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A NOTE ON WHITTAKER'S CARDINAL SERIES
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The sampling theorem, often referred to as the Shannon or Whittaker-Kotel'nikov-
Shannon sampling theorem, is of considerable importance in many fields, including
communication engineering, electronics, control theory and data processing, and has
appeared frequently in various forms in engineering literature (a comprehensive account
of its numerous extensions and applications is given in [3]). The result states that a
band-limited signal, i.e. a real function / of the form

f(t)= J F(x)e-2«ix'dx, (1)
— w

where w>0, is under reasonable conditions on the even function F, determined by its
values on the sampling set (l/2w)Z and can be reconstructed from the samples f(k/2w),
keZ, by the series

sin27rwt „ , /& \ (-1)* 1 — ( k\sin2nw(t-k/2w)
J\t)=- 2nw £z

J\2wJ(t-k/2W) 2W&J\2wJ n(t-k/2w) '

This series is known as the cardinal series and was established by E. T. Whittaker [12]
in 1915 from the point of view of interpolation theory. In an interesting survey article
[2] which also reviews some of the mathematics connected with the cardinal series,
Higgins traces the origins of the result to before Whittaker and points out that others
besides Kotel'nikov and Shannon appreciated its significance.

The purpose of this note is to combine two different generalisations of the sampling
theorem. The first is a far-reaching extension due to Kluvanek ([4]; see also [2], §4)
from classical Fourier analysis to abstract harmonic analysis, with the real line U being
replaced by a locally compact abelian group G and its dual F, the interval ( — w,w)
outside which the Fourier transform vanishes being replaced by a complete set of coset
representatives of F/A and the discrete subgroup (sampling set) Z/2w by a discrete
subgroup H of G. In making this extension, Kluvanek notes that in the classical case,
when G = U, the set of coset representatives need not be an interval. The second
generalisation replaces the interval in the sampling theorem by a somewhat more
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general subset A of U which is measurable and with difference set D(A) which meets Z/s
just in 0 for some positive number s (the sampling interval)[l]. The equivalent "disjoint
translates" condition that each translate A + k/s, where k is a non-zero integer, is
disjoint from A is used by Lloyd ([6]) in sampling theorems for stochastic processes
which are stationary in the wide sense and which have spectral support A. Lloyd's
results have been extended to a wide class of non-stationary processes and to
harmonisable processes indexed by suitable locally compact abelian groups [5]; some of
the ideas in [5] are close to those in [4] and the present paper. When placed in an
abstract harmonic analysis setting, the difference set and disjoint translates conditions
are weaker than Kluvanek's and a specialisation gives an n-dimensional sampling result
more effective than that in [9]. Note that in (1), / is the Fourier transform of a given
function F; in the sequel, the function / is taken as given.

We will follow, with some minor modifications, Kluvanek's approach in [4]. In
particular instead of starting with a discrete subgroup H of G (corresponding to the
subgroup sZ when G = U) and finding a class of functions determined by their values on
H, we start with a set A outside which the Fourier transforms of the functions vanish
and find conditions for a subgroup H to be a sampling set.

Let G be a locally compact abelian group with dual group F. The value of the
character (or homomorphism) y:G->Sl of F at the point x in G will be written (x,y).
For each function / in Ll{G), the Fourier integral or transform /:F->C is defined by

= \ f{x){-x,y)dmG{x)
G

and for each ij/eL^r), the inverse Fourier transform i//:G->C is defined by

The Haar measure mr on F is normalised so that the inversion theorem holds (results
on integration on locally compact abelian groups used in this paper can be found in
[7]).

Let A be a discrete subgroup of F such that F/A is compact (a connected locally
compact abelian group G always contains a discrete finitely generated subgroup D such
that the factor group G/D is compact ([8], §2.21)). The Haar measure mA on A as usual
satisfies mA({X})=l for each X in A. Since F/A is compact, the Haar measure wr/A(F/A)
is finite but will not be taken to be 1 and instead by [7], §33A or [11], §2.7.3 is
normalised so that

J F(y) dmAy) = J £ F(y + A) dmrfA([y]) (2)
r r/AJiA

holds for every non-negative Baire and so every integrable function F on F ([}>] = )> + A,
the coset of A in F containing y). This amounts to assigning F/A the measure of a
complete set of coset representatives in F.

Let H be the dual of F/A, so that H is a discrete subgroup of G with point measure 1
and with annihilator {ysT:{h,y) = \ for all heH}=A ([11], Theorem 2.1.2). Every
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character of F/A is of the form (h, [y]) for some h in H, y in F ([7], §35B) and the set of
characters forms a complete orthogonal family of functions in L2(F/A) ([7], §38C).

It is readily verified that a set ft in F is a complete set of coset representatives of F/A
if and only if for each y in F, ft meets A+y in just one point, i.e. for each y in F,

Card{ftn(A + A)} = l. (3)

Hence for any complete set ft of coset representatives of F/A,

X xn(^+y)=i (4)
AeA

for each y in F. Let ft be a complete set of coset representatives for F/A and suppose
that ft is measurable and mr(ft) = /i say. It follows that xn is in L1(F)nL2(F), so that by
Plancherel's theorem, xneL2(G), is continuous, positive definite with norm ||xn||G
satisfying

W I H Wl?= J \X"M\2 dm^ = Ix^ ^r(T) = mr(Q) = /i. (5)

Evidently

*n(0) = J xn(y) dmriy) =

Equations (2) and (4) imply that the set of characters (h,y), where hsH and y is
restricted to Q, form a complete orthogonal family for L2(Q). Writing F1([y]) = F(y) for
a function F defined on Q. and using (2) and (4), we have

1 F(y) dmM = 1 *n(y)F(y) dmr(y) = J £ xn(y + A)F(y + X) dmr/A([y])
n r T/AAA

1
r/A

It is clear that F is in L1 (fi) if and only if Fj is in L^F/A); similarly F is in L2(Q) if
and only if F, is in L2(F/A). Since (h,y)l=(h,[y])i, the assertion is proved. It follows
that for each h in //,

,y)dm^y) = J(/,,y)dm^y) = j ° WJCn J f ° (6)
n (/* when h = 0.

Also, by Parseval's formula,

j x) = J xn(y)( - ft, y)xn(y) dm^y) = J" xn(y)( - h, y) dm^y),
G r r

so that for each h in H,

1 xn(x)xn{h - x) dmG{x) = xn{h). (7)
G
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The Haar measure of F/A satisfies mr/A(F/A) = mr(Q) = y., since on putting F — xn in
(2),

= J *o(y) dmAy) = J I xn(X + y) dmr/A([y])
r r/AAeA

mr(i2) =
r/A

j / /
r/A

Let A be a subset of F and A a subgroup of F. It is straightforward to verify that for
any subset A of F the following conditions are equivalent:

(i) A is a subset of a complete set of coset representatives for r/A,
(ii) for each y in F, Card {An(A + y)} ^ 1,

(iii) for each non-zero A in A, An(A + X) is empty,
(iv) D(/4)nA = {0}.

The group A corresponds to (l/s)Z in [1] and [6]; (ii) is a weaker condition than (3);
(iii) corresponds to the disjoint translates condition preventing "aliasing" in [6], while
(iv) corresponds to the difference set condition in [1] which ensures that the map
<P:L2(IR)-W2(IR) given by /->{s~1 / 2 / (S/C):/CEZ} is an isometry when restricted to A and
so has a left inverse.

In the proof of the extension of Kluvanek's result [4], we consider square integrable
functions on G with Fourier transforms which vanish outside a measurable subset A of
F, i.e., functions in

L2, = {/ e L2(G): /(y) = 0 almost everywhere when y$A),

the /1-spectral set of L2(G), when A is a subset of a complete set of coset representatives
of F. The main differences from [4] are the different normalisations and the
construction of the set A of coset representatives of F/A containing A.

Theorem 1. Let G be a locally compact abelian group with dual group T. Let A be a
measurable subset of F and suppose that there exists a discrete countable subgroup AofF
such that for each non-zero X in A, An(A +1.) is empty. Suppose further that F/A is
compact and has a complete set of coset representatives which is measurable. Then there
exists a complete set A of coset representatives which is measurable and contains A; and
for each f in L2(G) with Fourier transform J vanishing almost everywhere outside A,

| X |
heH

where H is the dual of F/A (or the annihilator of A) and p = wr( A), and f is equal almost
everywhere on G to a continuous function. When f is continuous

absolutely and uniformly in G.
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Proof. Let Q. be a complete measurable set of coset representatives of F/A. The
translates Q + y, yeF, cover F and are measurable, their intersections An(Q + y) with A
and their translates Ay = An(Cl + y)—y are also measurable. Since for each non-zero k in
A, An(A + A) is empty, the set

A=AU\Q\\JA\

is a complete set of coset representatives of F/A containing A, and since A is countable,
A is measurable.

By hypothesis and Plancherel's theorem, /eL2(F). Since /()>)=0 for almost all y not
in As A, there exist complex numbers ah, heH, such that

hi) = Z «*C», i)xA(i) = Z fl»(*. 7)^7), (8)
heH heH

where the convergence is in the L2(A) norm. Hence on taking the inverse Fourier
transform,

/(*)(=/(x))= Z ahS(h,y)xA(y)(x,y)dmAv)= Z a, j(^,y
fceH r heH r

and so

/(x) = X a,xx(^ + x) = X a.x^/j + x) (9)
heH heH

in L2(G). Hence

j X Z
GheHKeH

= Z T ahahl
heHh'eH G

Zw 1 | x i x ) | 2 dmc(x) = M J t f l«».|2

by (5), the translation invariance of Haar measure and (4).
Since m^A) is finite, L2(A)<=L\A), so that for each / in L2(G), feL\A) and / is a

continuous function of x. Thus by the inversion formula, / is equal almost everywhere
to a continuous function, so that when / is continuous

/(x)=
heH

pointwise by (9). The convergence of the series is absolute from (10), which holds for xA,
and Cauchy's inequality. The convergence of the series to / is uniform since for an
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arbitrary finite subset Hl of H,

fix)- Y, ahXA(* +h)
heH,

ahxA(y)(x+h,y)dmiiy)

rheH,

if\0

which, because convergence in L\A) implies convergence in Ll(A), can by (8) be made
arbitrarily small for a suitable choice of Hv

Finally to determine ah, note that by (9)

f(h')=
hsH

by (5) and (6) with Q = A, whence the result.
It is possible to prove absolute convergence and the formula for ||/||G without the

inversion formula, which requires a complete set of coset representatives. However it
appears that the inversion formula is needed to establish uniform convergence.

The sampling theorem has been extended to n dimensions for continuous functions
with bounded spectra, i.e. with Fourier transforms vanishing outside a bounded region
in W ([2], §4-5, [9], [10]). By considering the special case G = r = R" with Lebesgue
measure and with character (x, y) given by

where x,yeW and x.y = x1yl + --- + xnyn, the result just proved has as a corollary a
generalisation of the n-dimensional sampling theorem to continuous functions with
Fourier transforms vanishing outside a set which satisfies a disjoint translates er
equivalent condition, and to a generalisation of Theorem 5 in [1] to n-dimensions.

Corollary. Suppose that the Fourier transform ?:W-*C of the continuous function f
in L2(W) vanishes outside a measurable set A a W. Suppose also that, for some positive
real numbers slt...,sn,

1/su...,kJsn)} = (11)
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holds for all non-zero integer vectors (ku...,ka) in Z". Then

f(x) = (s1...sn) £ f(slk1,...,snkn)xA(xl-slk1,...,xn-snkn)
keZ'

uniformly and absolutely.

Proof. The locally compact abelian group W with Lebesgue measure is its own dual.
The group

A=z/Sle---ez/sn

is a discrete and countable subgroup of W and the factor group

W/A=— R/Z © • • • ©-R/Z,

is compact and has a complete set of coset representatives given by

Q = [0,l)/s1x---x[0)l)/sn

with Lebesgue measure |Q|=(s! ...sB)~l. The map v: W-t-Ci given by

v(x1; ...,xn)=(x1- [ s^J /Si , . . . , xn - [snxj/sn),

where [t] is the integer part of the real number r, is differentiable almost everywhere
with Jacobian 1 and is surjective. It is readily verified that the set A<j{xeQ:v(x)$v{A)}
is a complete set of coset representatives of W/A containing A and corresponds to the
set A in the theorem. When restricted to A = A<j{xeQ:v(x)$v(A)}, the map v is
injective and preserves measure, so that |.2| = |v(.4)| = |Q| = (s1...sI1)~1. The corollary
follows since the dual of IRn/A is the discrete group

As an example let n = 2 and let

so that A consists of four squares each with unit width lying on a coordinate axis
and centred a distance 10 units from the origin. It can be verified that for any pair of
integers j , k, not both 0, A + 3(j, k) is disjoint from A, so that we can take s,=s2 = 1/3,
corresponding to a sampling density of 9. Hence if / is continuous and / vanishes
almost everywhere outside A, then

fix,y)4 I Mj,k))xA(x-Uy-fr),
j.k'sZ
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where

_ sin nx (sin 21 ny + sin 19ny) + sin Try (sin21 nx + sin 19nx)
n2xy

Note that |/l| = 4<9 = |^|.
By comparison, the n-dimensional sampling theorem [10] gives s1 = s2 = 1/21, corres-

ponding to a sampling density of 441, but has the simpler interpolation function

4sin2l7rxsin2l7t_y
(2l)2K2xy '

In this theorem, the spectrum is enclosed in an n-dimensional cube centred at the origin;
in the above example, the square has sides of length 21. Petersen and Middleton ([9],
see also [2], §5) have improved on the n-dimensional sampling theorem by enclosing the
spectrum in a "cell" which is then "packed" in IR". They do not discuss convergence but
their arguments make no essential use of the enclosing cells which could be replaced by
a disjoint translates condition. Nevertheless there are some practical advantages in
working with cells and it evidently guarantees that translates of the spectrum by vectors
corresponding to the packing lattice do not overlap. By considering a diamond shaped
cell or by rotating the axes through n/4 and then using the n-dimensional sampling
theorem, it can be shown that the function is given by its values at the lattice points
2V2/(21 -I- y/2)(j + k,j — k), where;, k are integers, corresponding to s1=s2 = 72/(21 + yJ2) =
0.063... and sampling density of 251.198..., with interpolation function

8 sin (21 + Jl)n{x + y)/J2 sin (21 + V2)TT(X - y^Jl
(2l+y/2)2n2(x2-y2)

A more efficient packing is obtained by taking the cell to be the cross

{(*, y): |x| g 1/2, \y\< 21/2} u{(x,y):\x\^ 21/2, \y\Z 1/2} (12)

with arms of length 21/2 and width 1. It can be verified that distinct translates of the
cross by j(ll,l) + k(l,l2) = (llj + k,j+l2k), where j,k are integers, do not overlap. In
this case Petersen and Middleton's method gives a sampling density of 131 and a
corresponding interpolation function

sin nx sin 21ny +sin 2lnx sin ny —sin nx sin ny
n xy

The group Z/sl@
m"@%-/sn in the corollary was chosen for simplicity and in a

particular application, this group could be replaced by one more suited to the structure
of the set A. Thus as an example when the set A is the cross (12), the appropriate group
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is A = {(llj + k,j+l2k): j,keZ} with annihilator (sampling set) H = {(l2j-k,llk-j)/
131:7,/ceZ} a nd the corresponding interpolation function is given by (13).
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