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ABSTRACT Computational methods have become an integral part of political science
research. However, helping students to acquire these new skills is challenging because
programming proficiency is necessary, and most political science students have little
coding experience. This article presents pedagogical strategies to make transitioning from
Excel, SPSS, orStata toR or Python for data analytics less challenging andmore exciting.
First, it discusses two approaches for making computational methods accessible: showing
the big picture and walking through the workflow. Second, a step-by-step guide for a
typical course is provided using three examples: learning programming fundamentals,
wrangling messy data, and communicating data analysis.

A precise definition of “computational social
science” remains elusive. However, a widely used
definition is that it is an interdisciplinary field in
which computational tools and techniques are
applied to advance social science research

(Salganik 2018, xviii). The key premise is that computational tools
and techniques empower social scientists—including political sci-
entists—to conduct innovative analyses of unconventional data
sources on an unprecedented scale (Alvarez 2016; Grimmer, Rob-
erts, and Stewart 2021). Finding patterns in large-scale unstructured
text (Gentzkow, Kelly, andTaddy 2019; Grimmer and Stewart 2013),
image (Torres and Cantú 2021; Won, Steinert-Threlkeld, and Joo
2017), or audio (Knox and Lucas 2021) data was once immensely
costly and time consuming. Computational tools and techniques
have made collecting (e.g., web scraping) and analyzing (e.g.,
machine learning) these data easier, faster, and reasonably accurate.
By complementing existing quantitative and qualitative methodol-
ogies, computational methods present many new opportunities
to address key questions in political science (Brady 2019; Clark
and Golder 2015; Monroe et al. 2015), from polarization and mis-
information in the United States (Tucker et al. 2018) to censorship
and collective action in China (King, Pan, and Roberts 2013).

Opportunities also come with challenges. For political science
students, learning computational tools and techniques is challenging
because proficiency in programming, to which they have little prior

exposure, is necessary. Most political science students choose the
field because they have a deep interest in politics but not necessarily
data analysis. In addition, these students first approach data anal-
ysis via integrated statistical software packages, such as Microsoft
Excel, Stata, and SPSS. These tools have both a point-and-click
user interface and an easy-to-learn command syntax. For students,
learning a programming language such as R or Python could be a
completely foreign skillset.

However, there is a tradeoff between the simplicity of inte-
grated statistical software and the more complicated yet powerful
open-source programming languages. Excel is an excellent tool for
spreadsheet creation and management; SPSS and Stata provide
many handy tools for conducting statistical analyses. Nonetheless,
these tools seldom are used to scrape websites, analyze large
volumes of text data using machine learning, or create interactive
data visualization. Transitioning from Excel, Stata, or SPSS to
programming languages is necessary to conduct modern data
analysis. Teaching programming is essential to help students learn
broad and rapidly evolving computational tools and techniques.

This article introduces pedagogical strategies to make this
transition less challenging and more exciting. Collectively, the
authors have taught computational social science at both graduate
and undergraduate levels in semester-long courses and short
workshops for several years. Based on this extensive experience,
we first present two principles: showing the big picture andwalking
through the workflow.We then apply these principles to the design
of a course that aims to make computational methods accessible.

This discussion of the practical aspects of teaching computa-
tional social science comes with two caveats. First, a computa-
tional social science project should start with a theoretically driven
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research question rather than the latest computational technique.
Collecting the largest possible volume of social media data or
applying the most powerful machine-learning technique does not
directly add value to political science research. These tools become
relevant when they provide a new understanding of key theoretical
questions in the relevant literature. In addition, linking computa-
tional methods to key political science topics has pedagogical

value. It enables students to discover how they could apply these
methods to explore their research interests (Williams et al. 2021).

Second, emphasizing the value of data-intensive social science
research does not undermine the importance of careful human
investigation. Big data is not the same as good data. Researchers

still must assess whether the data can answer their research
questions regardingmeasurement and internal and external valid-
ity (Meng 2018). Therefore, computational methods are better
applied when researchers are well trained in research design and
methods. A strong foundation in descriptive analysis, hypothesis
testing, statistical modeling, and causal inference remains critical
to answering empirical research questions.

However, having a strong motivation or a deeper understand-
ing of a substantive problem does not automatically turn a
research idea into a research project. A successful student-
designed research project involving computational methods
requires an adequate understanding of programming and its
implementation. Nevertheless, programming is challenging for
political science students because most have little prior experi-
ence. This challenge is especially acute among students from
disadvantaged backgrounds because they have had relatively
poor access to high-quality quantitative and computational
education (for a review, see Xie, Fang, and Shauman 2015). This
article addresses this problem by presenting principles and
specific steps to lower the barriers to learning these exciting
new tools and techniques.

PRINCIPLES OF TEACHING COMPUTATIONAL METHODS

An instructor can help students learn computational methods
faster and easier by showing them the big picture and the work-
flow before discussing specific technical details. The big picture is
the broad patterns regarding the beginning (input) and end
(output) of specific tasks. The workflow is the logical steps that
connect these two components. For example, suppose an instruc-
tor aims to teach digital data collection—that is, data collection
and parsing from websites, Portable Document Format (PDF)
files, and social media posts. The big picture here is the transfor-
mation of semi-structured data that do not look like a spreadsheet
into structured data that do. Without contextualizing these data-
collection techniques in a broad framework, the instructor could

prematurely introduce the latest packages and libraries for digital
data collection. This approach might work if most students have
experience with these techniques and their primary goal is updat-
ing their skills. However, if students have little experience with
digital data collection, they might not see “the forest for the trees.”
For them, learning so many techniques simultaneously might be
confusing and overwhelming.

Because of these obstacles, it is worth taking a step back and
remind students of the big picture and workflow. After that, the
instructor can delve into each step. Web scraping is an example:
What is the goal of this activity? The term “web scraping” provides
an indication but not a clear understanding of the input and

output data. If students scrape a website, they will obtain semi-
structured data, which is a mix of HyperText Markup Language
(HTML), Cascading Style Sheets (CSS), and JavaScript. Although
the data look messy and lack a spreadsheet-like structure, they
have other types of structures, such as key–value pairs: keys are
labels and values are associated information. The instructor then
will move on to explaining the workflow. Students can leverage
these structures to locate information (Step 1), extract them (Step
2), and bind these elements together (Step 3). Because students
typically want to summarize, model, and visualize this informa-
tion, saving these elements as a data frame akin to a spreadsheet
can be effective (Step 4).

This approach not only helps students to feel less intimidated
by the subject, it also serves the long-term educational goal of
making them effective self-learners. Self-learning skills are valu-
able because in a fast-evolving field such as computational social
science, cutting-edge tools are continually changing. If the hidden
context—the big picture and the workflow—is clarified, students
find it easier to learn new techniques. Furthermore, learning this
big picture and workflow helps them to build a mental framework
for digital data collection. For example, if students learn how to
scrape websites by understanding the underlying big picture and
the workflow, they can quickly learn how to parse PDF files and
scrape social media posts because these cases are other variants of
semi-structured data.

After students have become accustomed to the workflow, they
should learn how to combine these individual components
(Perkins 2010). Whereas typing a command is easy, coming up
with a logical sequence of computational actions is difficult.
Helping students to develop an awareness of how one step is
connected to another is critical because the end goal is to use
these components together. In addition, considerable differences
exist between learning each component and the methods for
combining them. For example, a student might want to scrape a
newspaper website to collect articles published during a specific

An instructor can help students learn computational methods faster and easier by showing
them the big picture and the workflow before discussing specific technical details.

Teaching programming is essential to help students learn broad and rapidly evolving
computational tools and techniques.
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period. However, there typically is a limitation on how many
articles can be displayed on a single page. This is a useful feature
that saves time for loading a webpage but makes scraping it a
challenge. Manually copying, pasting, and tweaking the code on
these pages is highly inefficient because, in some cases, the
number of pages is in the hundreds or thousands. A better
alternative is learning how to repeat the iterative process via
loop or functional programming. This approach helps students
to write a code with only a few lines—and it works regardless of
the number of pages.

This example illustrates how helping students to learn an
efficient workflow accomplishes two tasks simultaneously.
First, it helps them translate a component of their research
design (e.g., collecting data from websites) into computational
terms (Brooker 2019). Second, it provides opportunities to learn a
computational concept (e.g., automating iterations) in a practical
context.

APPLICATIONS

This discussion focuses on applying these principles to the design
of a semester-long computational social science course. Three
examples are used: learning programming fundamentals, wran-
gling messy data, and communicating data analysis.

At the fundamental level, these principles could apply to
undergraduate lectures as well as graduate seminars. However,
depending on the target audience and their backgrounds and
interests, the scope and focus should change. For example, if
students are highly motivated and have experience in quantita-
tive analyses, they could quickly absorb a substantial amount of
new information. Otherwise, the instructor should decrease the
pace and provide more concrete and intuitive examples. In
addition, we highly recommend that instructors make all of the
slides and code examples used in the lecture available before class
so students can follow along more easily with in-class coding
examples.

Case 1: Programming Fundamentals

Introducing programming fundamentals early is the key to
lowering the initial barrier and helps students to be effective
self-learners. Political scientists do not need to be statisticians.
However, an adequate understanding of statistics is essential for
choosing the correct application and interpretation of these

methods. The same applies to computational methods. Students
can obtain immediate programming assistance by searching the
internet. For this purpose, there are many useful websites, such
as Stack Overflow.1 This practice is a valuable and integral part
of self-learning. Copying solutions posted by someone else,
however, does not provide the same level of understanding. If
students do not fully comprehend the context in which a prob-
lem arises, they eventually will encounter the same problem
again.

R and Python are both object-oriented and functional
programming languages.2 Objects define the actors and

functions define their behavior. Students create, manipulate,
and combine objects and functions when performing data
analysis in R and Python. Programming is not magic; it is
the art of logically combining objects and functions. Moving
from Excel, SPSS, or Stata to R or Python means transition-
ing from pointing and clicking to creating and manipulating
objects and functions. Consider importing a comma-separated
values (CSV) file in R or Python. First, students must think
about which function they should use and whether the func-
tion is available without importing an outside package. Sec-
ond, they must provide the input (i.e., the file path for the CSV
file) and save the output to an object they have named. Even
this simple exercise involves understanding and using objects
and functions.

Therefore, it is beneficial to devote the first two weeks of the
course to helping students fully grasp these underlying computa-
tional concepts before teaching serious applications. As Buchler
(2009, 527) argued, a “move on, and try to figure it out from the
context” learning method does not work for subjects that require
skill progression. Students can copy, paste, and run example codes
for machine learning without comprehending the process. The
fact that their codes run without error and produce the desired
output does not necessarily mean that they fully understand the
process. This emphasis on fundamental computational concepts
applies even to those students who have extensive experience
conducting quantitative analyses using SPSS or Stata. There
are hurdles in moving from SPSS or Stata to R or Python.When
a user creates a summary table of descriptive statistics or regres-
sion models in SPSS or Stata, knowing the object-oriented
programming language is not required. In contrast, in R and
Python, everything a user creates is an object, and every function
takes and returns particular types of objects. Therefore, careful
attention to how input and output data types vary is necessary.
Helping students to cultivate this new habit enables them to avoid
unnecessary stress.

When teaching these concepts, it is crucial to increase students’
understanding by connecting what they know to what they do not
know. For example, students may know various data types but not
in a computational sense. They may know spreadsheets but not
necessarily data frames. Both spreadsheets and data frames have a
fixed number of rows and columns. However, using font color and
highlighting as data can be helpful in spreadsheets but not in data

frames. This additional information would be lost when the
spreadsheet is imported as a data frame into R or Python
(Broman and Woo 2018).

Case 2: Wrangling Messy Data

After addressing programming fundamentals, an instructor
should motivate students by demonstrating how programming
can increase research productivity. Unless students are enthusi-
astic about programming, learning it is not the goal. Thus, they
should be shown why learning programming is worth the invest-
ment of their time and effort.

Introducing programming fundamentals early is the key to lowering the initial barrier and
helps students to be effective self-learners.
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Data wrangling illustrates the benefits of learning program-
ming because almost every project requires it. In quantitative
methods courses, the example data often are processed. When
students start working on real-world data, they soon discover
that data are messy; 80% of data analysis involves data wrangling
(Dasu and Johnson 2003). Although students can perform data
cleaning in Excel, they must do it manually in a point-by-point
manner. This is labor intensive and time consuming when
managing large files or cleaning multiple files. More troubling
is the irreproducibility of this point-and-click approach. Instead,
using programming makes data wrangling reproducible and
more efficient.

The “tidy-data” principles proposed byWickham (2014) are an
extension of Codd’s (1990) relational algebra. They illustrate the
big picture of data wrangling in statistical and computational
analysis. First, the input data must be a data frame (i.e., a fixed
number of rows and columns) to facilitate data summarization,
modeling, and visualization. Second, columns are variables and
rows are observations. Third, each observational unit comprises a
data frame (Wickham 2014, 4). The recognition of this endgame
enables students to see the specific problemswith their messy data
and consider using R or Python to fix them. This is easy because
the “tidyr” (Wickham 2021) and “dplyr” (Wickham et al. 2021)
packages inR and the “pandas” library in Python (McKinney 2011)
provide comprehensive tools for implementing this foundational
framework.

Wrangling can be categorized based on the issues with the data
to increase students’ awareness of the problems. For example, one
category of problems is the shape of the dataset. Many spread-
sheets are stored in a wide format to facilitate inspection of the
data by human eyes. If these are administrative data collected
yearly from 2000 to 2010, the dataset might have columns titled
with those years. Unfortunately, summarization, modeling, and
visualization require a long format. To reshape the data, instruc-
tors should guide students to create the variable representing all of
those years.

When they are learning the typology of data-wrangling prob-
lems and solutions, students should not lose sight of the broad
context. Because of the many data-wrangling techniques, it is easy
for them to become lost in the details and fail to see the big picture.
The tidy-data principles are valuable because data have an entire
production cycle. Raw data have little value and are not self-
explanatory. Humans need to summarize, model, and visualize
raw data to add value for other humans.

Case 3: Communicating Data Analysis

Teaching data wrangling and visualization poses different chal-
lenges. Data wrangling has a clear goal, as summarized in the tidy-
data principles; data visualization does not. There are abstract
principles, such as the creation of accurate, easily interpretable,
and aesthetically pleasing plots (Tufte 1985); however, their imple-
mentation is contextual. The decision to use a line or bar plot or
logarithmic rescaling of the y-axis depends on the information to
be communicated and the target audience.

When teaching data visualization, the focus should be the
effective delivery of key messages. Teaching how to create point,
bar, and line plots with popular packages and libraries in R and
Python is insufficient. Students must know the types of visuali-
zation that are appropriate for delivering various forms of data.
For example, representing raw data points with a scatter plot is

valuable because descriptive statistics summaries (e.g., the mean)
could overlook the unique distribution of the dataset (Anscombe
1973; Healy and Moody 2014).

After understanding the purpose of each visualization tech-
nique, students can learn to build the visualization of their choice
from nothing. This will teach them the relationship between data
and graphics. It also will enhance their understanding of the
variables that are used for the aesthetics (e.g., x-axis and y-axis)
of a plot and their ability to add and subtract information as
needed to facilitate the audience’s interpretation. This data-visu-
alization approach, which is referred to as the “grammar of
graphics” (Wilkinson 1999), has been used extensively in acade-
mia and industry because of the wide acceptance of the ggplot2
library in R (Wickham 2006, 2010).

OPTIONAL SUBJECTS

Teaching digital data collection, computational text analysis, and
machine learning is optional. These are powerful tools for collect-
ing and analyzing complex data (e.g., text, images, and audio) at
scale. However, teaching programming fundamentals and these
advanced topics in the same course can be overwhelming. If this is
the case, students should be aware that these topics are optional.
For example, suppose students are interested in how public
opinion shifted during socialmovements (e.g., Black LivesMatter)
using social media data. They can focus on a specific part of the
research project (e.g., scraping social media posts) and apply the
skills they learned from the course.

There are specific tips to help students learn these advanced
subjects more easily. First, provide glossaries of computer science
terms. Many canonical works in natural-language processing,
machine learning, and big data were developed in computer
science. Terms used in these works often are confusing to political
science majors. For instance, the term “features” in machine
learning is, in fact, “variables” in the social sciences. Weights
and biases in deep learning are learnable parameters, and they
should not be confused with their homonym counterparts in
statistics.

Second, provide mathematical or statistical intuitions. For
instance, typical survey data have a larger number of observations
(i.e., participants) and a smaller number of variables
(i.e., questions). In contrast, typical text data have a larger number
of variables (i.e., words) and a smaller number of observations
(i.e., documents). Analyzing this type of high-dimensional data
poses two challenges. First, researchers must find the best ways to
represent complex data numerically because computers under-
stand numbers, not text. Second, they also should know how to
reduce the number of these variables (also called features and
dimensions) to ensure that the analysis is driven by signals rather
than noise. Making this hidden context explicit helps students to
better appreciate the purposes, assumptions, and mechanics of
these techniques.

ASSESSMENT

To provide quick, frequent feedback, instructors should give
students many small assignments instead of one large one.
Designing small exercises can be problematic. If the exercises
are not challenging, the students will not learn new information.
If they are too complicated, students can lose confidence. To hit
the “sweet spot,” some principles must be observed. First, the
exercises should be based on the content covered in the lecture.
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Second, instructors should encourage students to apply their skills
beyond the contexts addressed in class. Third, the exercises should
have an accompanying step-by-step guide and a template (e.g., R
Markdown or Jupyter notebook). In essence, students must be
given a framework that they can use, opportunities that they can
explore, and constraints within which they can engage in explo-
ration without excessive risk (Wickham 2015).

If instructors choose to require final projects instead of exam-
inations, these small assignments can enable students to gradually
develop necessary skills. These assignments can enhance their
motivation to extend their best effort on each assignment and, in
the final project, demonstrate their ability to integrate the skills
that they acquired during the semester.

When providing feedback, it is crucial to focus on how students
can improve. Students should be taught to write code so that they
can fail quickly, often, and systematically. Computational
methods are valuable not because they prevent human error but
rather because they make mistakes transparent. In addition,
identifying mistakes in a structured way is easy in programming.
Students can create tests that check whether their functions
produce the expected outcomes. When grading and commenting
on each assignment, it is beneficial to remind students of the
programming standards they need tomeet, point to areas in which
they need to improve, and suggest concrete steps that they can
take to advance their skills.

CONCLUDING REMARKS

The path to mastering computational methods is a journey.
Learning a wide range of complex technical skills and practicing
them requires substantial time and effort. When students feel left
behind, it is natural to identify themselves with their current
failures (Dweck 2006). This perception discourages their efforts
and widens the achievement gap between them and their peers.
This article introduced pedagogical strategies that could restore
their confidence and help them discover the joy of learning
programming languages and their practical value. Understanding
the big picture and workflow makes this journey easier and faster
by connecting their intuition with new information and shaping
their efforts to be more structured and focused.▪

NOTES

1. See https://stackoverflow.com.

2. There also are differences between the two languages. If a student’s goal is to learn
to program and use it for general purposes, learning Python would be helpful
because it is widely used across academia and industry. In contrast, R was
developed for doing data science (Chambers 2020) and is popular among social
scientists. Thus, if a student’s goal is to use the power of programming for social
science research, R might be a better choice. Whether Python or R is more useful
depends on a student’s desired career path, learning goal, and primary usage.
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