
LATTICE COVERINGS OF n-SPACE BY SPHERES 

M. N. BLEICHER 

1. Introduction. A lattice A in euclidean w-space, En is a group of vectors 
under vector addition generated by n independent vectors, Xi, X2j . . . , Xn, 
called a basis for the lattice. The absolute value of the n X n determinant 
the rows of which are the co-ordinates of a basis is called the determinant of 
the lattice and is denoted by d(A). For any lattice A there is a unique minimal 
positive number r such that, if spheres of radius r are placed with centres at 
all points of A, the entire space is covered. The density of this covering may be 
defined as (Jnr

n)/(d(A)) where Jn is the volume of the unit sphere in w-dimen-
sional euclidean space. This density will be denoted by 0n(A). The density 
of the most efficient lattice covering of n-space by spheres, 0nj is the absolute 
minimum of 0n(A) considered as a function from the space of all lattices to 
the real numbers. It is known that the minimum always exists (viz. 10). A 
lattice is called extreme if it yields a relative minimum of 0n(A). 

In 1952 Davenport (8) showed that for large n 

*• < (^73 + Y < t1-15)' 
In the same year Bambah and Davenport (3) demonstrated that 

4/3 - en <0n 

where en —> 0 as n —» <» . 
Later, in 1959, Rogers (13) proved that 

0n = 0(n(logenflOë*2*e)) 

and in a joint paper Coxeter, Few, and Rogers (6) constructed a sequence of 
real numbers {rn} such that rn < dn and rn ~ n/(e y/e). 

For low dimensions it is a classical result that 62 — ((2 V3)/3)7r (viz. 11). 
In 1954, Bambah (1) proved that 03 = ((5 \/5)/4)7r. A much simpler geometric 
proof of the three-dimensional result was given by Few (9). Barnes (4) further 
clarified the situation by showing that 02(A) and 03(A) have only one minimum, 
that is, the only extreme lattices are best possible. 

In four dimensions Bambah (2) obtained the following: 

1.5194 < , • 4
 / 0 7T2 < 04 < v^z 7T2 < 1.7656. 
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LATTICE COVERINGS BY SPHERES 633 

The upper bound was obtained by constructing a lattice which yielded a 
cover with that density. Bambah conjectured that this lattice is best possible. 

By evaluation of r4 in the above-mentioned paper of Coxeter, Few, and 
Rogers, they obtained 

1.658 < T4 = ~ ^ | ( i s ec - 1 4 - TT/5) < 04. 

In this work for each n a lattice An is constructed such that 

a co(x^
 1 f *n(* + 2) 1n / 2 

It is further proved that each of these lattices is extreme, but that for 
sufficiently large n these lattices are not absolutely extreme. Thus for large 
enough n there are classes of lattices which yield locally best possible coverings, 
but not best possible coverings. For n = 1, 2, 3, these lattices are the best 
possible covering lattices. The lattice A4 is the lattice which Bambah con­
jectured to be best possible; thus Bambah's conjecture will be strengthened to 
the extent that it will have been shown that his conjecture for the best possible 
covering is at least a locally best possible covering. 

2. Fundamental notions. If / is any positive definite w-ary quadratic 
form with determinant D(f), then the inhomogeneous minimum of / , m(/), 
is defined by 

m(/) = maxmin {f(a + L)} 
aeEn .LeAo 

where A0 is the integral lattice. If A and / are an associated lattice and form 
(cf. 5 §1.4) then 

0n(A) = Jn<t>n(f) 

where <j>n{j) = (m(f)w/2)/(D(f)1/2). To study the extrema of 0n(A) we shall 
find it more convenient to study the extrema of 0n(/)-

In this work it will also be necessary to make use of some results of Voronoi 
(14) on the theory of parallelohedra. Given a positive definite w-ary quadratic 
form, / and a lattice A, the parallelohedron associated with f and A, P(f, A), is 
defined to be the set of all points X of En such that 

(1) f(X)<f(X-L) 

for all points L of A. The bodies so defined have many interesting and useful 
properties. 

First, they are closed, bounded, convex, symmetric about 0, with plane faces 
and a non-empty interior. Second, if translations of P(f, A) are placed with 
centres at each point of A, they form a cover of En in which no two translations 
of the body have any interior points in common. Third, the only points of A 
which are necessary in the defining inequalities (1) are those finite numbers 
of points L of A for which 
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(2) /(L) < / ( L " ) , L * =b L", and L = L" (mod 2); 

that is, for each congruence class of A (mod 2) that point, if it exists, at which 
/ assumes its minimum over that congruence class. Last, Voronoi has shown 
that the number of vertices does not exceed (n + 1) ! 

Some of the above properties become more intuitive if one takes the following 
approach: Let 

for any point X of En. Then, since / is a positive definite quadratic form, 
||X|| is a Hilbert norm for En and P ( / , A) is nothing more than the collection 
of points nearer the origin than any other point of A. Since the property of 
convexity is preserved under such changes of norm, it follows that a point 
Y of P(J, A), for which || Y\\ is maximal, must be a vertex, and since P ( / , A) 
is closed and bounded and since this norm is continuous, it follows that at 
least one vertex has this property. 

It may further be shown that, if F is a vertex of P(f, A) which is determined 
by the system of n equations 

(3) f(X) =f(X-Lt), Li in A, t = l , 2 », 

then there is a vertex V" = V — Lj of P(f, A) which is determined by the 
system of n equations 

(4) f(X) =f{X-L'l), i= 1 , 2 , . . . , » , 

where L/f = Lt — L ; , i = 1 , 2 , . . . , » , i 9^ j 

L'/ = - Lj and also f(V) = f{V"). 

When the lattice concerned is the integral lattice A0, one says simply the 
parallelohedron associated with / , P(f). Also, if / is of the form f(X) = x±2 

+ x2
2 + . . . + Xn2, so that the norm induced by / is the usual euclidean 

norm, P(f, A) is denoted by P(A). 
The above properties of parallelohedra, while by no means inclusive, should 

suffice for the purpose of this work. It should also be mentioned that in his 
work Voronoi considered a linear transformation of the bodies obtained from 
A0 rather than working with all lattices A. 

3. Miscellaneous lemmas. In this section several lemmas will be proved 
which will be necessary for later arguments. As the proofs of these lemmas are 
quite apart from the general arguments which they will be used to support, 
they are collected here. 

If B is any matrix Bf will denote its transpose and, when applicable, \B\ 
its determinant. 

LEMMA I. Let f(X) — XAX' be a positive definite quadratic form where 
X = (#i, #2, . . . i xn) and A is an n X n positive definite symmetric matrix. 
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Let Si, S2, • . . 1 Sn be n independent points of En. Then the simultaneous solution 
Xo of the system of equations 

(1) f(X) = f(X - St) i=l,2,...,n 

is given by 2X0 = (/(Si),/(£2), . . . 1f(Sn))(ASf)~1 where S is the n X n matrix 
whose jth row is Sj, j = 1, 2, . . . , n. 

Proof. (1) may be reduced to 2XAS/ = f(St) i = 1, 2, . . . , n. It is now 
clear that this system may be written as one matrix equation 

2XAS' = (f(S1),f(Si),...,f(Sn)). 

By post multiplying by (AS')-1 we obtain the desired results. 

LEMMA II. If A is any non-singular n X n matrix and Y = (yu y2j . . . , yn) 
is any 1 X n row vector, then 

0 yi yi . . . yn 

yi 

yi 

YA^Y' = ~ \ . A 
\A\ 

Jn 

Proof. Let V = A~lY' where V = (vh v2j . . . , i/„), then AV = Y' may be 
solved by Cramer's rule yielding 

.. -Mil (2) 
Ml 

where At is the augmented matrix obtained from A by replacing the ith 
column by Y'. From the définition of V it follows that 

YA-*Y' = YV = y lVl + 3^2 + . . . + 3 ^ 

using (2) 

YA~lY' = 
\A\ 

(yi\A,\ + y2\A2\ + ... + yn\An\) 

which is precisely what is obtained by expansion of the (w + 1) X (n + 1) 
determinant of the lemma along the 1st row. 

LEMMA III . Let F(yh y2, . . . , ym) be defined on an open region R. Suppose 
further that F( Y) is homogeneous of degree zero and also has continuous first 
partial derivatives. Then 

dF 
*=i oyk 

in R. 
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Proof. I t is an immediate corollary of Euler 's theorem t h a t any function 
G(yu y 2, • • • , y m) having continuous first part ials which is homogeneous of 
degree q satisfies 

V dG r 
l^yic-^- = qG. 
*=i oyk 

LEMMA IV. Let F{Y) be as in Lemma III. Further assume that F(Y) has 
continuous second partial derivatives in R. Then 

^ d2F dF 
^ 3 ^ , - 7 - = - — J = 1, 2, . . . , n. 
i=i dyidyj dyj 

Proof. One may either differentiate the conclusion of Lemma I I I , which is 
applicable by hypothesis, or one may observe t h a t (àF)/{dy3) is homogeneous 
of degree —1 and proceed as in the proof of Lemma I I I . 

L E M M A V. Let F(Y) be as in Lemma IV. Further assume R contains the 
point F 0 all co-ordinates of which are 1. Then 

Proof. Applying Lemma IV and summing over j one obta ins 

W âLxytàyidy] H ày,' 

From Lemma I I I applied to the function F(Y) a t the point F 0 it follows t h a t 

(4) f ^ } = 0. 

T h e conclusion of the lemma now follows by evaluat ing (3) a t F 0 and 
applying (4). 

4. Para l l e lohedra of pr inc ipa l f o r m s . In this section several propert ies 
of the parallelohedra associated with principal positive definite quadra t i c 
forms in the sense of Voronoi (14, especially §§ 102-105) will be discussed. 

A form is principal in the sense of Voronoi if it can be wri t ten as 
n 

f(X) = 12 P0jX2J + S Pij(Xi — Xj)2 

jf=l K i < j ' < B 

where 0 < ptJ for all i,j. Pu t t ing x0 = 0,f(X) may be wri t ten 

f(X) = Z ) Pijipci - Xj)2. 
0<i<j<n 

Adopting the convention t h a t ptj = p ; i if i < j , we may prove a lemma which 
is the basis of a rguments of symmetry . 

L E M M A VI . Let ir be any permutation of 0, 1, 2, . . . , n. Thenf(X) is equivalent 
to 
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g(X) = X) P«itfi(xt - Xj)\ 
<Ki<j<n 

Proof. Let 7r* denote the inverse permutat ion of T. The transformation 
xt —> xT*(i) — xT*(0) is a unimodular transformation taking / into g. 

There is no difficulty in verifying this for the two permutat ions wi which 
interchange 0 and 1 and 7r2 which interchange 1 and 2. The lemma then follows 
by symmetry . 

Let Lu i = 1, 2, . . . , n denote the point of A0 with z'th co-ordinate 1 and 
the others 0 and L 0 denote the point with all co-ordinates — 1 . Let L ^ . j 
= Lt + Lj + . . . + Lt where i,j,...,t are distinct integers between 0 and 
n inclusive. 

The points Li, L i 2 , . . . , Li2...ra determine, through equations (1) §11, a 
vertex denoted by Fit2...Wfo. For any permutat ion w the points 

(1) £ T ( 1), £*-(l,2), • • • £T(1,2, . . .W) 

determine the vertex denoted by FT(it2,...n,o). Dist inct permutat ions yield 
dist inct vertices and thus all (n + 1) ! vertices are obtained in this manner . 

By application of Lemma 1 we obtain 

(2) V = 7i,2 ,,o = (lffiifiLÙJiLu), . . . ,f(L12...n))(AS')-1 

where 5 is the matrix with 0's above and l ' s on and below the main diagonal 
and A given by 

(3) A = 

P01+P12 + . • • —"P12 — Pn 

+ Pln 

— Pl2 P02 + P12 + P23 —P23 

+ • • -+P2n 
— Pl3 —P23 P03 + P13 + P23 

+ . • .+P3rc 

— Pin 

— p2n 

— pZn 

— Pin — pin — Pzn P0n + Pln + P2w 

+ . . .-\~Pn-\,n 

is the positive definite symmetric matr ix of f(X). Direct computat ion yields 
n+l 

f{L\2...ic) = AJ Pli + P2i + • • • + Pki-
i=k+l 

I t should be noted t h a t subscripts should be taken mod(n + 1), for example, 

Pi,n+i = P10 = Poi- And from the symmetry lemma 
n+l 

(4) f(Lr(i2...lc)) = 2-/ PT(H) + PT(20 + . . . + Px(fci). 
i=k+l 

I t is easy to verify t h a t 
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(S')'1 = 

1 - 1 0 . . 0 0 
0 1 - 1 0 0 
0 0 1 0 0 

0 0 0 
0 0 0 
0 0 0 

- 1 
1 - 1 
0 1 

Thus from (2) we get 

(5) Y = 2VA = {f{Lx)J{Ll2) - / ( L O , . . . ,f(Llim.M) -/(L12...0-1))). 

More explicitly, 

yi = P01 + P12 + P13 + . • • + pin 

3>2 = P02 — Pl2 + P23 + • • • + p2n 

(6) 

y h — POk — PU — . • • — Pk-l,k + Pk,k+1 + . . . + Pkn 

yn = POn — Pin — • • Pn—1,'. 

Hence f(V) = VAV 
Lemma II 

(7) 

(1/4)(2VA)A-1(2VAY = YA-lY'/±. Applying 

- 1 
f(V) 4\A\ 

0 Y 
Y' A 

where Y is given by (5) and (6). To find/(F*) where F* is any other vertex 
it is only necessary to perform the appropriate permutation on the subscripts 
of t h e pij. 

Li} Lij, . . . , Lij.^t determine the vertex V— Vijk,...,tu and —LuLi} 

— Lu . . . , Lijkmm.t — Lt determine the vertex V* = V — Lt and f(V*) 
= f{V)y as pointed out in §2 particularly in (4) and (5) of that section. 

Further since 

-L^i ~ -^ j ,k,...,t,u 

-Ld ij JL/ i == Ju j 

•L»ijk -L'i — •L'jk 

•L'ijk... 1 -L* i -L* jk ...t 
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it follows that V* = Vm,,,tui\ hence f(V*) is obtained from f(V) by a cyclic 
permutation of the subscripts of the p^. Thus any cyclic permutation of the 
subscripts of the ptj i n / ( F ) leave the function invariant as a function of the 
Pij. 

5. The lattices An. The lattice An is the lattice obtained from the integral 
lattice by multiplying A0 by the following matrix 

1 - 1 1  

A / 2 A / 6 A / Ï 2 

A / 2 - 1 

° A / 3 A / 1 2 

- 1 

0 0 0 

VHk +1) 
- 1 

Vk(k +1) 

Vk 
VkTï 

o 

- 1 
s/n(n + 1) 

- 1 
\/n(n + 1 ) 

A / ^ + 1 2 A / 3 

- 1 \/n(n + 2) 

A/W (n'+ 1 ) 

\/n 

A A + 1 

By well-known methods (cf. 5) this matrix yields a positive definite quadratic 
form which is equivalent, through multiplication by the constant {n{n + 2)) 
/(223) to the form/(X) with matrix 

A = 

n —1 
-1 n 

- 1 
- 1 

- 1 

- 1 
- 1 

- 1 

- 1 - 1 - 1 

This form may be written more explicitly 

f(X) = n £ x\ - 2 s .4 
This form is the principal form in the sense of Voronoi with all the ptj equal 
to unity, that is, 

(i) f(X) = £ ( * < - xj)\ 

In this section the following theorem will be proved: 
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THEOREM 1. For every natural number n, 

a < e ( A ï - 1 f xn(n + 2) > / f 

where An is the above-constructed lattice. Further for n = 1, 2, 3, equality holds. 

It is clear from the definition of 0n that 0re < 0n(An); and it is also readily 
verified by comparison with the known values of dn for n = 2, 3, stated in 
the introduction that equality holds in those cases. 

In the case n = 1 the sphere degenerates to the interval and the best density 
is clearly 1. 

As pointed out in the discussion of the Voronoi Body, P ( / ) , in §2, 

(2) m(/) = max {/(F)} 
FGS3 

where 23 is the set of the (n + 1) ! vertices of P(f). 
Since all the ptj have the same value for this form 

f(Vi2Z...no) =/(VT(123.. .»0)) = TTl ( / ) 

From formula (6) §4 it is easy to see that, evaluated at ptj = 1, yk = n 
- 2(& - 1). 

From §4, formula (7), evaluating at ptj< = 1 it follows that by adding the 
last n rows to the bottom row, and then by adding this new bottom row to 
each of the 2nd through nth rows, we obtain 

0 n n - 2 . . . n - 2(k - I) . . . 2 - n 
2n n + 1 0 0 0 
2{n - 1) 0 n + 1 0 0 

mtf) = 
- 1 

4\A\' 2(n - k) 0 

2(2) 
n 

0 
1 

0 
1 

n + 1 

0 
1 

0 
1 

By next subtracting the last column from the middle (n — 1) columns the 
determinant is reduced to a form in which it may be easily evaluated. Also 
the lower right n X n minor is \A\. 

Thus \A\ = (n + l)w _ 1 and the large determinant, D, is given by D = 
- ( » / 3 ) ( « + 2)(n + l)(w-1}. Combining these results 

n(n + 2) 
12 m(/) = 
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It follows that 

v(n + 1) 
_ /»(« + 2)V'2 / 1 V 

From the formula 

ra/2 
7 _ _ £ 

and the relationship between <£»(/) and 0n(A) the conclusion of the theorem 
follows. 

6. The extremity of the lattices An. In this section the following theorem 
will be proved: 

THEOREM 2. For every natural number n the lattice An is extreme; that is, it 
yields a relative minimum of the function dn(A). 

In this section f(X) will always denote the form constructed in the last 
section for which all Pa = 1. In order to show that f{X) is extreme it is 
sufficient to show that for all sufficiently small c^ i, j = 0, 1, 2, . . . , n the 
form 

0<i<j<n 

where ptj = 1 + etj satisfies </>n(f) < <t>n(g)> 
Since <t>n(g) is always positive it will suffice to consider the function F(p) 

where p = (p0i, P02, . . • , Pow, P12, . . . , pn-i,n) denned by 

The notation .F(p) is adopted in order to emphasize that F(p) is a function 
from the positive generalized octant of euclidean w*-space where 

* n(n + 1) 
n =—¥—. 

m(g), according to §5, formula (2), is the maximum of g(V) over all vertices 
of P(g), and as demonstrated in §4 this is the same as the maximum of 
g(Vir(it2 n,o)) taken over all permutations TTU i = 1, 2, . . . , (n + 1) ! of 
the symbols 0, 1, . . . , n. Thus by defining 

(1) FM =g(7 , I . ( l i 2 n^)/D{g)lln 

where it may be assumed that in is the identity permutation, it follows 
that F(p) = max{Fi(p): i = 1, 2, . . . , [n + 1) !}. In particular using (1) of 
the present section and formula (7) of §4, 

^ l W — ~~~ A\A | H - l / « 

0 F 

4|4 
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From the above representation of Fx(p) it is clear that Fi(p) is an algebraic 
function of the pii which is homogeneous of degree zero. Further in the region 
pij > 0 the numerator and denominator are positive. By the symmetry lemma 
these remarks apply equally well to the Ft(p). To prove the theorem it thus 
suffices to show that the function F(p) has a minimum at the point p0 all the 
co-ordinates of which are one. Since any permutation of the co-ordinates of po 
leaves this point invariant and since Fi(p) is obtained from F\(p) by a permuta­
tion of co-ordinates, Fi(p0) = Fi(p0) for all i = 1, 2, . . . , (n + 1) ! Thus p0 

will yield a minimum of F(p) if for every sufficiently short vector 

€ = ( € o i , e 0 2 , • • . , €()n, • • • > en-l,n) 

there is some i < {n + 1) ! such that 

(2) Fi(po) = Ft(Po) < Ft(po + e). 

The demonstration of the inequality (2) will be accomplished by the 
following steps. 

STEP 1. It will be shown that the sum over i = 1, 2, . . . , (n + 1) ! of the 
directional derivatives of Ft(p) evaluated at p0 is zero for any fixed direction. 

STEP 2. It will be shown that the sum over i = 1, 2, . . . , (n + 1) ! of the 
second-order terms in the Taylor approximation series for Ft (p) expanded about 
po is a positive semi-definite quadratic form in the e^. 

STEP 3. It will be shown that the above semi-definite form can be zero only when 
all €ij are equal. 

This will be sufficient for the demonstration of the theorem; for, let e be 
any vector in En* where 

* n(n + 1) 
n = — r ~ . 

If e is in such a direction that for some i the directional derivative of Ft(po) 
is positive in that direction, then it may be supposed that e is sufficiently small 
that the first order terms dominate the approximation of Fi(po + e) in that 
direction, and since the first order approximation is positive it follows that 
(2) holds with strict inequality. 

In the case when no directional derivative is positive they must all be zero 
since their sum is zero. 

In this case, if any Ft(p) have non-zero sums of second order terms (2) 
will hold with strict inequality for sufficiently small e. If no Fi(p) has positive 
second order terms then all the etj are equal, say e t ; = e0. Since the Ft(p) 
are homogeneous of degree zero 

F,(p + e) = ^ ( ( 1 + eo)p) = (1 + 60)°^(po) = Ft(po). 

A compactness argument proves that (2) holds for all sufficiently small e 
in the hyperplane epo' = 0. The homogeneity implies that for all sufficiently 
small €, (2) holds with strict inequality unless g is a multiple of/. 
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Proof of Step 1. For any permutat ion irk, ir*k denotes the inverse permuta t ion 
and 

T h u s 

T h u s 

^k(p) — (P*jfc(01), PT*(02) , • • • , Pn-(12)» • • • > PTTjfcU-l.n))-

Fk(j>) = F1(irk(p)). 

dFkK 

Oij \dpTT*(ij)' P=7T dp*; \opTk(ij)' P=*k(p) 

B u t for po, po = 7rfc(po). T h u s 

dFk(po) = dFi(pp) 

dpij opalin) 
Step 1 claims t h a t 

dflt(po) 

(3) 

(n+D! 

T h e coefficient of etj in this expression is 

dFk(p0) 

= 0. 

(n+D! 

J t = l dpij 

I t follows from (3) t h a t the coefficient is 

k=l dprk(ij) 

As k ranges from 1 to {n + 1) ! the pair i j with i < j is transformed into every 
other such pair precisely 2{n — 1)1 t imes: thus the coefficient of tti is 

2 ( n - l ) ! £ ^ l M . 
0< i<K» "PU 

By application of Lemma I I I the validity of Step 1 is thus established. 

Proof of Step 2. The second order term in the approximation of Ft(po + e) 

abou t po is 

(4) ? 2-, 2^ **i*ij - - • 
^ 0<fc< Kn 0< K K n ^Pfc Z^P *i 

In the sequel, wi thout harm to the argument , the factor 1/2 will be omit ted. 
T h e expression (4) may be writ ten in matr ix notat ion eHte where 

(5) Ht = 

d2Ft(po) 

(dpoi)2 

d2Ft(po) 

dpoidpo2 

d2Ft(Pp) d2Ft(po) 
dpoidpo2 dpoidpoz 
d2Ft(pp) d2Ft(p0) 
(dpo2) dpo2dpoz 

d2Ft(po) d2Ft(po) 

d'Ftjpp) 

dpoidpn-i,w 
d*F,(p0) 

dpo2dpn-i>n 

d2Ft(po) d2Ft(pp) ^ 
dpoidpn-itn dpo2dpn-ifn dpozdpn-i>n ( d p n _ i > n ) * 
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It has already been observed, Lemma V, that the sum of all the terms in 
this matrix is zero. 

We shall need the analogue of (3), namely, 

(6) aVi(po) = aVi(po) 
dpkidptj dp^MQdp^Uj) ' 

The sum over all the functions Ft(p) of the second order approximation terms is 

*(«)•= I E E * , « , — ^ ^ -
*=1 k<l i<j ^PT*(kl)dpir*(ij) 

In order to calculate aki,ij, the coefficient of e^e^ in this sum, three cases 
must be distinguished: 

CASE 1. (fe, /) = (i,j). In this case the permutations take (k, I) with 
k < /, onto every other such pair precisely 2{n — 1)! times. Thus the co­
efficient of eu

2 is given by 

(7) akl,kl = 2(n-l)\ £ ^M. 

It will be noticed that this expression is independent of k and / and hence 
will be denoted by a. 

CASE 2. The quadruple (&, /, i, j) consists of precisely three distinct numbers. 
Since the order of differentiation is not important we assume temporarily 
that k < i in 

d2Ft(pp) 
dpjcidpij 

The quadruple (fe, /, i, j) can be permuted into any quadruple of the form 
(r, s j r, t) (r, s, s, t) (r, t, s, t), r < s < t and only such quadruples, because 
of the temporary convention. Further it will be permuted into each such 
quadruple precisely 2{n — 2)! times. Thus 

tQ\ „ o(» 9M V d2^i(po) , d^jjpo) d2Fi(pp) 
(8) akhij = 2(n — 2)1 2L, ~Z—â— + ~^—â— + " 5 — ^ — • 

This expression is independent of (k, I, i, j) and will be denoted by b. 

CASE 3. k, /, i, and j are all distinct. In this case let C be the set of the 

(n+l)n(n~l)(n-2) 
4 

quadruples (r, s, t, u) for which r < s and £ < u. (k, /, i, j) will be permuted 
onto each of these quadruples precisely 4(n — 3)! times, thus 

(9) <*»,,„ = 4 (« -3 ) ! E T ^ 1 -

This expression is independent of (&, /, i, j ) and will be denoted by c. 
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We will now derive an elementary identity between a, b, and c which will 
give us a more calculable method to obtain c. 

We observe first that in matrix notation h(e) = eHe where the matrix 

(n+l)! 

i 

and Ht is given by (5). Since Ht is obtained from H by appropriately 
permuting the subscripts, each row of Hu possibly rearranged, is permuted 
into another row. Considering all permutations, each row is permuted into 
every row precisely 2{n — 1)! times. Thus the sum of the terms in any 
row of H is 2{n — 1) Î times the sum of all the terms in Hx. By Lemma V, 
this sum is zero. 

In each row of H, a will occur precisely once, on the diagonal; b will occur 
precisely 2(n — 1) times, and c the remaining 

(n- 1)Q - 2) 
2 

times. 
Since the sum of the row is zero we get 

(10) a + 2 ( » - l ) » + ( * - 1 )
2

( " - 2 )
C = 0. 

Below is an outline of the major steps in computing a and b. 
D denotes the (n + 1) X in + 1) determinant of the numerator of F\{p) 

and |-41 denotes the determinant of the quadratic form associated with the 
point p of £w*. All calculations are evaluated at the point po. 

As has already been computed 

# = |(W + 2)(« + i r i 

and 

\A\ = (n + l)"-1 . 

An easy computation from §4, formula (3) yields 

d\A\ 
dpoi 

2(n+l)"-

By Lemma VI \A\ is invariant under any permutation of the subscripts of 
the ptj. It follows that 

opij dpoi 

As indicated at the end of §4 Fi(p) is invariant under cyclic permutations. 
Since \A\ is also invariant under cyclic permutations it follows that D is 
invariant under cyclic permutation. Thus 
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dFi(pp) dFi(po) . 
— = % = 1 , 2 , . . . , rc 

OpOk Opi,i+k 
and 

dD(po) _ dD(po) 
opok opiti+k 

where i + k is reduced mod(n + 1) if necessary. 
It may thus be computed that 

dD 3D 2 , , _n_3 | 
= 5 (» + ! ) [ » ( » + 1 ) 0 + 2) + 6*(» + 1 ~ *)]. 

dpt,i+k dpok 3 

It follows from the above that 

dp*,m dPO* 0(» + 1) 

It will be noticed in formula (3) §4, that \A\ is linear in p01; and thus by 
the invariance under permutation of the subscripts this is true of every ptj. 
It results that 

Further computation and application of permutational invariance yield 

92\A\ d2\A\ 3 
i, k, I = 1, 2, . . . Vpiti+kOPi(i+l) OpOkVPOl i, k, I = 1, 2, . . . , w. 

Since the above is independent of i, k, and / 

-/ML = 3(„ + 1)-* 
i, k, I = 0, 1, 2, . . . , n. 

For D one may compute that 

d2D d2D 2 
7~ T2 = TT—T2 = 4(W + 1) 

i ^ j & = j 
j,i = 0 , 1 , 2 , . . . 

— i 
,n. 

and 

d ^ ^ D /.. . i ^ - 4 r / „ , -, w _ . 2 , , 

dpi,i+kdpi,i+i dpokdpoi 

+ 4(w + 1)(/ + Jfe) - 8(/2 - lk + k2)]. 

Since the evaluation at p0 of the various partial derivatives of the functions 
of which Fi(p) is composed are now known, it may readily be verified that 

a2Fi(Po) = a2^i(po) = 2(n + l ) 1 ^ 
(dpo*)2 (dPiti+k)

2 Sn(n + l)2 

and 

o JL 1 6 ^ ( n + 1 -k)~] . , 1 0 

2» + 1 — — ^ = 1,2,...,^ 
n -j- 1 J 
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d2Fi(pp) 

dpi,i+kdpi,x+t 

(n+ l ) 1 / n [~7t t 2 + 12n + S _ n(t - k)2 _ n + 2 

»(n+l)3L 12 w + 1 w + 1 

(k{n + 1 - k) + tin + 1 - t))\ k 9* t i, k, t = 1, 2, . . . , n. 

T h e common factor of 

(n+l)1/n 

n{n + l ) 3 

shall be ignored in future argument . I t thus results t h a t 

a = | (» + \)\{n2 - 1) and b = ^ (« + l)!(w2 - 4n - 8) . 

T h e common positive factor of 

( n + l ) ! 
3 

can safely be ignored. 
Applying formula (10) we obtain c — — (n + 2). 
This completes the description of the matr ix H; it remains to show tha t the 

form h(e) is a positive semi-definite form. 
h{e) may be expressed by 

(11) k(e) = — \C Zl (*(H + €u + • • • + tin — €0; — €^- — . . . — 6 ; n ) 2 

- ( 7 + & ) ] C Z^ (et; - eiA;)
2. 

\ ^ / i=0 i<j<k<n 

The coefficient of the first sum is (n + 2 ) /4 and tha t of the second is 
(Sn + 2 ) / 4 ; since both of these are positive, h(e) is positive semi-definite. 

Proof of Step 3. I t is clear from (11) t ha t if all the eî;- are equal, h(e) = 0. 
If h(e) = 0 it follows from the second sum of (11) t ha t all the etj are equal. 
Steps 1, 2, and 3 and hence the theorem are thus established. 

7. T h e local character of An for large va lues of n. I t was pointed 
out in the introduction t ha t Hlawka has proved t ha t there always exists a 
best possible covering of euclidean space by spheres. The question of whether 
or not there are solutions which are locally best possible, bu t not best possible 
has not been answered. In this section t ha t question is answered in the affirma­
tive for large n. To do this it is sufficient to show tha t the function 0ra(A), 
considered as a function from £re* to the real numbers has a relative minimum 
which is not an absolute minimum. 

a2fi(po) 
dpok àpot 
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I t has already been shown, Theorem 2, t h a t 0n(A) has a relative minimum 
a t An. T h e question is answered by the following theorem. 

T H E O R E M 3. For all sufficiently large values of n the following inequality holds: 

6n < dn(An). 

Proof. Theorem 1 s ta tes 

i f n(n + 2)Tr Y 
Vn{An) - T(n^) L 1 2 ( W + 1 ) I - 1 ^ J • 

In view of Rogers ' result t h a t 

0, = O ( » ( l o g . » ) ( ( 1 " , t o " , " > ) 

and t h a t 

0 ( n ( l o g e W ) ( 1 / 2 ) I - 2 " ) < o ( ( ^ ) " / 2 ) 

it follows t h a t 

en < en(An) 

for all sufficiently large values of n. 

8. C o n c l u s i o n . Let us denote by fn(X) the form with which we have 
been working, §5, formula (1). 

I t is interesting to note t h a t fn is adjoint to the form Un of Korkine and 
Zolotareff (12) (which is equivalent to the An of Coxeter (6)) and hence fn 

is equivalent to Coxeter 's An
n+1. T h e forms Un and hence the An, are perfect 

and eutact ic and therefore extreme in the sense of the packing problem. I t 
is na tura l to ask if perhaps the forms adjoint t o the other perfect eutac t ic 
forms are also extreme in the covering sense. Unfortunately, the answer is 
negative. 

There are two perfect eutact ic qua te rnary forms, the U* and F 4 of Korkine 
and Zolotareff (Coxeter: A±, D). 

W e now consider the form h{X) = 2xi2 + 2x2
2 + (xi + X2 — 2x3)2 + (xx 

+ x2 — 2x4)2 which is adjoint to , and hence also equivalent to , V\. h(X) is 
simply 2co where co is the form considered by Voronoi (14) §115-116. T h u s 
h(X) may be considered as a reduced degenerate form of the I l l r d type in 
the Voronoi reduction. 

For this form three of the congruence classes of A0 (mod 2) do not have 
unique minimal representat ives; namely, (0, 0, 1, 1), (0, 0, 1, —1), (0, 2, 1, 1), 
( 2 , 0 , 1 , 1 ) ; ( 1 , 1 , 1 , 0 ) , (1, - 1 , 1 , 0 ) , (1, - 1 , - 1 , 0 ) , ( 1 , 1 , 1 , 2 ) ; and (1, 1, 
0, 1), (1, - 1 , 0, 1) (1, - 1 , 0, - 1 ) (1, 1, 2, 1) are the sets of four points a t 
which each of their congruence classes assumes minimal values. This collapsing 
of the unique representat ion is accompanied by a corresponding collapsing of 
some of the faces of the parallelohedron P(h). In fact, the 12 dist inct classes 
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of vertices of the primitive parallelohedron of type I I I collapse into precisely 
3 distinct classes, each representing four of the normal classes, as follows: 

Vi = i ( 0 , 0, 1, 1) represents the Voronoi vertex types I, IV, V, V I I I . 

V2 = J ( 1 , 1 , 1 , 0 ) " " " I I , I I I , X, X L 

^3 = 1 ( 1 , 1 , 0 , 1 ) " " " VI , VI I , IX , X I I . 

For each of these vertices h(V) = 2 and since D(h) = 64 we see t h a t 

* W = I > 5^5 = Mfi)-
Speaking intuitively, a lattice A for which P(A) is a primitive parallelo­

hedron with the vertices lying on a sphere is a likely candidate to be an extreme 
latt ice; for, in order to obtain a bet ter covering, one would have to vary the 
lattice in such a manner t ha t the farthest vertex from the origin remains on 
the sphere, and yet the volume of the body increases. In the case of imprimitive 
bodies there is the possibility of pulling one or more of the vertices apa r t into 
a face and in this manner increase the volume of the body without sending any 
of the vertices outside the sphere. 

Wi th the above in mind we now consider the form g{X) = h{X) + 2ex3X4, 
2 > e > 0. This is the degenerate reduced form of the third Voronoi type for 
which /xi = 2 — e and /z6 = e and all the other coefficients are zero in the 
s tandard representation. 

In the transit ion from P(h) to P(g) the vertex V\ becomes a parallelogram 
with the following vertices: 

V'i = T7i* , V Ô^V (4e2 ~ *\ 4e2 - e\ 32 + Se - ±e\ 32 + Se - 4e2), 

a type I ver tex; 

V" = An*.i-o. oJ- (8*2 - 2<3> - 1 6 e + *3> 3 2 - 2<2> 3 2 " 2*2)> 

a type IV vertex; 

Vi" = ~Ana • Q. ^ V ( - 16€ + 4e2, - 16e + 4€
2, 32 - 8e, 32 - Se) 

a type V vertex; 

VÏ" = 4 ( 1 6 + gc _ 3e2y ( - 16e + e3, 8e2 - 2e\ 32 - 2€
2, 32 - 2e2), 

a type V I I I vertex. 

T h e vertex V2 splits into the line segment bounded by the following vert ices: 

n = 4(16 + L - 3e2) ( 3 2 + 16e ~ 6e2' 3 2 + 16e " 6e2' 3 2 + 16e ~~ 6€*' 0 ) , 

of types II and X I ; 

V" = 4(l6 + 86-3e2y ( 3 2 + Se ~ 4 € 2 , 3 2 + 8 e " 4 e 2 ' 3 2 + 8 € ' " 1 6 e ) ' 
of types I I I and X . 

4(16 + 8e --3e2) 

1 
4(16 + 8e --3e2) 

1 
4(16 + 8e --3e 2 ) 

1 
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The situation regarding F3 is identical to that of V2 except that the x3 and 
the X4 co-ordinates are interchanged. Vz is of types VI and XI I ; V-J' is of 
types VII and IX. 

By examination of the above vertices it is immediate that 

An easy computation yields D(g) = 4(16 + 8e — 3e2). It therefore follows 
that 

± / ^ 2(16 + 86 - 2e2)2 1 . . . 
Mg) = (16 + 8e - 3e2)6/2 < 2 = * * W ' 

for all sufficiently small values of e. 
We thus see that the covering yielded by h is neither better than that yielded 

by f\ nor locally optimal. 
It is interesting to note that the parallelohedron P(h) has all vertices 

equidistant from the origin under the norm of h. It would be interesting to 
know if this is perhaps true of the inverses of all perfect eutactic forms. 

The questions concerning how many local solutions there are as a function 
of n, what is the least dimension that has a local solution which is not an 
absolute solution, and for what values of n do the lattices An provide the best 
possible covers, remain open. 
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