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ABSTRACT 

Observations of molecular clouds show evidence of rotation and 
of fragmentation of subregions of the clouds into multiple stellar or 
protostellar systems. This review concentrates on the effects that 
rotation and pressure gradients have in a self-gravitating cloud to 
cause it to undergo the crucial process of fragmentation. Recent 
two-dimensional and three-dimensional numerical hydrodynamic calcula
tions have made progress in determining these effects. In most cases 
the calculations are performed with modest spatial resolution and 
are limited to isothermal clouds with neglect of viscous and magnetic 
effects. The combined results of several calculations strongly suggest 
that rotating clouds that are unstable to collapse are also unstable 
to fragmentation. 

1. INTRODUCTION 

Among the fundamental problems that must be addressed by theore
ticians who study star formation, the following are now being actively 
pursued: 

1. What are the dominant physical processes that must be 
considered at each stage of star formation? 

2. How does one predict the rate of star formation both in our 
galaxy and in external galaxies, and how does this rate vary with 
position in the galaxy and with time since the formation of the galaxy? 
Closely connected with this question is that of the efficiency of star 
formation: of the total mass of interstellar material available in a 
gravitationally bound cloud in the galaxy, what fraction actually is 
formed into stars during the lifetime of the cloud? 

3. What is the mass spectrum of the stars that are formed and 
what are the maximum and minimum masses of stars? How do these 
quantities vary according to position in the galaxy and with time since 
the formation of the galaxy? 

4. How are binary and multiple systems of stars formed? The 
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important processes that must be considered include a) encounters and 
captures in a cluster or association of stars and protostars, b) frag
mentation of a rotating, collapsing cloud into two or more protostellar 
objects during the earliest stages of stellar evolution, and c) fission 
of a rotating object in hydrostatic equilibrium during its pre-main-
sequence contraction phase. What is the relative importance of each 
process and how are they interrelated? 

5. What processes determine whether the end product of star 
formation is a single star, a planetary system, a binary system, or 
a multiple system? What is the probability that a planetary system 
will be formed? 

Clearly a complicated network of physical processes must be 
considered in an attempt to answer questions 2 through 5, Although it 
is clear that certain subproblems related to star formation can be 
approached with analytical methods, the overall problem must be 
attacked with large-scale numerical computations involving a 3-D spatial 
grid. The physical processes that must be considered include at least 
the following: self-gravity, gas pressure, magnetic fields, rotation, 
radiative transfer, turbulence and convection, formation and dis
sociation of grains and molecules, and molecular and grain chemistry. 
If star formation is taken to start in a gravitationally bound cloud, 
the solution will depend on various parameters needed to define this 
initial state, which depends on the processes by which the dense 
molecular cloud complexes were formed in the interstellar gas. Finally, 
the solution to the star formation problem must involve observational 
predictions. For example, the emergent infrared spectrum of a collaps
ing protostar can be calculated, or the profiles of the lines emitted 
by the CO molecule can be calculated from the models and compared to 
the radio observations. A considerable amount of such work has been 
done in the spherically symmetric case, but studies of rotating objects 
are just beginning (see the review by Bertout and Yorke 1978). 

The effects ot rotation clearly can not be studied separately 
from the other physical processes that are important in star formation. 
However, the overall problem is so complicated that no attempt has 
been made to solve it in full generality; rather the interactions of 
a few physical effects (e.g., gravity, rotation, and pressure, or 
rotation and magnetic fields) have been studied under restrictive 
assumptions and idealized initial conditions. Those recent studies, 
primarily numerical in nature, that emphasize the effects of rotation 
will be discussed in this paper. Clearly, angular momentum must be 
one of the dominant effects in the solution of questions 4 and 5 above, 
and it undoubtedly has significant indirect, and largely unexplored, 
effects on the solution of questions 2 and 3. 

The evolution of a star, up to the time where nuclear reactions 
become significant, can be divided into three periods. The first, 
star formation, refers to the approximate density range 10 Z J - 10 gem 
and concerns the processes by which a massive interstellar cloud col
lapses and at the same time fragments into gravitationally bound pieces 
of order 1 solar mass. The second period, protostellar evolution, is 
assumed to begin at a density corresponding to the Jeans limit for a 
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fragment of a given mass at a temperature of 10K. Densities increase 
from about 10 9 g cm"^ to 10 g cm"J or more for fragments of 1 solar 
mass, and final temperatures are ~10°K in the interior. This extreme 
compression, resulting from gravitational collapse, is due to two 
main mechanisms. The first applies to the star formation period and 
to the earlier part of the protostellar period, up to densities of 
about 10 ~* g cm~3. The protostellar material is optically thin to 
infrared radiation, and as collapse proceeds the heat generated by 
compression is immediately radiated by ions, atoms, molecules, or 
grains. Thus thermal pressure is unable to halt gravitational collapse 
unless rotation or magnetic fields begin to play an important role. 
The second mechanism occurs during the later part of protostellar 
collapse, starting at temperatures above 1800K and densities above 
10~° g cm""* where dissociation of molecular hydrogen results in T^< 4/3 
and consequent gravitational instability (in the absence of rotation). 
When collapse stops in the entire mass of the protostar, the third 
period of evolution begins, the pre-main-sequence contraction through 
a sequence of quasi-equilibrium states, continuing until nuclear-
burning temperatures (~10'K) are reached in the center. The evolution 
through periods two and three has been calculated in a continuous 
fashion only for the spherically symmetric case. However, when rota
tion is included, the protostar must evolve through analogous periods. 
Many of the recent calculations involving rotation have applied to 
the star formation period and the early part of protostar collapse, 
where an isothermal collapse at approximately 10K is a reasonable 
assumption. This review concentrates on these results. Note, however, 
that there have also been significant advances regarding the effects 
of rotation during the pre-main-sequence contraction phase by Lucy 
(1977), Gingold and Monaghan (1978, 1979), and Durisen and Tohline 
(1980). It has also been suggested (Larson 1980) that rotation plays 
a significant role in the explanation of the FU Orionis phenomenon. 

2. OBSERVATIONAL DATA 

The time scales for the three periods of evolution iust referred 7 f 
to are approximately 10' years for star formation, 10° years for 
protostellar collapse, and 4 x 10' years for the quasi-static contrac
tion of 1 solar mass. Consequently, there is abundant observational 
material in the visual and near infrared regions of the spectrum 
appropriate for study of the third period, and also a considerable 
amount of radio data appropriate for study of the star formation 
period. In the intermediate period, opportunities for comparison of 
theory and observation are very limited, due to the short time scale, 
expected heavy obscuration of protostars, and difficulties of observa
tion in the relevant (far IR) spectral region. 

From the observational material available regarding rotation it 
is clear that (1) angular momentum must play a significant role in 
star formation, and (2) there is a reduction of many orders of magni
tude in the specific angular momentum of spin of particular mass 
elements between the molecular cloud phase (period 1) and the T Tauri 
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phase (period 3). Typical values of specific angular momenta J/M 
for T Tauri stars are lO-^cm2 s"1 to at most lO1^ cm2 s""1 (Herbig 
1957, Kuhi 1978) if the stars are assumed to be uniformly rotating. 
On the other hand, a typical diffuse interstellar cloud would be 
expected to have J/M in the range 10 2 3 to 10 if it is corotating 
with its orbital motion about the center of the galaxy. Although there 
is little direct observational evidence of rotation in H I clouds 
(but note Gordon 1970) it is generally argued that the galactic mag
netic field will be effective in maintaining corotation. 

Much more observational evidence on rotation is available for 
massive dark clouds and globules which have densities of 10~2^ - 10"~22 
g cm"J and presumably correspond to the star formation period. In
direct evidence suggests that the so-called Hopper-Disney clouds, 
which are elongated dark clouds aligned with the galactic plane, are 
rotating as proposed by Heiles (197 6) and further analyzed by Field 
(1978) . More direct observational evidence for rotation in a few 
analogous objects is provided by velocity gradients in the microwave 
molecular emission lines of -^CO. Milma^s (1977) observation of the -13 -1 globule B361 gives an approximate angular velocity ^ = 10 s . 
Martin and Barrett (1978) have observed the two Bok globules B163 
and B163 SW and find spins of ft = 6 x 10""14 s"1 and 1.0 x 10" 1 3 s"1, 
respectively. The two objects are suspected to be in orbital motion 
with the angular momenta of spin aligned with that of the orbit. Other 
globules observed by Martin and Barrett, for example B335, have no 
detectable rotation. Large dark clouds, such as Mon R2 with an estimated 
mass of 10 solar masses, have also been observed to rotate; i:*C0 
observations give ft = 1.4 x lO""^ s-l (Loren 1977) while CS observa
tions in the same cloud give ft 1 7.4 x 10~14 s""1 (Kutner and Tucker 
1975). Further examples, with similar values of ft, are given by Field 
(1978) and Snell (1979). The specific angular momenta of these objects 
are in the range 10 2 2 to 10 2 3

 c m
2
 s-l although there are also objects 

with lower values. Thus, apparently for many clouds where star forma
tion is taking place, reduction in J/M by up to 6 orders of magnitude 
must take place by the time the T Tauri phase is reached. One of the 
chief aims of the numerical calculations to be discussed below is the 
resolution of this problem. In this connection there is additional 
observational evidence of interest concerning the question of fragmen
tation. Apart from the obvious fact that many young stars are found 
in clusters and associations, other observations suggest that fragmen
tation is a dominant process in star formation: (1) A considerable 
number of present main sequence stars are in multiple systems with two 
or more periods represented. Abt and Levy (1976) show that the typical 
main sequence star of spectral type F3-G2 has both a close and a 
distant companion. An example of such a system is K Peg (ADS 15821), 
a visual binary with a period of 11.52 years each of whose components 
is a spectroscopic binary having periods of 4.77 days and 5.97 days, 
respectively (Beardsley and King 197 6). A number of other systems 
with multiple periods in the same range have been observed, and the 
phenomenon is suggestive of a multiple fragmentation process during 
star formation. (2) Multiple infrared sources have recently been 
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discovered in the cores of dense molecular clouds, where star formation 
is suspected to be taking place. For example, Beichman, Becklin and 
Wynn-Williams (1979) cite numerous observations that support the 
suggestion that infrared sources in such clouds commonly form in 
groups of two or more with a characteristic separation of 0.1 parsec. 
(3) The double Bok globule B163, B163 SW (Martin and Barrett 1978) 
mentioned above is suggested to be an example of a rotating cloud that 
has fragmented into orbiting subcondensations. Other molecular line 
observations also support the picture of fragmentation associated 
with rotation (Ho and Barrett 1980, Crutcher _et_ al. 1978). 

3. TWO-DIMENSIONAL NUMERICAL CALCULATIONS OF COLLAPSING CLOUDS 

Three major suggestions regarding the solution of the angular 
momentum problem during star formation have come forward. (1) Stars 
form only from interstellar material that has much less angular 
momentum than the average. Although this effect may be significant, 
it has not been shown observationally that there is sufficient such 
material to account for the observed rate of star formation. Even 
material that is not rotating to present observational limits could 
have very significant J/M. (2) Magnetic fields result in braking of 
rotation through transfer of angular momentum from the cloud to the 
surrounding medium as a consequence of the propagation of Alfven waves 
along the twisted magnetic field lines (Mestel and Spitzer 1956, Lust 
and Schliiter 1955). Although it is clear, for example from the work 
of Mouschovias (1980), that this effect can reduce J/M by at least 
2 or 3 orders of magnitude, eventually the braking becomes ineffective 
since the density in the cloud increases to the point where the degree 
of ionization is negligible and the field decouples from the matter. 
In fact, one would not expect magnetic braking to account for 100% of 
the angular momentum reduction, since then we could not account for 
the angular momentum of short and moderate-period binary systems that 
are unlikely to have formed by capture. (3) Angular momentum is 
converted from the spin of a collapsing cloud into orbital motion 
of binary or multiple systems that form as a result of fragmentation. 
Since the orbital J/M in binaries ranges from 4 x 10 1 8 cm s"1 (3-day 
period) to IQr*- cm^ s""̂  (10^ year period), the formation of binaries, 
perhaps through multiple fragmentation stages, naturally fills in 
the angular momentum gap between the rotating dark clouds and the T 
Tauri stars. The observations of rotation and fragmentation mentioned 
above support this suggestion, and many of the recent 2- and 3-D 
calculations of rotating clouds have been directed toward study of 
the process. 

We first summarize recent calculations of collapsing rotating 
clouds in two space dimensions. The standard assumptions employed 
are : (1) axial symmetry; (2) global and local conservation of angular 
momentum, that is, no physical effects such as viscosity or magnetic 
fields transport angular momentum; (3) an ideal gas composed primarily 
of molecular hydrogen; (4) isothermal collapse, with certain exceptions 
noted below; (5) no mass flow in either direction through the outer 
boundary which is generally fixed in space. As long as the collapse 
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remains isothermal the results may be scaled to any desired value of 
mass M, temperature T and molecular weight u; thus the only parameters 
of the calculation are the two basic dimensionless quantities a, the 
initial ratio of thermal energy to gravitational energy, and 3, the 
initial ratio of rotational energy to gravitational energy. Collapse 
occurs if a - 1. - 1.43 3 (Black and Bodenheimer 1976); this condition 
is essentially the Jeans criterion for a rotating cloud. The initial 
distributions of density and specific angular momentum are also para
meters, although most calculations assume uniform density and angular 
velocity as initial conditions. The equations solved are the standard 
hydrodynamic equations of continuity, motion, and (where necessary) 
energy, along with the Poisson equation for the gravitational potential 
and an equation of state. Thus the physical effects included are 
self-gravity, gas pressure, and rotation. Radiation transport is 
included in some of the non-isothermal calculations. 

The first question we may ask is whether there are any comparisons 
between 2-D calculations and observations. The principal study now 
available is a comparison with a set of six Bok globules, including 
the rotating ones B163, B163 SW, and B361 (Villere and Black 1980). 
The collapse models were generated from the code of Black and Bodenheimer 
(1975) while the observed parameters that were fit included the 1:*C0 
column density at the center of the cloud, the -*C0 core radius, the 
axis ratio in the core, the ratio of the CO core radius to the optical 
radius, the width of the -^CO line profile, and the rotational velocity. 
In five of the six cases all of these parameters were consistent with 
collapsing cloud models. The derived masses are ~100 solar masses and 
the derived ages since the beginning of collapse are 50 to 90% of the 
initial free fall time. By this time the collapse has resulted in a 
centrally condensed density distribution but not yet in extreme rota
tional distortion or in ring structures. Predicted central densities 
of 10^ to 2 x Itir H2 molecules/cm^ are also consistent with observations. 
Another important result is that the inferred initial density at the 
onset of collapse is much larger than that required for gravitational 
collapse (a * 0.1). One globule (B361) is not fit by the models 
chiefly because of a large observed line width. The ratios of the 
abundances of ^CO to H2 in each globule are also determined by the 
model fit, and there is a clear trend of decreasing ^^C0/H2 with increas
ing density in the center of the cloud, in agreement with entirely 
independent measurements of this quantity in molecular clouds (Wootten 
et_ al_. 1978) . It was later found that all six globules could be fit 
if the ratio of CO/H2 was allowed to vary spatially within the models 
as determined from the observations. Further calculations have also 
provided fits to six Lynds clouds, three of which are rotating. 

A second important question concerns the degree to which the 
various 2-D calculations agree with each other. A detailed comparison 
has been carried out for the same initial and boundary conditions by 
Bodenheimer and Tscharnuter (1979). The former used an explicit 
"fluid-in cell" method involving differencing in two space dimensions 
and solution on a moving Eulerian grid; the latter used an implicit 
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code involving differencing in the (spherical) radial direction only 
and a Legendre-polynomial expansion in the second (0) dimension. The 
case chosen had a = .46, 3 = .32. Initially, Tscharnuter's code 
collapsed to a considerably higher central density than did Bodenheimer's. 
However, this discrepancy did not affect the later evolution since only 
a very small amount of mass was involved. In both cases a bounce 
occurred at the center, and after about 5 initial free-fall times, 
both calculations settled down to a near-equilibrium configuration that 
included a mild ring feature whose maximum density was about 4 times 
the central density. The isothermal equilibrium configuration that 
was obtained was quite flattened, with a polar-to-equatorial axis 
ratio of 1:7 and with a final 3-value of 0.25. It had been previously 
suggested (Biermann and Michel 1978) that such nebulae, having about 
2 solar masses and radii of about 10 AU, would provide a suitable 
location for the formation of cometary nuclei, provided that the 
nebula were stable for a long enough time to allow the dust grains 
to settle into a thin layer at the equatorial plane. 

A second comparison calculation was performed by Boss (1980a) who 
used an explicit "fluid-in-cell" code which differed in several respects 
from the code of Black and Bodenheimer (1975) and also employed fewer 
grid points (220 versus 1600). A repeat of the Bodenheimer-Tscharnuter 
comparison resulted in a maximum density intermediate between those 
obtained by Bodenheimer and Tscharnuter. The long-term equilibrium 
structure was also quite similar and included a ring structure with 
moderate density contrast. However, Bossr model showed oscillations 
with shorter period and higher amplitude than those of Bodenheimer and 
Tscharnuter. Boss ran a second comparison case with a = .55, 3 = .02, 
the same conditions used in one of the runs performed by Black and 
Bodenheimer (197 6). Here the cloud is definitely gravitationally 
unstable, no equilibrium is possible, and after collapse and flatten
ing a pronounced, self-gravitating ring structure develops in the 
central region of the cloud in both calculations. At this time the 
distributions of angular velocity, infall velocity, and density with 
distance from the center calculated by Boss and by Black and Bodenheimer 
are in excellent agreement. In summary, the available comparisons of 
2-D hydrodynamic codes show overall fair agreement. 

A third question that must be addressed is the physical mechanism 
for the origin of ring structures and the reality of their existence. 
This matter is one of considerable importance since such structures 
turn out to be sensitive checks on the accuracy of computer codes; 
furthermore, they have been shown to be unstable to fragmentation 
when three space dimensions are considered. Of the 2-D isothermal 
collapse calculations, those of Larson (1972), Black and Bodenheimer 
(1976), Nakazawa, Hayashi, and Takahara (1976), Regev (1979), 
Bodenheimer and Tscharnuter (1979), and Boss (1980a) have produced 
rings. A wide variety of numerical techniques is represented in 
these calculations. On the other hand, earlier calculations by 
Tscharnuter (1975) as well as those of Kamiya (1977) and Norman, Wilson 
and Barton (1980) do not show ring formation but rather a flattened 
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disk-like structure in the interior of the cloud. When rings are 
found, they approach and later pass through a stage of hydrostatic 
equilibrium, at which time their properties agree well with those 
of equilibrium isothermal rings calculated analytically by Ostriker 
(1964). The controversial question is, however, the mechanism for 
excitation of the ring mode. 

It would, of course, be desirable to find an analytic argument, 
entirely independent of the numerical codes, that would demonstrate 
the reality or non-reality of the ring structure. This approach has 
been explored by Tohline (1980a) and extended by Boss (1980a). An 
analytic approach becomes possible if the collapse is assumed to be 
pressure-free and the gravitational potential is fixed in time. In 
fact, the pressure does not play a dominant role in isothermal 
collapse, and the interplay between gravity and centrifugal effects 
is primarily responsible for the flow of material perpendicular to 
the rotation axis. Once rotational effects have produced a highly 
flattened structure, pressure effects do halt the collapse flow 
along the rotation axis. Tohline1s approach was to integrate analyt
ically the orbits of non-interacting particles. If the initial density 
distribution is uniform, and if the background static gravitational 
potential corresponds to this distribution, the particles all orbit 
in the potential well with the same period, maintaining a uniform but 
changing density. However, a typical collapsing cloud, due to the 
propagation of a rarefaction wave from the surface, always develops 
a non-uniform density distribution. Tohline also obtained an analytic 
expression for the particle orbits in the equatorial plane of a cloud 
collapsing in the potential of a p a(l-r^) distribution. In this case, 
the particles in the inner part of the cloud have shorter periods 
than those farther out; the inner ones reach their minimum radius 
sooner, then they begin to move with outward velocities, plowing 
into particles still falling in from larger radii. In this manner 
a density wave is excited that is ring-like in nature and that prop
agates outward. Although the ring self-gravity is not included in 
the analytic treatment, Tohline was able to show that enough mass 
is contained in the off-axis density enhancement to result in a 
self-gravitating ring; that is, the potential minimum would move into 
the ring. 

Tohline supplemented his analytic calculations by solving the 
pressure-free collapse problem with a 2-D particle code. The gravita
tional potential was taken to be time-varying in a manner that closely 
approximated one of the collapses calculated by Black and Bodenheimer 
(1976). Again, the results show that ring formation occurred. The 
analytic approach was then extended by Boss (1980a) who obtained the 
particle orbits, not limited to the equatorial plane, of a rotating 
cloud with a static potential corresponding to pal/r. The develop
ment of phase differences and the resulting ring-like density wave 
that propagates outward is confirmed. 

With a rather strong physical argument as well as diverse 
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analytical and numerical calculations now supporting the existence 
of a ring in 2-D collapse calculations, what can be said about the 
calculations that do not produce rings? The absence of rings in 
Tscharnuter1s (1975) calculation is now thought to be due to artificial 
numerical transport of angular momentum outwards from the center of 
the cloud. In this regard, small details in the difference equations 
representing the equation of motion in the azimuthal direction can 
strongly influence the results. Kamiya (1977) performed his calcula
tion on a Lagrangian grid. Although local conservation of angular 
momentum must be exact in such a calculation, there are other diffi
culties. The zones become highly distorted (Kamiya did not rezone) 
so that difference representations become inaccurate, and the solution 
for the gravitational potential is likely to be in error. The pressure-
free but non-uniform model of McNally (197 6) was probably not evolved 
long enough in time for the ring to develop. 

In the calculation of Norman t̂_ a^. (1980), however, considerable 
attention was paid to the minimization of numerical inward diffusion 
of angular momentum in a Eulerian scheme, an effect they suggest is 
responsible for ring formation in other calculations. The collapse 
that they calculate (a = .52, 3 = .08) is followed through a continuous 
increase of central density by more than ten orders of magnitude. 
Successively smaller fractions of the cloud's mass undergo a cycle 
of collapse, flattening, then a halt to the collapse due to pressure 
effects. The end result after 1.22 initial free-fall times is a 
flattened disk rather than the ring structure which Black and 
Bodenheimer (197 6) obtained after a much smaller increase in central 
density for similar values of a and $. The reason for the discrepancy 
has not been clarified. Norman et al. do obtain ring formation for 
an initially differentially rotating but uniform-density cloud, and 
they suggest that the initial distribution of angular momentum versus 
mass is the critical parameter. The uniformly rotating uniform-
density sphere may be a singular case that produces a disk, while 
only slight deviations from such a distribution (including those 
induced by numerical effects) could result in a ring solution (Norman 
1980). 

The later phases of protostellar collapse, during which an 
adiabatic approximation can be used in place of the isothermal 
approximation, have not been as thoroughly explored. The adiabatic 
phase is of particular importance, however, since the sizes and rota
tion periods of clouds starting collapse at densities above 10""12 g cm 
are likely to be comparable to the separations and orbital periods of 
observed binaries. Furthermore, the primitive solar nebula undoubtedly 
formed in this density range. 

Black and Bodenheimer (197 6) calculated one collapse with an 
angular momentum appropriate for the solar nebula. The collapse 
started in the isothermal phase, but in the later stages the central 
regions became optically thick and began to heat adiabatically. A 
ring formed, involving only a tiny fraction of a solar mass at the 
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center. Cameron (1978) speculates that the ring will fragment into a 
binary system but that as a consequence of accretion of mass from the 
outer collapsing region the fragments will merge and form a protosun. 
Tscharnuter (1978) also calculated a collapse of a cloud of 3 solar 
masses whose central regions entered the adiabatic regime. A nearly 
hydrostatic opaque core formed with temperature and density approximately 
780K and 1.3 x 10"^ g cm--*, respectively. The ring mode does appear 
in this core, but its properties and mechanism of formation differ 
from those of the rings that appear in the dynamically unstable 
regions of the isothermal portion of the collapse. Tscharnuter (1980) 
is now continuing the evolution of this "solar nebula" with the 
inclusion of viscous transfer of angular momentum. The possible 
mechanisms for angular momentum transfer at this point in the evolu
tion are discussed by Safronov and Ruzmaikina (1978) and by Cameron 
(1978). 

Other calculations have simply assumed a fully adiabatic rotating 
collapse, starting from a sphere with given density and angular velocity 
distribution. Takahara et_ al. (1977) take an ideal gas with adiabatic 
exponent y = 5/3. Such a configuration is, in fact, not intrinsically 
unstable to gravitational collapse; thus the model by assumption 
starts out of equilibrium, but it tends to collapse toward the available 
equilibrium state. For slowly rotating clouds the core oscillates 
about an equilibrium oblate spheroid. A shock wave on the core 
boundary marks the region where the outer lower-density material is 
still being accreted. For rapidly rotating initial clouds, the core 
develops an off-axis density maximum, a ring-like structure that stays 
in equilibrium. Analogous calculations have been performed by Boss 
(1980c) with adiabatic exponents 5/3 and 7/5. If the final value of 
3 for the equilibrium core is less than 0.43, the core forms a 
spheroid while if $>0.43, the final model is ringlike. The ring 
structure in this case is probably analogous to the classical ring-mode 
instability for Maclaurin spheroids that starts at comparable values 
of $. The rings formed during isothermal collapse are formed through 
an entirely different process. Incidentally, the core equilibrium 
structures provide an excellent check on the accuracy of the numerical 
calculations, particularly angular momentum conservation, since they 
can be compared with independently calculated differentially rotating 
polytropes (Bodenheimer and Ostriker 1973). The agreement in Boss1 
work is good. 

How does star formation proceed from such an equilibrium? The 
cores are probably unstable to fragmentation only if $>0.26 (see 
below); also the fragments still need Y < 4/3 if they are to collapse. 
The equation of state provides this condition at a temperature of about 
2000K when H2 dissociates. If the equilibrium core reaches this 
temperature collapse will occur. Otherwise either external compression 
or internal angular momentum transport is required to allow the evolu
tion to proceed. Bodenheimer (1978) has calculated one collapse in the 
adiabatic regime including H2 dissociation. A ring structure forms 
at the center by a process similar to that which forms rings in the 
isothermal collapse. 
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4. THREE-DIMENSIONAL NUMERICAL CALCULATIONS OF COLLAPSING CLOUDS 

The critical process of fragmentation in rotating clouds, which 
is related to the origin of binary, multiple, and planetary systems, 
can be studied only with calculations that take into account non-
axisymmetric effects. A number of important questions can then be 
addressed: 

1. Under what conditions will a rotating collapsing cloud fragment? 
2. Is ring formation simply a consequence of the assumption 

of axial symmetry in 2-D calculations or does it play a role in frag
mentation as well? 

3. What is the role of the Jeans length in the fragmentation 
process? 

4. What are the properties of the fragments? Will they undergo 
further collapse and fragmentation? 

5. How reliable are the numerical calculations? 
This last question is particularly important since the calculations 
are restricted to rather coarse spatial grids. 

The standard assumptions used in the 3-D calculations include 
a) symmetry about the equatorial plane, b) isothermal or adiabatic 
collapse, c) ideal gas equation of state, and d) no viscous or magnetic 
effects. Thus, local transport of angular momentum can occur only 
through gravitational torques. Most of the calculations involve direct 
solution of the equations of hydrodynamics on numerical grids contain
ing up to 10 cells. Since such calculations are expensive, other 
workers have adopted a technique where the flow is represented by a 
set of "fluid elements" whose motions are followed by means of an 
N-body calculation. Pressure effects are represented either by 
smoothing over the density distribution or by introduction of a repul
sive force term. The main part of the following discussion is based 
on the results from solutions of the hydrodynamic equations. 

One of the first calculations of this type was that of Norman 
and Wilson (1978), performed on a 40 x 40 x 26 grid. The initial 
configuration was a near-equilibrium isothermal ring that resulted 
from one of the axisymmetric calculations of Black and Bodenheimer 
(1976). The density distribution in the ring was perturbed non-
axisymmetrically and the evolution followed to test for stability. If 
perturbations of 10% amplitude were introduced, corresponding to pure 
modes of m = 2 through 6, the ring fragmented into m blobs, symmetrically 
located according to the density maxima of the initial perturbations. 
The fragmentation occurs within half a rotation period and the growth 
rate is most rapid for m = 2. Other calculations were performed 
starting from a super-position of such modes, with randomly chosen 
phases and amplitudes. The lower-order modes dominated the fragmenta
tion, and in four of the five cases calculated the end result was 
expected to be a binary system, while in the final case three blobs 
formed, equally spaced around the ring circumference. In the binary 
systems, the residual spin angular momentum of a fragment was 
approximately 20% of its orbital angular momentum. The instability 
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of rings to fragmentation was confirmed by Tohline (1980b) for the m = 2 
case. Cook and Harlow (1978) performed similar experiments (using 
a 10 x 12 x 5 grid) on equilibrium polytropic rings. The calculation 
was performed adiabatically. If the initial perturbation (in velocity) 
was of mode m = 2 and had an amplitude of 1%, the end result was 
fragmentation into a binary. Other modes were also investigated. 

The important question still remains, however, of whether rings 
form at all during the collapse of a cloud. Tohline (1980b), using 
a 34 x 34 x 16 grid, started from a uniform-density, uniformly rotating 
isothermal cloud into which he introduced a m = 2 density perturbation 
of 50% amplitude. The parameters of such a calculation include a, 
3, and the type, mode, and amplitude of the initial perturbation. For 
a = .05, 3 = .28 the cloud fragmented directly into a binary. For 
a = 0.5 with two different values of 3 the result was that pressure 
effects damped the initial perturbation, and a nearly axisymmetric 
structure with a ring developed. Although the perturbation amplitude 
in the ring began to grow, no significant fragmentation occurred before 
the ring passed through its equilibrium configuration and began to 
collapse axisymmetrically. Tohline (1980b) has shown that the perturba
tions left by the time the ring stage is reached are different in nature 
from those introduced directly into the ring by Norman and Wilson 
(1978) and that fragmentation is less likely to occur. 

Cook and Harlow (1978) made analogous calculations (but with a 
smaller initial perturbation) of the collapse of an adiabatic cloud 
with y = 5/3. Varying the initial value of a, they found that the 
higher-pressure case (a = .15) resulted in damping of the perturbation 
while a lower value of a(=.l) led to growth and fragmentation. Recently 
Boss (1980d) has made more extensive adiabatic calculations on a finer 
grid, using y = 7/5 and starting again from uniform density and uniform 
rotation. The perturbation imposed was of mode 2 with an amplitude 
of 50%. For low 3(0.05-0.1) fragmentation occurs only for a < 0.075, 
while for higher 3(.2-.3) fragmentation occurs for a<0.15. The 
higher-a runs settle down into near-equilibrium spheroids with final 
3<.27, the critical value above which they would be dynamically 
unstable to non-axisymmetric modes. 

Returning to the isothermal case, Narita and Nakazawa (1978) 
calculated collapses with a = .3 and two values of 3 starting from a 
highly non-axisymmetric cloud resembling an ellipsoid of non-uniform 
density and uniform angular velocity. A ring formed that eventually 
broke up into a binary system. A comparison calculation between two 
independent 3-D computer codes starting from the same initial conditions 
(a = .25, 3= .2, 50% perturbation of m = 2) was performed by Boss and 
Bodenheimer (1979). The codes both used the "fluid-in-cell" techniques 
but in general they were based on different coordinate systems, number 
of grid points, and difference methods. In both cases a binary system 
formed directly; the masses of the components were each 15% of that 
of the original cloud, their ratio of spin to orbital angular momentum 
was about 0.2, and their value of a was about 0.05 so that they con-
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tained many Jeans masses. Boss (1980b) has performed a number of other 
isothermal calculations, whose results contain two notable differences 
from other calculations. In particular, a calculation with a = .25, 
3 = .2 and no initial perturbation except for small numerical effects 
collapses, forms an axisymmetric ring, and then fragments into a 
binary. Initially axisymmetric calculations performed with the Tohline 
code remain axisymmetric. The second difference lies in the occurrence 
of single blobs in some runs. For example, from the initial condition 
of a = .24, 3 = -18 with a centrally condensed density distribution 
and with no initial perturbation the collapse developed into a ring 
which then broke up into a single off-axis condensation. A similar 
result occurred for a = .63, 3 = .2 with a 50% m = 2 perturbation, but 
the blob was not well defined. In other, more standard cases, Boss 
obtains the normal binary. 

Boss (1981) has also performed calculations with a tidal perturba
tion induced by the presence of a nearby protostar, located 2 cloud 
radii away. For a = .25, 3 = .20 and for various values of. the mass 
of the distorting object, the collapsing cloud is distorted into a 
bar-like shape and it then fragments into a binary. The fragments all 
have spin J/M about a factor 20 lower than that of the original cloud. 
For a = .63, however, the tidal forces again result in a bar-like 
configuration but the thermal energy is sufficient to prevent fragmen
tation; rather, a single dense fragment results. Another variation on 
the initial conditions was studied by Rozyczka et_ al. (1980a) who 
imposed random subsonic variations on the velocity field of the uniform-
density isothermal cloud. Fragmentation results when a = .02 but not 
for a = 0.1 and 0.5. 

A comprehensive summary of the 3-D collapse of an isothermal cloud 
is provided by the work of Bodenheimer, Tohline, and Black (1980). 
A wide range of a and 3 is studied starting from two different types 
of perturbations with mode 2 and amplitude 10% and 50%. The general 
results show that the cloud first collapses toward a centrally con
densed thin disk (Figure 1). When pressure effects become important 
in slowing the collapse parallel to the rotation axis, a shock forms 
on the edge of the disk. Only after about one initial free-fall 
time, when rotation has begun to stabilize the disk in the direction 
perpendicular to the rotation axis does fragmentation begin. Two 
different types were noticed. For a<0.3 the non-axisymmetric perturba
tions grow during collapse, although slowly at first, and the cloud 
fragments directly, usually into a binary, but occasionally into four 
fragments. This type of fragmentation is illustrated in Figure 2; the 
bar-like nature of the overall structure is evident. On the other 
hand, for a>0.3 the general result is damping of the initial pertur
bation and formation of a nearly axisymmetric ring structure, which 
then fragments (Figure 3). Clouds with a up to 0.6 were found to 
fragment, with the exception of an intermediate range around a = 0.5, 
where the ring began to collapse on itself on a time scale shorter 
than the fragmentation time scale. In these cases the numerical code 
was unable to follow the fragmentation, although its occurrence is likely. 
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Figure 1. Cross section of the inner portion of a collapsing cloud 
through the rotation (z) axis after 1.21 initial free-fall times. R is 
the distance to the rotation axis. Equidensity contours (solid lines) 
with an interval of a factor of 3.2 are shown along with velocity 
vectors (arrows) with length proportional to speed. The calculations 
were done in 3 space dimensions (Bodenheimer, Tohline, and Black 1980). 

A somewhat different approach is taken by Larson (1978) who uses 
a finite particle scheme with repulsive forces between neighboring 
particles to represent the thermal pressure. Dissipation due to 
shocks is represented by an additional viscous term which results in 
more transport of angular momentum than in the fluid-dynamic schemes. 
The initial conditions are similar to those in the other calculations 
with no explicit perturbation other than that given by a random initial 
distribution of the particles in a sphere. With a = 0.25 and $ = 0.3 
a binary forms, for a=0.35, 3 =0.19 a single dense condensation 
without a ring forms in the center, and with a = 0.075, $ = 0.3, the 
result is multiple fragmentation into 5-10 sub-condensations. The 
general outcome is that the number of fragments obtained is approximately 
equal to the number of Jeans masses contained in the original cloud. 
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Figure 2. Equidensity 
contours in the equa
torial plane (interval: 
factor 1.7) for a cloud 
that has undergone 
direct fragmentation. 
The maximum density is 
denoted by M; the center 
is a local minimum. 
(Bodenheimer, Tohline, 
and Black 1980). 

Figure 3. Equidensity 
contours in the equa
torial plane (interval: 
factor 1.7) for a cloud 
that has undergone a 
"ring-mode" fragmen
tation. The maximum 
density is denoted by 
M; the center is a 
density minimum. 
(Bodenheimer, Tohline, 
and Black 1980). 

1016cm 
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Multiple fragmentation of this type has not been observed in other 
calculations, partly because short-wave-length perturbations tend to 
be numerically and physically damped in the fluid dynamic calculations, 
and partly because Larson's fragments become well-developed only after 
several free-fall times, beyond the point where the other calculations 
are forced to stop for numerical reasons. Larson has deduced that a 
power-law mass spectrum will be the outcome. However, the finer 
details of these calculations must be taken with a good deal of 
caution because of the approximations and the small number of particles 
involved. 

An improved numerical particle scheme that adopts some of the 
features of Lucy's (1977) method has been developed by Wood (1980). 
The smoothing length scale is defined locally which is an advantage 
since the development of fragments can be followed with reasonable 
resolution wherever they occur. The calculation starts with random 
5% density fluctuations on an otherwise uniform-density uniformly 
rotating sphere. For a = 0.3, $ = 0.23 the cloud collapses, bounces 
in the z-direction, becomes unstable to a bar mode, and then fragments 
into a binary. For other cases, for example a = .2, $ = .3, the 
result was three symmetrically located condensations. 

Most of the above-described calculations assumed an initial 
configuration that was gravitationally unstable. However, it is 
also of interest to mention briefly some fragmentation calculations 
that start from equilibria. Relevant structures include the equilibrium 
rings that were subjected to the analysis of Norman and Wilson (1978), 
the isothermal equilibrium disks (Bodenheimer and Tscharnuter 1979), 
and the quasi-spheroidal cores that result from adiabatic collapse 
(Takahara t̂_ _al_. 1977, Boss 1980c). If star formation is to proceed 
beyond such equilibria, some physical process must occur, and fragmen
tation is a strong possibility. Rozyczka et^ al_. (1980b) performed 
3-D calculations on the isothermal equilibrium disk of Bodenheimer 
and Tscharnuter (1979) which has a final 3 = 0.25. Density perturba
tions of mode 2 and 4 with amplitudes of 10%, 20%, and 40% were applied. 
The m = 4 perturbations result in oscillations but no clear fragmenta
tion, while in most cases the m = 2 perturbations result in fragmenta
tion into a binary. Similar calculations were performed by the author, 
but the initial 50% perturbation was applied to the cloud before the 
onset of collapse rather than at the equilibrium phase. When the 
equilibrium was approached, the perturbation had damped considerably, 
but after about 3 initial free-fall times the central part of the cloud 
had clearly fragmented into a binary. 

A 3-D numerical analysis (Durisen and Tohline 1980) of the 
dynamical stability of rapidly rotating polytropes applies to the 
adiabatic equilibria (Takahara _et_ al_. 1977 and Boss 1980c) which 
closely approximate polytropes of index 1.5 when y = 5/3. Their 
analysis, of course, also is relevant to the possible fission of pre-
main-sequence stars at a much later stage of their evolution. Start
ing with a density perturbation of 10% or 33% amplitude and mode 2, 
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they follow the evolution of polytropes of n = 0.5 and n = 1.5 with 
the angular momentum distribution of a uniformly rotating uniform 
sphere, using the 3-D fluid-dynamic code of Tohline (1980b). For 
n = 0.5 the perturbation damped for 3 = 0.25 and grew for 3 = 0.33. 
For n = 1.5 it damped for 3 = 0.08, 0.18, and 0.27, grew for 0.33, 
and remained roughly constant for 0.30. Within the limits of the 
numerical results, the point of dynamic instability of the polytropes 
agrees roughly with the earlier tensor virial equation analyses which 
showed that the point occurs at 3 = 0.26 (e.g., Ostriker and Bodenheimer 
1973). It is not yet conclusive, however, that the instability leads 
to fragmentation. Extensive evolution of the high-3 configurations 
shows that an incipient binary forms at the center, but that the 
density contrast there does not increase noticeably during the ensuing 
phases, which involve the development of a spiral arm pattern in the 
outer regions and its evolution into an exponential disk and then 
into an expanding ring. 

5. CONCLUSIONS 

The overall results of the 2-D and 3-D hydrodynamic calculations 
with rotation applied to the star formation and protostar collapse 
periods of stellar evolution allow us to conclude the following: 

1. Rotating collapsing interstellar clouds are unstable to 
fragmentation over a wide range of initial conditions in the isothermal 
phase, given even a small initial non-axisymmetric perturbation. If 
the cloud is unstable to collapse almost any combination of the a- and 
3-parameters will result in fragmentation. Flattened isothermal 
equilibria with 3 about 0.25 are also unstable. 

2. The process of fragmentation differs from that suggested 
by Hoyle (1953) and Hunter (1962) in which fragments spontaneously 
appear when their mass exceeds the local Jeans mass. Perturbations 
can in fact damp initially due to pressure effects. After about one 
initial free-fall time, when the cloud collapse is slowed by pressure 
effects parallel to the rotation axis and primarily rotational effects 
perpendicular to the axis, the fragmentation begins. 

3. Fragmentation can occur either directly as a consequence of 
the initial perturbation imposed on the cloud, or through an intermediate 
ring stage. The dividing line is roughly at a = 0.3, but it also 
depends on the amplitude of the perturbation. 

4. The dominant mode of fragmentation is the binary (m = 2) mode, 
although results with one, three, and four fragments have also been 
reported. 

5. Among the results discussed above, there are some disagree
ments between authors on cases that were run with essentially the 
same initial conditions. Numerical difference techniques and numerical 
accuracy undoubtedly are of importance in this regard. For example, 
on relatively coarse numerical grids some numerical damping of 
perturbations inevitably occurs. Thus, some of the details of the 
results of the various calculations may change in the future as a 
consequence of improved numerical methods. 

6. The properties of the fragments in the isothermal case are 
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such that they are unstable to collapse. The mass of a fragment in 
many cases is 10 to 15% of the cloud mass, the value of a is a few 
percent, and the ratio of spin to orbital angular momentum is very 
roughly 20%. The fragments form in the innermost part of the cloud 
which has lower J/M than the average for the cloud. This effect, com
bined with the conversion of spin to orbital motion, results in a 
reduction of spin J/M by a factor 10 to 20 from that of the initial 
cloud. Thus, after a series of several collapses and fragmentations 
the J/M as well as the fragment masses can be reduced by considerable 
factors. Bodenheimer (1978) showed that such a process could result 
in direct evolution from a massive interstellar cloud to main-
sequence binary and multiple systems within the observed range of 
masses and orbital angular momenta. 

7. During the adiabatic phase the tendency to fragment is not 
as universal as it is in the isothermal phase. The collapse approaches 
an equilibrium, and fragmentation is likely if $ in the equilibrium 
configuration is above 0.27. Initial conditions set up at the end of 
the isothermal phase, which involve fragments with a<0.1, suggest 
that the conditions for further fragmentation during the adiabatic 
phase are in general satisfied. If they are not, two possibilities 
are open. First, the adiabatic evolution could result in temperatures 
above the dissociation temperature for H2. Fragmentation would be as 
likely to occur during the ensuing collapse as it is during the 
isothermal phase. Second, if the temperature remains too low, the 
equilibrium configuration can evolve only as a consequence of angular 
momentum transport. This final set of circumstances may provide the 
conditions necessary to form a single star and a surrounding rotating 
nebula. 
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DISCUSSION 

Nakamura: How have you checked the accuracy of your 2-D and 3-D numerical 
calculations. 
Bodenheimer: A large number of tests of the accuracy of the solutions 
have been performed, and new tests are continually being devised. The 
one currently applied are 
1. Comparison with analytic solutions in limiting cases, where available. 
2. Intercomparison between different numerical techniques on the same 
physical problem. Example: Boss and Bodenheimer, Astrophys. jJ. 234, 289. 
3. Examination of the effect of increasing the number of grid points. 
4. Tests of the conservation of the distribution of angular momentum 
with mass, in the 2-D case (see Norman, Wilson, and Barton, Astrophys. 
J_. August 1980) . 
5. Comparison with the detailed structure of equilibrium differentially 
rotating polytropes (Bodenheimer and Ostriker, Astrophys. J_. 180, 159) in 
the case of adiabatic 2-D collapses, which should reach such equilibria. 
Nariai: For the case of binary-type fragmentation, the loss of mass from 
the region outside of the outer Lagrangian points greatly reduces the J/M 
ratio (Nariai and Sugimoto 1976, Publ. Astron. Soc. Japan _28_, 593) . Is 
this effect included in your calculations? 
Bodenheimer: This effect is included, but it has not been analyzed 
separately from the other effects. It would seem that this mechanism 
provides additional help in solving the argular momentum problem. 
Mouschovias: You mentioned semi-analytical results which explain the 
formation of rings as due to a "density wave". Was there an implication 
that rotation is not important in ring formation? 
Bodenheimer: Rotation is critically important in the generation of the 
wave. Because of rotation and a non-uniform density distribution, the 
particles in the inner regions overshoot their equilibrium positions, 
rebound, interact with particles from the outer regions that are still 
falling in, and so generate the wave. 
Tscharnuter: According to your fragmentation scheme, the multiple stellar 
system should be strictly co-planar. Which processes would you consider 
to be responsible for the observed finite inclinations? 
Bodenheimer: It is true that in some observed multiple stellar systems 
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the short-period system and the long-period system are not co-planar. 
The direction of the angular momentum vectors could be influenced by 
(1) close encounters and interactions with other protostellar systems 
during the formation or early evolution of a dense cluster, or (2) 
magnetic fields which could affect the angular momentum of parts of a 
diffuse cloud before fragmentation actualy takes place. 

Sugimoto: Is the number of final fragments related to the number of 
modes, for example, in the initial perturbation? If not, what do you 
expect for the number spectrum of the fragments? 
Bodenheimer: In our calculations, we impose an m=2 perturbation and 
in most cases we get a binary as a result. However, we have also 
obtained 4 fragments. On general grounds I would expect that the growth 
rate of the lower-order modes would be faster than that of higher modes. 
Calculations by Norman and Wilson (Astrophys. J_. 224, 497, 1978), start
ing from equilibrium rings, show that even if a mixture of modes (from 
m=2 to 6) is imposed in the initial perturbation, the final outcome is 
usually a binary. We still need to do more numerical calculations with 
better spatial resolution (to adequately represent the higher modes) to 
answer this question, but I expect that 2 fragments will be the usual 
result. 
Tayler: In each stage of fragmentation only a small fraction of the mass 
is included in the fragments. Does this mean that you believe that star 
formation is very inefficient if only rotation, pressure and self-
gravitation are important? 
Bodenheimer: That is an important point. If only 20% of the mass of 
the cloud fragments at each stage (10% per fragment in a binary), there 
is considerable mass left over that has too much angular momentum to join 
the fragments. After several stages only a very small fraction of the 
original material would end up in stars, so the process would in fact be 
quite inefficient (but efficient in solving the angular momentum problem). 
Unno: How many steps of fragmentation are needed for star formation in 
a realistic situation? Are there numerical simulations for that? 
Bodenheimer: Approximately four stages of fragmentation are required for 
evolution from the interstellar cloud state to a main-sequence multiple 
system. Some approximate simulations based on the 2- and 3-D numerical 
solutions can be found in a paper by Bodenheimer (Astrophys. J_. 224, 488) . 
Schatzman: What is the present situation regarding the mass spectrum 
problem? 
Bodenheimer: From the theoretical point of view, I think that the ques
tion is completely open. The 3-D calculations that I have been discuss
ing show that fragmentation occurs, but they make no predictions regard
ing the mass spectrum. Larson suggests (Mon. Not. R-A.S. 184, 69, 1978) 
that his fragmentation calculations result in a power-law mass spectrum. 
However a number of approximations are involved. Silk and Scalo, and 
co-workers, have investigated models involving coalescence of numerous 
small fragments plus accretion of the surrounding gas. However, there 
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are problems with this model as well. For example, the origin of the 
original fragments is obscure: It is based on the Hoyle-Hunter fragmen
tation theory, which is no longer believed, and furthermore rotation is 
not included at all in the analysis. 
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