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Abstract

Objective:Major depressive disorder (MDD) is associated with impaired reward processing and reward learning. The literature is inconclusive
regarding whether these impairments persist after remission. The current study examined reward processing during a probabilistic learning
task in individuals in remission from MDD (n= 19) and never depressed healthy controls (n= 31) matched for age and sex. The outcome
measures were pupil dilation (an indirect index of noradrenergic activity and arousal) and computational modeling parameters. Method:
Participants completed two versions (facial/nonfacial feedback) of probabilistic reward learning task with changing contingencies. Pupil dila-
tion was measured with a corneal reflection eye tracker. The hypotheses and analysis plan were preregistered. Result: Healthy controls had
larger pupil dilation following losses than gains (p<.001), whereas no significant difference between outcomes was found in individuals with a
history of MDD, resulting in an interaction between group and outcome (β= 0.81, SE= 0.34, t= 2.37, p= .018). The rMDD group also
achieved lower mean score at the last trial (t[46.77]= 2.12, p= .040) as well as a smaller proportion of correct choices (t[46.70]= 2.09,
p= .041) compared with healthy controls. Conclusion: Impaired reward processing may persist after remission from MDD and could con-
stitute a latent risk factor for relapse. Measuring pupil dilation in a reward learning task is a promising method for identifying reward process-
ing abnormalities linked to MDD. The task is simple and noninvasive, which makes it feasible for clinical research.
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Introduction

Major depressive disorder (MDD) is the most common mental
health condition worldwide. It is highly disabling and associated
with a wide range of negative outcomes including suicide, low
occupational achievement, and other forms of psychopathology
(Bernaras et al., 2019). Treatments for MDD remain only partially
effective, with rates of clinical improvement around 50% (Cuijpers
et al., 2014; Fournier et al., 2010). Even after successful treatment,
the risk of relapse is high, with 50–80% experiencing additional
depressive episodes during their life time (Burcusa & Iacono,
2007; Holmes et al., 2018).

A core symptom of MDD is anhedonia, or a reduced ability to
experience pleasure and positive affect. Symptoms of anhedonia
are often treatment resistant andmay even increase in severity with
standard pharmacological treatments, e.g. (Craske et al., 2016).
Behavioral and neurophysiological studies have shown that
MDD, and anhedonia in particular, is linked to atypical processing
of rewards (Cooper et al., 2018). Previous studies have documented
reward processing impairments inMDD.However, the literature is
inconsistent about to which extent these impairments reflect acute

MDD symptoms and to whether they constitute vulnerability
markers that are not state-dependent. Specifically, whether they
extend to currently asymptomatic individuals at elevated risk such
as patients in remission (rMDD) or relatives of individuals with
MDD (Admon& Pizzagalli, 2015; Cléry-Melin et al., 2018). A large
body of research has examined the role of dopamine (DA) in
reward processing, both in healthy individuals (Schultz, 2007)
and in MDD (Admon & Pizzagalli, 2015; Cléry-Melin et al.,
2018). However, recent studies have shown that reward processing
and decision making in healthy individuals are also closely linked
to the locus coeruleus-noradrenergic (LC-NE) system (Braem
et al., 2011; Van Slooten et al., 2018). This research has primarily
used pupil dilation, an index of arousal, modulated by activity in
the LC-NE and cholinergic systems (Samuels & Szabadi, 2008).

So far, pupil dilation and LC-NE arousal have not been exam-
ined during reward learning in relation to rMDD. Research
addressing this gap in the literature could be informative about
the neural mechanisms underlying altered reward processing in
MDD. Recently, Schneider et al. (2020) examined pupillary
responses during reward anticipation in currently depressed

Corresponding author: Mona Guath, email: mona.guath@psyk.uu.se
Cite this article: Guath M., Willfors C., Björlin Avdic H., Nordgren A., & Kleberg J.L. (2023) Pupillary response in reward processing in adults with major depressive disorder in

remission. Journal of the International Neuropsychological Society, 29: 306–315, https://doi.org/10.1017/S1355617722000224

Copyright © INS. Published by Cambridge University Press, 2022. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of the International Neuropsychological Society (2023), 29, 306–315

doi:10.1017/S1355617722000224

https://doi.org/10.1017/S1355617722000224 Published online by Cambridge University Press

https://orcid.org/0000-0002-9613-0808
mailto:mona.guath@psyk.uu.se
https://doi.org/10.1017/S1355617722000224
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1355617722000224
https://doi.org/10.1017/S1355617722000224


individuals. Although no group differences were found between
depressed and healthy individuals, blunted pupillary responses
during reward anticipation were strongly correlated with the level
of depressive symptoms.

A small number of previous studies have examined pupil dila-
tion in rMDD, although not in the context of reward learning tasks.
Two of these studies reported reduced pupil dilation to negative
words in patients with MDD in remission, compared to nonremit-
ters or healthy controls (Siegle et al., 2011; Steidtmann et al., 2010).
Pupil dilation has also been examined as a longitudinal predictor or
MDD recurrence. Kudinova et al. (2016) found that reduced pupil
dilation to images of sad faces predicted recurrence ofMDDduring
a 2-year follow-up period in women with a history of rMDD.
When analyzing responses to angry faces, the authors found evi-
dence for a quadratic relationship, with both blunted and enhanced
reactivity predicting recurrence of MDD.

The aim of the present study was to compare reinforcement
learning and pupillary indices of reward processing in currently
euthymic individuals with a history of MDD and in never
depressed healthy controls. The background to this research ques-
tion is introduced in the following sections.

Reward processing in MDD

In healthy individuals, reward processing is linked to a group of
interacting brain mechanisms including the ventral striatum and
the medial frontal cortex (Admon & Pizzagalli, 2015; Le Heron
et al., 2018; Schultz, 2007). Behaviorally, reward processing can
be divided into several subprocesses including expectation of
reward (“wanting”), the consumption of the reward (“liking”),
and learning of reward contingencies (Der-Avakian & Markou,
2012; Rømer Thomsen et al., 2015). Importantly, shared reward
processing mechanisms have been found for a wide range of
rewards, including money, food and drink, and symbolic rewards,
such as the number of points gained in a game (Levy & Glimcher,
2012; Schultz, 2007). On a behavioral level, individuals with
ongoing MDD display deficiency across all three stages of reward
processing (Admon & Pizzagalli, 2015; Cléry-Melin et al., 2018).
Consistent with this, atypical brain responses in regions linked
to reward processing have been observed in patients with MDD,
including reduced activation in the ventral striatum and the ante-
rior cingulate cortex (ACC; Chentsova-Dutton & Hanley, 2010;
Wacker et al., 2009). One research area that has begun to unravel
the link between reward processing and psychopathology is com-
putational psychiatry, which applies, for example, reinforcement
learning models that capture the internal learning and evaluation
processes in a person. Reinforcement learning models can be
applied to reward-related decision making in uncertain and vola-
tile environments, arguably providing ecologically valid measures
of reward processing in everyday life (Huys et al., 2016).

Computational modeling studies have documented a range of
abnormalities in reward processing inMDD. For example, individ-
uals with MDD show less exploration than healthy peers during
reward learning (Cella et al., 2010; Huys et al., 2013), specifically,
they deviate significantly more from an optimal model (Blanco
et al., 2013). Further, there is research indicating that the central
feature in decision making in anhedonic patients is linked to the
motivational aspects of reward behavior (Treadway & Zald,
2011). The results echo findings indicating that MDD are less will-
ing to expend effort on rewards, less skilled at discovering the
underlying task characteristics (Treadway & Zald, 2011), and dis-
play less efficient learning in a probabilistic response task

(Pizzagalli et al., 2008). Importantly, individuals with MDD show
learning impairments regardless of outcome value (win/loss) and
environment (reward/punishment) in volatile, probabilistic tasks
(Gagne et al., 2020).

Reward processing as a risk marker for MDD

Recent research suggests that reward abnormalities are not only
seen in symptomatic individuals, but may also persist after remis-
sion (Pechtel et al., 2013; Weinberg & Shankman, 2017; Whitton
et al., 2016), and may be present in nonaffected relatives of patients
with MDD (Gotlib et al., 2010). If this is correct, abnormal reward
processing could be a trait-like and heritable vulnerability factor
that increases the risk for MDD. However, the literature is not con-
sistent. Two studies using event-related potentials (ERPs) reported
blunted responses to rewards (Weinberg & Shankman, 2017;
Whitton et al, 2016). Similarly, behavioral indices of reduced
reward responsiveness in rMDD were found by Pecthel et al.
(2013) using a probabilistic reward learning task. In contrast to
these findings, one study reported similar affective responses (indi-
cated by subjective ratings) to rewards in individuals with rMDD
and controls without a history of MDD, whereas both groups dif-
fered from currently depressed individuals (McFarland & Klein,
2009). One study using functional magnetic resonance imaging
(fMRI) reported normalized activity in frontostriatal brain regions
associated with reward processing after successful psychological
treatment (Dichter et al., 2009). Surprisingly, one study (Ubl
et al., 2015) reported enhanced neural responses to rewards rather
than the expected blunted activity in the amygdala and hippocam-
pus in individuals with rMDD compared to healthy controls. To
sum up, further research is needed to understand the nature
and extent of reward processing atypicalities in rMDD.

Pupil dilation as an index of reward processing and decision
making

Pupil dilation increases during processing of motivationally
salient, novel, or cognitively demanding stimuli and is closely
linked to arousal and activity in the brain’s LC-NE and cholinergic
systems (Kleberg et al., 2019, 2020; Samuels & Szabadi, 2008). The
LC-NE system interacts with brain areas implicated in aberrant
reward processing in MDD such as the ACC and the amygdala
(Aston-Jones & Cohen, 2005; Samuels & Szabadi, 2008).
Typically, pupil dilation is induced by both positive and negative
stimuli (e.g., both rewards and losses; Laeng et al., 2012). Recent
studies have also shown that pupil dilation may map onto specific
reinforcement learning processes such as the degree of exploration
and rate of learning (Manohar & Husain, 2015; Van Slooten et al.,
2018) and the uncertainty of the environment (Nassar et al., 2012).
Taken together, this suggests that disrupted processing of rewards
in MDD may be indexed by altered pupil dilation. However, pupil
dilation during reward processing has not been examined in indi-
viduals with MDD or rMDD. Burkhouse et al. (2016) recently
reported that adolescents with ongoing MDD as well as rMDD
showed increased pupil dilation to emotional faces compared to
healthy controls. This study, though, did not examine reward
processing specifically.

Preregistration

The analysis plan and hypotheses were preregistered in the Open
Science Framework (link: https://osf.io/tk4ac/).
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Research questions and hypotheses

In the present study, we investigated pupil dilation in relation to
reinforcement learning processes in a probabilistic learning task
in an rMDD and a healthy control group.We hypothesized the fol-
lowing group differences:

1. Blunted pupillary reactivity to losses and gains in the rMDD
group

2. Blunted pupillary reactivity in expectation of gains and losses
(e.g., after a choice has been made, but before the outcome
has been presented).

3. Lower learning rate (alpha) in the rMDD group.
4. Less exploration (higher beta values) in the rMDD group.

Method

Experimental paradigm

The experimental paradigm is shown in Figure 1. In the experi-
mental task, participants chose repeatedly between two different
stimuli. Choosing one of the stimuli was associated with high prob-
ability of winning a point (85%), but also with a low probability of
losing a point (15%). The other stimulus has the reverse probabil-
ities. Feedback learning was therefore needed to successfully
master the task. The contingencies changed five times during
the course of the experiment (after 15 trials), meaning that a
change of strategy was needed for optimal performance.
Participants completed 75 trials, with changing contingencies after
each 15th trials. Each trial began with a fixation cross presented for
1.5 s, followed by two stimuli presented to the left and right during
a random interval ranging between 0.2 and 1 s, after which partic-
ipants were instructed tomake a choice by a key press when a ques-
tion mark (“?”) appeared on the screen. Each stimulus covered
approximately 5.25° of the visual field vertically and horizontally
and was presented at 5.5° eccentricity from the center of the screen.
Following the key press, a 1.5 s interval (the expectation period)
followed during which the stimuli remained on screen and the
chosen stimulus was marked by a rectangle. Subsequently, the out-
come was presented (the feedback period) during 2 s. Two versions
of the task were completed in randomized order. In the facial feed-
back condition, a loss is indicated by an angry face and a win by a

happy face. In the nonfacial feedback condition, a loss is indicated
by a stylized hand with the thumb pointing downward, and a win
by the same hand with the thumb pointing upwards. Feedback
stimuli covered approximately 6.18° of the visual field horizontally
and 3.9° vertically. Positive and negative feedback stimuli were
matched for luminance within each condition using the SHINE
toolbox (Willenbockel et al., 2010) implemented in MATLAB
(Mathworks, Inc.), but stimuli were not matched across condi-
tions. Participants started the experiment with 100 points.

Participants

Participants were recruited from a database of individuals express-
ing their interest to participate in research administered by the
Karolinska Institute. Exclusion criteria were the presence of any
current psychiatric condition (including MDD) or substance
abuse. Participants were informed about these exclusion criteria
in written form before signing up, and subsequently prescreened
before the experimental session. In total, 50 individuals agreed
to participate and were tested (no participant fulfilled the exclusion
criteria). After recruitment, all participants were interviewed for
current and lifetime history of mental health conditions according
to diagnostic criteria in the DSM-5 (American Psychiatric
Association, 2013) by experienced clinical psychologists using
the Mini International Neuropsychiatric Interview (MINI;
Sheehan et al., 1998). MINI is a semi-structured clinical interview
for mental disorders, which is validated for identifying MDD and
other mental health conditions when used by trained clinicians
(Lecrubier et al., 1997; Sheehan et al., 1998). Participants were
included in the rMDD group if the assessment indicated that they
had fulfilled DSM-5 criteria for one or moreMDD episodes during
any time point in their lifetime regardless of whether they had
received treatment and/or a diagnosis by a professional. The
assessment was not complemented by medical records.

Based on the interview, 19 individuals were characterized as
having a history of MDD (henceforth the rMDD), while 31 did
not have a life time history of MDD or other major psychiatric dis-
orders (healthy control). All individuals in the rMDD group were
asymptomatic at the time of testing according to the clinical inter-
view and had been in full remission for at least 4 months. One indi-
vidual in the rMDD group had a previous diagnosis of generalized
anxiety disorder (GAD). No other individual had any previous or
ongoing psychiatric disorder. Further, the two groups were
matched for age and gender proportion. Demographic information
along with p-values for gender proportions, age differences,
response times, and proportion of interpolated samples are shown
in Table 1. As can be seen, groups did not differ inmedian response
times or the proportion of interpolated samples in the pupil dila-
tion analysis. Due to a technical error, eight individuals were miss-
ing data from the facial feedback condition, and ten individuals
were missing data from the nonfacial condition. Four individuals
in the rMDD group were on stable psychotropic medication (see
Table 1). Exclusion of these participants did not change any of the
results, and they were therefore retained. Power analyses using the
R package simr (Green & MacLeod, 2016) indicated that the study
had power above 80% to detect fixed effects explaining 5% or more
of the total variance at an alpha level of .05, given the number of
trials, and assuming a range of possible random effects variances.

Design

The design was a 2 x 2mixed factorial, with rMDD as between-sub-
jects factor and stimulus (face/no face) as within-subjects factor.

Figure 1. Overview of the experiment. Left: Nonfacial feedback condition. Right:
Facial feedback condition. (a) A fixation cross was presented for 1.5 s followed by
and (b) presentation of the stimuli for during a random interval ranging between
0.2 and 1 s, after which participants chose one of the stimuli. (c) Stimuli remained
on screen for 1.5 s (expectation period), during which the chosen stimulus was marked
by a rectangle. (d) Feedback was presented for 2 s together with a stylized thumb (left)
or a face (right).
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Recording and processing of eye tracking data

Eye tracking data were recorded using a Tobii X-120 corneal reflec-
tion eye tracker (Tobii Inc, Danderyd, Sweden), which samples
gaze at 120 HZ and pupil size at 40 HZ. Data were recorded using
the Tobii MATLAB SDK, and stimuli were presented in MATLAB
using PsychToolbox (Kleiner et al., 2007) for MATLAB
(Mathworks, Inc). Participants were asked to look at the screen
during the entire experiment. No head fixation was used.

Raw data were processed using custom scripts written in
MATLAB. The pupil data were filtered according to procedures
described in an earlier publication from our group (Kleberg
et al., 2019). The pupil size of the left and right eye was averaged.
Gaps in the data shorter than 150 ms (for example blinks or move-
ment artefacts) were replaced through linear interpolation, and the
data were subsequently filtered by a moving median filter with a
window corresponding to 100 ms. Previous studies have shown
that corneal reflection eye trackers can both under- and overesti-
mate pupil size when the distance between gaze position and the
center of the screen increases (Brisson et al., 2013; Hayes & Petrov,
2016). We tried to minimize gaze position artefacts by presenting
stimuli at a short distance from the centre of the screen and
counterbalancing the horizontal position of the stimulus associated
with a higher probability of being reinforced (see Experimental
Paradigm). On average, 89.6% (SD= 9.9%) of the valid recorded
gaze samples were within the area covering the stimuli. As can
be seen in Table 1, no group differences were found in average
Euclidean distance from the center of the screen. A post hoc analy-
sis (see Supplementary materials) showed a very weak relation
(average r=−.07, SD= 0.11) between Euclidean distance from
the center of the screen and pupil size.

The average proportions of interpolated samples per partici-
pant and condition are shown in Table 1. As can be seen, no group
differences were found (all p> .5). For a detailed description of
the preprocessing of the eye-tracking data, we refer to the
Supplemental materials.

Computational modeling of behavioral data

We fitted behavioral data with computational models for two-
armed bandits. Each participant’s data in each contingency was
fit to five different models in order to assess what model best cap-
tured the participants’ behavior. In essence, two different versions
of twomodels were compared, as well as a random responsemodel.
One version departed from the idea that participants applied a sim-
ple heuristic, win-stay-lose-shift, that is, staying with an option if
you win and shift if you lose. In our version, we also assumed that
participants switched away from the rewarding action with a cer-
tain probability. The other version departed from the idea that par-
ticipants take the previous outcomes into account and learn the
long-term value of choosing an action, the Q-learning model.
The winning model was the Q-learning model (Watkins &
Dayan, 1992), a variant of the Rescorla Wagner model. For com-
putational details, model comparisons, and parameter recovery, we
refer to the Supplemental materials. The winning Q-learning
model has two free parameters: learning rate (α) ranging from 0
to 1 and determining the degree to which expected values are
updated according to the recent outcome and exploration rate
β ranging from 0 to∞, determining the balance between explora-
tion and exploitation.

Statistical analyses

For all the models with pupillary response as dependent variable,
we excluded trials where the response was 3< or> 3 SDs from the
individual mean, resulting in 48 participants, which were included
in all analyses. For the analyses containing alpha and beta, we
excluded the no-face contingency for one participant who were
choosing the same alternative throughout all trials in that contin-
gency, resulting in 49 participants. Due to a software problem, data
from the face contingency were lost for eight participants and from
the nonfacial condition for ten participants. For this reason, we
double-checked all analyses including stimulus with data only

Table 1. Descriptive statistics for demographic background, type of medication, response time, and proportion of interpolated samples for each group (rMDD and
healthy controls) and condition (face/no face). Significance tests are provided for response time (Wilcoxon rank test), proportion of interpolated samples, and mean
number of fixations feedback interval (t tests for the latter two variables)

rMDD (n= 19) Healthy controls (n= 31) p-values

Gender (F/M) 11/8 15/16 χ2 (1)= .04, p= .85
Age M= 34.2 (SD= 10.9) M= 34.1 (SD= 11.9) t(37.3)= - 0.1, p= .90
Mean no MDD episodes M= 2.4 (SD= 2.2) –
Medication
SSRI 2 0
MAO-inhibitors 1 0
Lamotrigin 1 0
Insulin 0 2
Hormonal contraceptives 0 3
Response time
Face condition Mdn = 0.6 (IQR= 0.4) Mdn = 0.5 (IQR= 0.3) Z= 0.51, p =.61†

No face condition Mdn= 0.5 (IQR = 0.3) Mdn= 0.6 (IQR= 0.2) Z= 0.12, p =.90†

Proportion interpolated samples
Face condition M= 9.7 (SD= 1.1) M= 9.9 (SD= 1.0) t(35)=0.66, p =.52†

No face condition M= 9.15 (SD= 2.54) M= 9.93 (SD= 2.11) t(39)= 0.17, p =.87‡

Mean number of fixations feedback interval
Face condition M= 4.1 (SD= 0.9) M= 3.9 (SD= 1.2) t(35) = 0.43, p =.67
No face condition M= 3.6 (SD= 1.0) M= 4.1 (SD= 1.0) t(39) = 1.67, p= .11
Average Euclidean distance from centre of the screen (° of visual field)
Face condition M= 1.88 (SD= 0.55) M= 1.58 (SD= 0.56) t(35)=1.60, p= .12
No face condition M= 2.07 (SD= 0.60) M= 2.10 (SD= 0.72) t(39) = 0.13,p= .89

†Based on n= 37, see participants.‡Based on n= 41, see participants.
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containing participants who had done both contingencies. We
used two types of models: (i) mixed linear models for pupillary
response, which allowed us to capture the variance for each partici-
pant and include all trials for each participant and (ii) Wilcoxon
signed-rank tests for alpha and beta values, since they were not
normally distributed. We departed from Bates et al.’s recommen-
dations for model comparison of mixed linear models (Bates et al.,
2015). First, we specified three intercept models (for each outcome
variable) with different complexity of the random effects. Next, we
specified two models with different complexity of the fixed effects
using the random effects structure from the winning model in step
one. The decision criterion was maximum likelihood estimate.
For model comparison details, we refer to the Appendix,
Tables A2–A3.

Ethical approval

The study protocol was approved by the regional ethics committee
of Stockholm, Sweden (DNR: 2018/1218-31, 2019-03603).

Results

Figure 2 shows pupil dilation as a function of time in the healthy con-
trol and rMDD groups for gain and loss trials. Table 2 shows descrip-
tive and inferential statistics from model parameters (α and β), mean
score on the last trial, and differences in proportions of correct choices
for each group. There were no significant differences between the
groups for the model parameters, but there was a significant differ-
ence between groups on mean score on the last trial and percentage
of correct choices over all trials. The proportion of correct choices per
block and group is illustrated in Figure 3.

H1. Blunted pupillary reactivity to losses and gains in rMDD

In order to investigate whether the rMDD group displayed blunted
pupillary responses to losses and gains, we ran a mixed linear
regression with pupillary dilation after feedback as outcome vari-
able and outcome (gain/loss) and group (rMDD/healthy control)
as fixed effects, and block (5 in total) and ID as random effects. The
best model included an interaction between group and outcome as
fixed effects and a correlated random intercept for each participant

and slope for each block: pupil response ∼ group * outcome þ
(block|ID)

Results are shown in Figure 4 and Table 3. There was an effect of
outcome (β=− 1.12, SE= 0.21, t=− 5.28, p< .001), amounting to
a smaller pupillary response when the outcome was positive. No
main effect of group was found, but the interaction effect between
group and outcome was significant (β= 0.81, SE= 0.34, t= 2.37,
p= .018) (depicted in Figure 4). Pairwise comparisons showed that
healthy controls responded differently to gains and losses
(βdiff= 1.23, SE= 0.21,Z-ratio= 5.28, p< .001), whereas no differ-
ence between outcomes was found within the rMDD group.

To examine whether results could have been modulated by the
type of stimulus shown, we re-ran the analysis and included the
two- and three-way interaction terms group * condition and group
* condition * outcome. Neither of these interaction terms were sig-
nificant (see table Appendix, Table A1).

H2. Blunted pupillary reactivity in expectation of gains and
losses (e.g., after a choice has been made, but before the
outcome has been presented)

In order to investigate whether the rMDD group displayed blunted
pupillary reactivity to gains and losses, we ran a mixed linear
regression with pupil dilation before the stimulus was presented
as outcome variable and outcome on previous trial (shifted out-
come), and group (rMDD/healthy control), as fixed effects, and
block and id as random effects. The best model was pupilresponse
∼ shifted outcome þ group þ (block|ID). As can been seen in
Table 4, there were no significant effects for either predictor
variables.

H3 (lower learning rate in the rMDD group) and H4 (less
exploration in the rMDD group)

As can be seen in Table 2, the rMDD group did neither display
reduced learning rates (H3) and nor less exploration (H4).
However, there was a significant difference between mean scores,
where the rMDD group displayed lower mean scores than the
healthy control group. There was also a significant difference
between proportion of correct choices between groups (see
Figure 3 and Table 2).

Figure 2. Pupil dilation in the healthy control group (left) and rMDD group (right) during gain and loss trials. Black lines showmeans values. Colored blue and gray areas cover 95%
confidence interval. Red lines indicate significant between-condition differences at p< .005. Base= baseline (fixation cross); view= stimuli were shown for 1 s before a choice was
made; K= keypress (dotted line indicates median response time); exp = expectation. Stimuli remained on screen before feedback was presented. Feedback= presentation of
feedback (gain, loss).
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Discussion

Previous studies have documented blunted responses to reinfor-
ceres in individuals with ongoing MDD, but there is an ongoing
discussion about whether these abnormalities reflect a depressive
state or whether they persist in remission. We addressed this ques-
tion in a preregistered study, by comparing reinforcement learning
and pupillary responses to gains and losses in individuals with
MDD in remission (rMDD) and healthy controls using a probabi-
listic response task. Results showed that individuals with rMDD
differentiated less between rewards and losses than never
depressed individuals with their pupil dilation response. Further,
the rMDD group displayed lower mean scores at the last trial than
the healthy control group as well as a smaller proportion of correct
choices over trials. This adds to a growing literature suggesting that
reward processing abnormalities previously found in acute MDD
persist in remission (Pechtel et al., 2013; Whitton et al., 2016). To
the best of our knowledge, this is the first study to demonstrate that
pupil dilation, a peripheral index of arousal, is atypically sensitive
to reinforcers in rMDD. Below, we discuss the results and the
implications in relation to the hypotheses.

In healthy controls, pupil dilation responses were higher to
losses than to gains. This is in line with previous research demon-
strating that pupil dilation increases to motivationally salient or
attention capturing events (Samuels & Szabadi, 2008). It should
be noted, though, that this pattern of results is different from other

physiological measures used in studies of reward processing in
MDD, such as the BOLD signal in the ventral striatum, where gains
typically result in higher responses (Schultz, 2007). In contrast to
healthy controls, individuals with rMDD did not differentiate sig-
nificantly between positive and negative outcomes. This result,
which is in line with our hypothesis, suggests that individuals with
a lifetime history of MDD have a reduced sensitivity to the hedonic
value of stimuli in the environment.

Our results are consistent with the theory that altered respon-
siveness to the reinforcement value of stimuli in the environment
persists after remission fromMDD and is present in risk groups for
MDD. Using different methodologies, similar conclusions were
reached by two previous studies (Pechtel et al., 2013; Whitton
et al., 2016). In contrast, typical reinforcement sensitivity in
rMDD was reported (McFarland & Klein, 2009). Differences in
methods could account for the discrepancies, since subjective rat-
ings of affect rather than objectively observable measures of reward
processing were used by McFarland and Klein (2009). Further,
McFarland and Klein (2009) used a reward processing paradigm
in which participants had no actual control over the stimulus con-
tingencies, and learning was therefore not possible. In contrast, the
present and other studies finding attenuated reinforcement sensi-
tivity in rMDDhave examined reinforcement processing in volatile
environments where learning is possible (Pechtel et al., 2013;
Whitton et al., 2016). Our study demonstrates, for the first time,

Table 2. Medians (Mdn) and median absolute deviation (MAD) for the rMDD and healthy control groups for model parameters (a & b), and means (M) and standard
deviations (SD) for score on last trial and proportion of correct choices. Statistical tests (Wilcoxon signed rank test and t test) for each variable are provided in the third
column

rMDD Healthy control Statistical test

Learning rate (α) Mdn= 0.8 (IQR= 0.2) Mdn= 0.8 (IQR= 0.3) Z= 0.11, p= .90
Exploration (β) Mdn= 1.6 (IQR= 0.7) M= 1.8 (IQR = 1.6) Z= 0.27, p= .79
Score (last trial) M= 115 (SD= 6.2) M= 120 (SD= 10.0) t(46.77)= 2.12, p= .040
Proportion of correct choices M= .61 (SD= .04) M= .64 (SD= .07) t(46.70) = 2.09, p= .041

Note. For participants with data from both conditions (face/no face), the mean value was computed for the last trials, for participants with data from only one condition, the single value on the
last trial was entered in the t test.

Figure 3. Percentage of correct choices over all trials (y-axis), with standard error of the mean, for each block (x-axis) and group (legend), where golden represents healthy
control (control) and pink rMDD.
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that pupil dilation is a sensitive index of reinforcement processing
abnormalities in rMDD. Interestingly, blunted reinforcement
processing in rMDD was found in response to losses rather than
gains, whereas studies using ERPs found altered responses to gains
(Weinberg & Shankman, 2017; Whitton et al., 2016). Our results
therefore suggest that rMDD may be characterized by attenuated
responses to both gains and losses, although these two types of aty-
picalities may have different neural correlates.

Contrary to our hypothesis that pupillary expectation response
would be smaller in rMDD compared to healthy controls for the
expectation of gains and losses, we did not find any significant
differences. This suggests that whereas processes related to reward ad-
ministration or omission are affected in rMDD, expectation (“want-
ing”) may be intact. However, since this is the first study examining
the question in rMDD, more research is needed. A possible explan-
ation for the lack of group differences in anticipatory responses is the
fact that the contingencies changed every 15 trials, and hence all par-
ticipants learned that contingencies could change, leading to less
expectation in their pupillary response. It is also possible that a more
consistent anticipatory pupillary response would be found during the
expectation period if a subsequentmotor response rather than passive
viewing would have been required, as in a previous study in individ-
uals with ongoing MDD (Schneider et al., 2020).

Neither were our third and fourth hypotheses regarding lower
learning rate (lower α- values) and less exploration (higher β-val-
ues) in rMDD compared with healthy controls supported by the
data, despite the fact that individuals with rMDD showed overall
worse task performance. A recent study (Heo et al., 2021) investi-
gated whether subclinical individuals displayed aberrant value
integration and value-action conversion. To this end, the authors
introduced separate learning rates for model-based andmodel-free
reward learning (RL) that allowed investigation of the ability to
arbitrate between each RL system. The experimental paradigm
was designed in such a way that two behavioral patterns could
be mapped to each set of models: The indicator of the model free
RL was choice consistency, and choice optimality was an indicative
of model-based RL. Results showed that choice consequence and

optimality as well as the ability to change between the model based
and model-free RL were correlated with degree of depression. In
relation to the current modeling results, it is plausible that the
changing value-based environment, captured with model-free
RL, was not well suited to detect the behavioral differences in
the rMDD group. The fact that pupillary responses captured
differences between rMDD and healthy controls in the current
setup allows for the possibility that pupillary dilation could serve
as an index for the shifting between model-based and model-free
RL. However, this remains to be investigated empirically.

The group difference in pupillary responses between individ-
uals with rMDD and healthy controls was not modulated by the
type of feedback (face or nonfacial symbol). However, the conclu-
sions which can be drawn regarding this effect are limited by a rel-
atively small sample size. It should also be noted that the facial
images used in the study showed expressions of either joy or anger.
Previous eye tracking studies in individuals with ongoing depres-
sion (e.g., Klawohn et al., 2020) have shown atypical attention to
facial expressions of sadness, which may be a more disorder con-
gruent emotional expression than anger or joy. An interesting
question for future studies is therefore whether facial expressions
of sadness modulate reward learning in individuals with ongoing
or remitted MDD.

Limitations and suggestions for future studies

In the current study, we did not have a continuous measure of
symptoms of MDD and other mental health conditions to comple-
ment the binary classifications. Because of this, we were not able to
examine whether interindividual variation in subclinical depres-
sive symptoms or specific symptom dimensions such as anhedonia
or apathy were related to the observed result.

It should be noted, though, that all participants were inter-
viewed by trained psychologists, who used a validated
semi-structured interview to determine the presence of MDD
symptoms. It is therefore not likely that clinically meaningful

Figure 4. Effect plot of the interaction between outcome (x-axis) and group (right
panel) on feedback pupillary response (y-axis). An effect plot takes the lower order
terms as well as the random effects into account by plotting the marginal effects
of the target variables setting the remaining covariates to their means. The means
are hence the marginal means of each estimate (four in total) taking the remaining
covariates and the random effects into account and the confidence intervals thereof.

Table 3. Fixed-effects estimates from the mixed model with feedback pupillary
response as dependent variable and, group (healthy control/rMDD) and outcome
(win/loss) as fixed effects, with a correlated random intercept for each
participant and slope for each block as random effects. For the categorical
effects, going from the baseline category, indicated in parenthesis, to the
other category results in an increase/decrease of the estimate

Fixed effect Estimate SE t-value p-value

Intercept 1.09 0.27 4.04 <.001
Group (rMDD) - 0.67 0.44 - 1.53 .13
Outcome (win) - 1.12 0.22 - 5.28 <.001
Group (rMDD) x outcome (win) 0.81 0.34 2.37 .018

Note. SE denotes the standard error of the mean.

Table 4. Fixed-effects estimates from the mixed model with anticipatory
pupillary response as dependent variable and, rMDD group and shifted
outcome (win/loss) as fixed effects, with a correlated random intercept for
each participant and slope for each block as random effects, going from the
baseline category, indicated in parenthesis, to the other category results in
an increase/decrease of the estimate

Effect Estimate SE t-value p-value

Intercept 2.30e-4 0.33 0.001 .99
Group (rMDD) 0.18 0.51 0.35 .73
Shifted outcome (win) - 0.18 0.15 - 1.24 .22

Note. SE denotes the standard error of the mean.
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subclinical symptoms would have been detected by continuous
self-rating scales. Importantly, previous studies of reward process-
ing in rMDD have not found any relation between self-rated
residual symptom level and reward processing (Pechtel et al.,
2013; Whitton et al., 2016). The design with mixed expected
and unexpected uncertainty did not allow for separate estimates
of different types of uncertainty. Future research should investigate
the ability in rMDD to estimate the different types of uncertainty in
relation to both positive and negative outcomes. An additional
limitation is that participants were able to freely move their gaze
during the experiment. Therefore, the possibility that eye move-
ments may have influenced pupil size cannot be ruled out
(Brisson et al., 2013; Hayes & Petrov, 2016). However, it should
be noted that the groups did not differ in the number of fixations
or gaze position relative to the center of the screen and that only
very weak correlations were observed between pupil size and gaze
position. Therefore, group differences in eye movements are not
likely to explain the results.

Finally, it should be noted that a relatively high number of par-
ticipants in the current sample had a life time history of MDD
(∼38%), which can be compared to an estimated life time preva-
lence of 10–20% in recent studies (Hasin et al., 2018; Lim et al.,
2018). A potential reason for the relatively high prevalence of
rMDD in the sample may be the fact that participants were
recruited from a database of research volunteers administered
by a medical university, which may have attracted individuals with
depressive symptoms. Unfortunately, no data on the educational
or professional background of the participants were collected.
An interesting question for future studies is whether treatment his-
tory modulates pupillary responses and reward learning parame-
ters in rMDD. This question should ideally be addressed in
longitudinal studies. Despite these limitations, the present study
contributes to our understanding of reward processing in depres-
sion by demonstrating a persisting reduction in reward sensitivity
and lower scores on last trial as well as a smaller proportion of cor-
rect choices in individuals with a history of depression, also after
full symptomatic remission. Our results indicate that pupil dilation
is a feasible marker of MDD-like altered reward processing.

Implications

Pupil dilation is a noninvasive, relatively inexpensive method,
which is potentially applicable in a clinical environment. The
present results show that pupillary response has the potential to
serve as an index of rMDD, and possibly also as a marker of trait
vulnerabilities to MDD. An interesting venue for future research is
to examine pupillary responses to rewards in individuals with
ongoing MDD undergoing various treatments. Another pertinent
research area is to disentangle the causes of aberrant decision mak-
ing – is it a trait, state, or a marker of anhedonia? As noted in the
introduction, altered reward processing may be implicated in the
risk for relapse. Recent psychological treatments address reward
processing impairments directly (Craske et al., 2016), and an
important question is to examine the extent to which they are suc-
cessful. Relatedly, research has shown that blunted reward learning
is predictive of treatment outcome of antidepressant medication
(Admon et al., 2015), but how does pharmacological treatments
with selective serotonin reuptake inhibitors and serotonin and nor-
adrenaline reuptake inhibitors affect noradrenergic transmission
and decision making? Since both types of medication affect nora-
drenergic transmission, pupil dilation may be a particularly fea-
sible method for understanding their effect on reward processing.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S1355617722000224
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