vT). Then G(L/K) = SA. For

convenience put a3 = (1 + «yT)(l + u2j2), so that /c^a^ = (1 + j2)Ja^, i.e.
Consider the QG module M = {xx\[a[ + x2{ul + x3ya^|x, e Q}.

Then the character of M is irreducible and induced from a one-dimensional
representation of one of the Sylow-2 subgroups G(2) of 54. I shall show that M
does not satisfy any H-CRT for H = 1, V4, or G(2), where V4= C2 X C2 is normal
in 54. If M satisfies the //-CRT for H = 1 or F4, this would mean that M is an
induced HYW module. This can only be true if HYW = G(2) or G. However, if
HYW = G<2) or G, then Af splits into submodules, whose characters, when
restricted to HTW, are irreducible, and the resulting decomposition is multiplicity
free. Thus the conditions of Corollaries 1 and 2 are sufficiently fulfilled to say that
there can only be one H orbit lying over any rational prime p. Alternatively, if
H = G<2), an isomorphism of the type Q ,̂ ®Q M = ©. MHW is a decomposition
into H invariant subspaces, so once again there can only be one H orbit over any
prime p. Let us now calculate a particular F^ and show that this is not the case.

For an unramified prime p, the decomposition groups Gw, where w\p, are
determined by the conjugacy classes of S4; and by Cebotarev's theorem every
conjugacy class occurs. Certainly there exists a prime w in L such that Gw = (a) ,
where a{xl)ja[ + .x2y'a2 + x3ija2) = —x1ifai — x2y«2 + x3]fa^. In fact a e V4.
T h e n , s ince Gw < Yw, we have

1]la^ + x 2 / a ^ + x3)J^h)
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But the first term is just \2(x1]Ja^ + x2]{a2~)\w or \2x3Ja^\w, and \2\w = 1 since 2
is ramified and w is unramified. Thus

max + x,Ja

max

+ x

+

i.e.

Thus, for g G Tw, g must preserve the right-hand side.
This can only occur if g e Gw. Thus F^ = Gw. This is incompatible with any of

our previous possibilities, and so M cannot satisfy a //-CRT.
It seems in general that it is too much to expect an irreducible module to satisfy

some type of Chinese Remainder Theorem. This is not too disappointing when
one remembers that irreducible modules are not uniquely given, whereas larger
modules, the homogeneous components of a particular irreducible, are. The nicest
possible conjecture would then be that if such a module were induced from an H
module, then it would satisfy the //-CRT and, moreover, that the two double
coset decompositions KjHgiGw and U//g,IV are identical. This would ensure the
automatic fulfillment in Theorem 4, and it would imply that the various decom-
positions involved are properly indexed by primes from intermediate fields.

6. Applications

I shall consider two types of applications.
(a) Let M be a G-in variant AT-subspace of L. Let 0M = M n 0L, and let M*

be the dual of M under the bilinear mapping given by the trace map (M* is the
contragradient of M). Define the discriminant of M to be 3)(M) = [D0M: GM.],
where Z)0M is the dual of d)M (cf. [4, page llff]). ^ ( M ) is defined by
localisation, i.e.

Now if M and M* satisfy the //-CRT, then

<SM , a n d
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where M£w is the dual of MHW, so that the local v component of 3){M) has a
factorisation into certain "semi-local" components

\D6M :

If, further, the two double coset decompositions UHgfi^ and LlZ/g^F,,, are the
same, then these "semi-local" components are indexed by primes in the fixed field
of H lying over v, e.g. if M = L then Sd{M) is the discriminant of the extension
of L over K, and this factorisation is well known.

(b) Following Frohlich [5], note that the Galois modules we have considered
have rank 1 over KG. Thus M = vKG for some v e KG. However, if M satisfies
a //-CRT, then Kv ®K M = © MHW. Now in terms of the KVG module structure
of the left-hand side, we see that

MHW, = VHW,

for some fixed Yw, where vHWi e KU[HW\, and where Hw is the decomposition
group of the double coset HgtYw. Thus

KV®KM= vKfi = © vHWKv[HgiTWi\.

Therefore, considering v as a linear map operating on KVG, we see that v =
© vHw. Moreover, if we consider <SM = M n 0L as an 0K[G\ module, we have
again, following Frolich, that

where fiv is an invertible element of KVG. Again, a / / -CRT for M would imply
that, as linear maps,

where

and where $HW is an invertible element of KU[HW ].
For this last process we require that the modules involved satisfy some type of

projectivity condition.
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